Tartalomjegyzék

Bevezetés... 4.
Történelem.. 6.
Területi adatok, népesség... 10.
I. KÖRNYEZETI ELEMEK ÁLLAPOTA
I.1. Természetes környezet állapota..16.
Természetvédelmi szempontból értékes területek leírása, jellemzése .. 17.
Természetvédelmi területek állapotára ható tényezők .. 21.
Intézkedések... 23.
További javasolt feladatok ..26.
I.2. Épített zöldfelületek .. 35.
A zöldfelületi rendszer állapotának leírása, jellemzése ... 36.
A zöldfelületi rendszer állapotát befolyásoló tényezők .. 47.
Zöldfelület-védelmi és -fejlesztési intézkedések .. 48.
További javasolt feladatok ..50.
I.3. Talaj... 57.
Talajállapot leírása, jellemzése ... 58.
Intézkedések... 66.
További javasolt feladatok ..69.
I.4. Vizek... 78.
Vizek állapotának leírása, jellemzése ... 79.
Felszíni és felszín alatti vizek állapotára ható tényezők, okok ...90.
Intézkedések...108.
A városklima állapotának leírása, jellemzése ... 117.
A városklima állapotának okai, hatótényezői. ... 132.
A budapestiek véleménye a klimatikus viszonyokról .. 133.
Klimavédelmi intézkedések ...134.
Levegőminőség leírása, jellemzése ...143.
A légyszennyezettség környezet-egészségügyi hatásai, kockázatai ... 151.
Levegőminőség okai, hatótényezői. ..154.
A budapestiek véleménye a levegőminőségről .. 157.
Intézkedések...159.
További javasolt feladatok ..63.
Zaj- és rezgésterhelési viszonyok leírása, jellemzése .. 182.
Zaj- és rezgésterhelési viszonyok okai, hatótényezői ... 185.
A budapestiek véleménye a zajterhelésről ... 186.
Zajvédelmi intézkedések..187.
További javasolt feladatok ..190.
II. KÖRNYEZET ÁLLAPOTÁT BEFOLYÁSOLÓ TÉNYEZŐK
II.1. Épített környezet ...193.
II.2. Energiagazdálkodás ... 207.
 Energiagazdálkodás leírása, jellemzése .. 208.
 A budapestiek véleménye az energetikáról ... 213.
 Intézkedések .. 216.
 A közlekedési jellemzők leírása, ismertetése. ... 238.
 A budapestiek véleménye a közlekedésről .. 257.
 Intézkedések .. 265.
 További javasolt feladatok .. 269.
 Gazdasági tevékenység, integrált szennyezés- és katasztrófa felügyelet megelőzés ... 272.
 Intézkedések .. 276.
 További javasolt feladatok .. 278.
II.5. Árvízvédelem, ivóvízellátás, szennyvízkezelés és csapadékvíz-gazdálkodás .. 287.
 Vízjárás, árvízvédelem .. 288.
 Ivóvízellátás, szennyvízkezelés és csapadékvíz-gazdálkodás leírása, jellemzése ... 291.
 A budapestiek véleménye a vízfogyasztással és a csapadékvízzel kapcsolatban .. 302.
 Intézkedések .. 305.
 További javasolt feladatok .. 307.
II.6. Hulladékgazdálkodás .. 316.
 Hulladékgazdálkodás leírása, jellemzése .. 319.
 A budapestiek véleménye a hulladékgazdálkodásról ... 330.
 Intézkedések .. 333.
 További javasolt feladatok .. 336.
 Zöldfelület-gazdálkodás leírása, jellemzése .. 343.
 A budapestiek véleménye a zöldfelület-gazdálkodásról ... 353.
 Intézkedések .. 356.
 További javasolt feladatok .. 358.
 Közterületek tisztántartásának leírása, jellemzése ... 363.
 A budapestiek véleménye a közterületek tisztaságáról ... 367.
 Intézkedések .. 369.
 További javasolt feladatok .. 371.
 A lakosság környezetvédelmi kézitettessége ... 377.
 Környezeti nevelést, tájékoztatást és a társadalmi részvételt célzó intézkedések .. 381.
 További javasolt feladatok .. 385.
II.10. Társadalom ... 395.
 Társadalmi folyamatok jellemzése ... 396.
 Természeti környezeti problémák társadalmi okai – Urbanizációs trendek ... 398.
 Intézkedési javaslatok .. 412.

III. FŐVÁROSI KÖRNYEZETVÉDELMI INTÉZKEDÉSEK VÉGREHAJTÁSÁNAK NYOMONKÖVETÉSE
Impresszum

Megbízó

Budapest Főváros Önkormányzata
Főpolgármesteri Hivatal
Klíma- és Környezetügyi Főosztály

Ámon Ada főosztályvezető

Témafelelős a Megbízó részéről:
Molnár Zsolt szakmai főtanácsadó, osztályvezető (szerző és szerkesztés)

Szerzők

Budapest Főváros Városépítési Tervező Kft.

Tatai Zsombor okl. tájépítészmérnök
Zétényi Dávid okl. tájépítészmérnök, ipari környezeti szakmérnök
Niedetzky Andrea okl. tájépítészmérnök
Bödi-Nagy Anasztázia okl. tájépítészmérnök
Balogh Ábris tájrendező és kertépítő mérnök
Orosz István okl. villamosmérnök, mérnök-közgazdász, energia szakági tervező
Szabó Krisztián okl. építőmérnök, víziközmű tervező
Becsák Péter okl. építőmérnök, közlekedés tervező
Varga György okl. geográfus, tanácsadó (MEGÉRTI Kft.)

Külön köszönet:

a fővárosi kerületi önkormányzatok, közszolgáltató szervezetek és az állami adatszolgáltatók, különösen a Magyar Energetikai és Közmű-szabályozási Hivatal, a Nemzeti Népegészségügyi és Gyógyszerészeti Központ, a Nemzeti Élelmiszerlánc-biztonsági Hivatal, az Országos Meteorológiai Szolgálat, az Országos Vízügyi Főigazgatóság, Fővárosi Katastrófavédelem Igazgatóság és a Pest Vármegyei Kormányhivatal, Környezetvédelmi, Természettudománi, és Hulladékgazdálkodási Főosztály közreműködő munkatársainak, valamint az ELTE TTK Eletológiai Tanszék (Dr. Kubinyi Enikő) és a Társadalom- és Gazdaságföldrajzi Tanszék (Varga György) közreműködéséért.
Bevezetés

A környezet állapotváltozását ma leggyakrabban az éghajlatváltozással azonosítják.\(^1\) Látni kell azonban, hogy a környezetállapotban történő változások átfogó szerkezeti változásokhoz köthetők, olyanokhoz, mint a bio- és geokémiai ciklusukat meghatározó anyag és energiatransportok ember általi befolyásolása.

A környezet állapotát a rendszer-szerkezetben bekövetkező változások határozzák meg, amelyek a környezetet érő terhelésekből származnak. A környezetet értetik a rendszeren kívüli, és a rendszeren belüli keletkezett változások is. Jelenleg úgy tűnik, hogy a változások okát a rendszeren belül, az emberi tevékenységekből származó terheléseken kell keresni. Az ember által létrehozott terhelések nagyon sokféle, de minden terhelés besorolható három fő terheléstípusba. Ezek: a természeti erőforrások megújulási ütemén túli felhasználása, a természetes élőhelyek átalakítása (reverzibilis) vagy megszüntetése (irreverzibilis), és a környezetbe történő kibocsátások.

A környezetet érő terhelések a társadalmi hajtóerőkből, hatótényezőkből származnak. A terhelések közvetlenül a természeti erőforrásokat felhasználó szektorokkal, folyamatokkal (ipar, mezőgazdaság, energiaellátás, közlekedés, szállítás) kapcsolhatók össze, amelyek egyben a területhasználatok és a kibocsátások meghatározó elemei is. A szektorok között nem szoktak megemlékezni a hadásszatról, amely még békéidőben is jelentős környezetterhelő. A környezetet ezen kívül közvetlenül terhelik az ember által okozott haváriák (tűz, vegyi hadászatról, amely még békeidőben is jelentős környezetterhelő.

Az ember általi befolyású terhelések közvetlenül a természeti erőforrásokat felhasználó szektorokkal, folyamatokkal (ipar, mezőgazdaság, energiaellátás, közlekedés, szállítás) kapcsolhatók össze, amelyek egyben a területhasználatok és a kibocsátások meghatározó elemei is. A szektorok között nem szoktak megemlékezni a hadásszatról, amely még békéidőben is jelentős környezetterhelő. A környezetet ezen kívül közvetlenül terhelik az ember által okozott haváriák (tűz, vegyi szennyezések) és a természeti katasztrófák is. Mindezek mögött további okok találhatók, ugyanakkor végső okként nevezhetjük meg azt az általánosan elfogadott társadalmi értéket, amely az anyagi javak gyarapodásában véli felfedezni az élet értelmét, a boldogulás forrását.

Osszességében látnunk kell, hogy bár minden ember felelős környezetének állapotáért, és mindenki önmaga is sokat tehet a környezeti állapot javításáért, ugyanakkor a pontos helyzetértékelés és a megfelelő (szak)politikai irányítás alapvetően a választott döntési kotói testületek felelőssége. Az első és legjelentősebb lépés ezen az úton az a célmeghatározás, miszerint anyagi igényeinket a szükségletek szintjére indokolt mérsékelni.

Egyre inkább érdemes belátni azt is, hogy a fogyasztói társadalom – elsősorban a GDP növekedését szem előtt tartó hasznoselnő – szervezése (mintegy rendszerhiba) globálisan viszonylag rövidtávon sem fenntartható, továbbá azt is, hogy mindez ugyanúgy igaz lokálisan a magyarországi, illetve a budapesti helyzetre is. A környezeti, elsősorban az anyagi erőforrások túlzott felhasználása előbb-utóbb – az egyre növekvő társadalmi konflikusok mellett – a fogyasztási drasztikus visszaesését, illetve az ökoszisztémára (és ennek részeként az ember) pusztulását, valamint a népesség számának jelentős visszaesését kell, hogy okozza.

Az egyre nagyobb sebességgel növekedő anyagi igények globális korlátjaira, a növekedési lehetőségeink végességére először a Római Klubnak\(^2\) adott, a Dennis L. Meadows által szerkesztett és 1972-ben közölt, *A növekedés határai* című jelentés\(^3\) hívtá a figyelmet. Az irányváltásra való akkori felszólítás ötven évvel később sürgetőbben tűnik, mint valaha – a jelentés modellezése rendkívül pontos és előrelátó volt.

A világ már valóságosként tapasztalja az éghajlati vészhezjelzetet, hasonlóan a ökoszisztémák állapotomlásához, mivel a globális folyamatok romlásának sebessége manapság érzékelhetően felgyorsult, illetve az várhatóan egyre gyorsabban is fog válni.

Fenti folyamatok jelentőségére – a Magyar Tudományos Akadémia által 2021. novemberében [A magyar tudomány ünnepe] című rendezvénysorozaton tartott – Prof. Bartholy Judit és Prof. Szathmáry Erős előadásai\(^4\) is felhívát a figyelmet, de legutóbb erről szólt Prof. Gelencsér András figyelemfelhívása\(^5\), valamint utóbbi
Az egyre bővülő környezeti adatok, információk és információs források megnehezítik a tájékozódást, a hiteles információkhoz való hozzáférést, ezért korunk információs forradalmában különösen fontos a megfelelő tájékoztatás.

Előzményeként említhetők azok az értékelések, amelyeket a Fővárosi Önkormányzat korábban készített, valamint a Nemzeti Környezetügyi Intézet által kiadott, *Magyarország környezeti állapota* című jelentés. Utóbbi, egy (a Kvt. szerint16) olyan állapotértékelés, amely az ország környezeti állapotának leírását, mennyiségi és minőségi jellemzőinek feltárását, terhelhetősége és igénybevétele mértékének meghatározását tartalmazza. Továbbá az Európai Környezetvédelmi Ügynökség rendszeresen kiadott értékelései is további módszertani segítséget adnak a budapesti környezeti állapotértékelésekre.

Jelen dokumentum a legfontosabb budapesti jellemzőket foglalja össze, tekintettel a települési környezetvédelmi programalkotás kötelező és ajánlott szakterületeire15, az alábbi szerkesztésben:

- a közérthetőség elősegítése érdekében az egyes környezeti elemek állapotát és az azokat befolyásoló hatótényezőket külön-külön részben tárgyalja;
- a jobb áttekinthetőség érdekében az egyes szakterületi fejezetek azonos tartalmi felépítésűek;
- egyes részletes adatok terjedelmi okok miatt a Függetlenségben, a jogszabályi hivatkozások pontos megjelölése és az adatforrások részletes hivatkozása a dokumentum végén található.

A környezeti állapotértékelés további eleme az egyes fejezetekben megjelenő nemzetközi kitekintés, amely lehetővé teszi a budapesti környezeti állapotának, illetve teljesítményét hasonló – elsősorban Budapesten hasonló (kelet-) közép-európai – nagyvárosokkal összevetését. Az összehasonlításokhoz kiválasztott városok legfontosabb adatait a II. rész bevezetése ismerteti (a további szerkesztési szempontokat részletesebben a BKÁÉ 2015. tartalmazza).

A környezeti állapotértékelés 2020-tól – évére visszatérően – egy reprezentatív közvéleménynkutatás eredményeit tartalmazza arról, hogy a budapestiek hogyan ítélik meg a fővárosi környezeti állapotot.

A Fővárosi Közgyűlés 141/2021. (I.27.) határozatával jövőhagyta Budapest 2021-2026 időszakra szóló önálló települési környezetvédelmi programját (a továbbiakban: *BK 2026*). Tekintettel a Kvt., vonatkozó előírásaira16 az önkormányzatnak gondoskodnia kell a környezetvédelmi programban foglalt feladatok végrehajtásáról, a végrehajtás felületeinek biztosításáról, és figyelemmel kell kísérnie a feladatok ellátásáról. Továbbá a lakosságot rendszeres időközönként tájékoztatni kell a program végrehajtásának helyzetéről is. Mindezen további követelmények teljesítésére az állapotértékelés tartalmaz egy a BK 2026, valamint a Fővárosi Közgyűlés további, környezet- és klímavédelemmel kapcsolatos döntéseinek, illetve azok megvalósításának nyomonkövetését szolgáló fejezetet is.
Történelmi előzmények

Római kor

A mai Budapest területének írásos történelme a római helyőrséggel, Aquincummal kezdődik, amelyet i. sz. 89 körül alapítottak a Duna nyugati partján, a mai Óbuda területén.

Honfoglalás

A magyar törzsek a Dunától nyugatra fekvő területeket 900-ban foglalták el.

Tatárjárás és az új város

A mongolok 1241-42-ben Pestet és Óbudát elpusztították. Pár évvel később új város jött létre, a mai város történelmi központja, mely a század végére az ország legjelentősebb városává, olykor királyi székhelyévé vált.
A Magyar Királyság fővárosa

Buda a XV. század elejétől tartósan királyi székhelyé vált, német többségű lakossággal. Pest magyar nyelvű város, az országos agrárkereskedelem központja.

A Habsburg Birodalomban és a felvilágosdás kora

Buda, Óbuda és különösen Pest a Habsburg Birodalomban újra fejlődésnek indultak, befogadva az új betelepülőket, polgárokat, iparosokat.
Reformkor

Különösen a reformkori (1825-1848) nemzeti mozgalom eredményeképp a városok az irodalmi-szellemi élet központjává váltak, megkezdődött a polgári Magyarország alapjainak lerakása. Ekkor épül a Lánchíd és a Nemzeti Múzeum, amelyek méltán váltak az ország és a Duna két partján fekvő városok fejlődésének jelképévé.

7. ábra: A Lánchíd építése

Forradalom és szabadságharc

8. ábra: Az első népképviseleti országgyűlés megnyitása 1848. július 5-én a pesti Vigadóból (Borsos József, August von Pettenkofen)

Az Osztrák-Magyar Monarchia kora

9. ábra: A budai Királyi palota a Hauszmann-féle nagy átépítés elő korabeli képeslapon
A II. világháború

1944-45-ben a várost történetében példa nélküli emberi és anyagi károk érték. Az 1944. márciusi náci megszállás után a budapesti zsidó lakosságot gettóba zárják, egy részét haláltáborokba deportálják, nagyobb része a háború végéig terrornak van kitéve. A várost ’44. karácsonyától kezdődő két hónapos utcai harcokkal foglalja el a Szovjet Hadsereg.

1945-1989 közötti korszak

A rendszerváltástól 2010 áprilisáig

Az 1990-es önkormányzati választások után a Budapesten létrehozott kétszintű – települési (kerületi), valamint települési és területi (fővárosi) – önkormányzati rendszer új jogalkotási felhatalmazásokkal, saját önkormányzati vagyonnal, meghatározott bevételi forrásokkal a humán és városüzemeltetési közszolgáltatások kiterjedt feladatrendszerét létrejötte. Ekkor Budapest lakossága csökkent, ezzel párhuzamosan a budapesti GDP-ben az ipari termelés aránya is jelentősen csökkent. Ugyanakkor Budapest továbbra is az ország legfejlettebb területe és Közép-Európa meghatározó szereplője.
2010 áprilisától napjainkig

A korábbi két évtizedhez képest – a 2010 áprilisától napjainkig tartó időszak alakított és további törvénymódosításai eredményeképp – jelentősen csökkentek az önkormányzatok, különösen Budapest Főváros Önkormányzata feladatai, forrásai, hatáskörei és lehetőségei.

Területi adatok, népesség

<table>
<thead>
<tr>
<th>Területe</th>
<th>525 km²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Területi kiterjedése</td>
<td>25 km (észak-déli)</td>
</tr>
<tr>
<td></td>
<td>29 km (kelet-nyugati)</td>
</tr>
<tr>
<td>Legmélyebb pontja (Duna vízszintje közepes vízállásnál)</td>
<td>96 méter</td>
</tr>
<tr>
<td>Tengerszint feletti átlagos magassága (a VI. kerületnél)</td>
<td>103-104 méter</td>
</tr>
<tr>
<td>Liszt Ferenc Nemzetközi Repülőtér tengerszint feletti magassága</td>
<td>151 méter</td>
</tr>
<tr>
<td>Gellért-hegy legmagasabb pontja</td>
<td>235 méter</td>
</tr>
<tr>
<td>Legmagasabb pontja (János-hegy)</td>
<td>528 méter</td>
</tr>
</tbody>
</table>

Budapest hálózati, természeti és földrajzi adottságai alapján a városszerkezet öt zónára tagolt, amelyek egymástól karakterben, funkcionális összetevőkben, sűrűségben és kapcsolatrendszerben is jellegzetes eltéréseket mutatnak (14. ábra).
Budapest nemcsak az országban, hanem – népességsűrűségként ellenére még – a Kárpát-medencében is a legmagasabb lakosságszámú város (a továbbvezetett lakónépességszám alapján, mely népszámlálási adatokból a születések és a születések következtében a népesség alakulásának köszönhetően. Külső és külsőbben a város lakosságának alakulása különösen jelentős változásokra jellemző a különböző zónákban.

<table>
<thead>
<tr>
<th>Év</th>
<th>Lakosságszám</th>
<th>Laksűrűség</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>1.706.851</td>
<td>3.251 fő/km²</td>
</tr>
<tr>
<td>2022</td>
<td>1.682.000</td>
<td>3.251 fő/km²</td>
</tr>
</tbody>
</table>

14. ábra: Budapest zónák szerinti tagolódása

15. ábra: Budapest népességének alakulása (Forrás: KSH, demográfiai füzetek)
halálozások számával, valamint a vándorlási adatokkal korrigált adat); **népsűrűsége** 2022-ben **3.204 fő/km²** volt.

Az egyes városrészek eltérő szerkezetéből, funkciójából adódóan azonban a kerületenkénti népsűrűség széles tartományban mozog (16. ábra).

A legmagasabb népsűrűség a városmagot alkotó belső pesti területeket, az VI-VIII. kerületeket jellemzi (10-26 ezer fő/km²), a belbudai kerületek közül az I. kerület népsűrűsége viszonylag kiemelkedő, de jóval alacsonyabb, mint a már említett kerületeké. A külső kerületek között szintén jelentős különbségek tapasztalhatók: viszonylag nagy népsűrűségű a IV., XIII., XIV., XIX. és a XX. kerület, ugyanakkor a másik szélsőértéket képviselő XXIII. kerületben kevesebb, mint 600-an élnek négyzetkilométerenként.

A kerületeken belüli lakóterületek népsűrűségét II.1. Épített környezet fejezet 2. ábraja szemlélteti.

A népsűrűség mellett fontos mutató az egyes kerületek lakónépességének változása is, ugyanakkor Budapest népességváltozását csak az agglomerációhoz tartozó települések népességváltozásával együtt célszerű értelmezni.

16. ábra: A budapesti népsűrűség eloszlása kerületenként, 2022. (Forrás: KSH)

17. ábra: A népesség számának változása 2006 és 2022 között Budapest kerületeiben és az agglomeráció településein (Forrás: KSH)
A főváros népessége az ország egyötöde, továbbá az itt élő legalább 1,7 millió fő – a magasabb átlagkereset miatt – országos szinten meghatározó fogyasztói piacot is jelent.

Budapesttel szoros kapcsolatban állnak a környező települések, a budapesti agglomeráció lehatárolása ugyanakkor – a területrendezési szempontokon túl – környezetvédelmi szakterületenként is eltérő. A Budapesti Agglomeráció Területrendezési Terve (BATrT), a környezeti zaj értékeléséről szóló kormányrendelet, a légszennyezettségi agglomerációk kijelöléséről szóló minisztériumi rendelet, valamint a funkcionális urbánus környezet (FUA) lehatárolásait a 18. ábra mutatja be.

A népességváltozással általában párhuzamosan megjelenik a műszaki jellegű infrastruktúra és közszolgáltatási igények változása is, amelyek optimális és hatékony biztosítását Budapesten és a különböző szempontú agglomerációkhoz tartozó településeken nagymértékben megnehezíti az a körülmény, miszerint az agglomerációban lévő települések – azon belül Budapest különösen – tervezési szempontból egy egységhez tartoznak, egy műszaki hálózat részei, közigazgatási szempontból viszont – még a fővárosi kerületek is – önállók.

E körülményen túl a műszaki infrastruktúrák és a közszolgáltatási igények önkormányzati biztosítása (műszaki-pénzügyi tervezése, fejlesztése, működtetése) alapvetően a vonatkozó törvényi feltételek eredménye, illetve az állami szakpolitikák és szerepvállalás következménye.

18. ábra: A budapesti agglomeráció lehatárolásai
A lakosságszámban Budapesthez hasonló európai városok összehasonlítására szolgál a következő táblázat:

<table>
<thead>
<tr>
<th>Város</th>
<th>Lakosság (ezer fő)</th>
<th>Terület (km²)</th>
<th>Népsűrűség (fő/km²)</th>
<th>GDP/fő (EUR/fő)</th>
<th>Lakosság (ezer fő)</th>
<th>Terület (km²)</th>
<th>Népsűrűség (fő/km²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Agglomeráció nélkül</td>
<td>NUTS3*</td>
<td>Agglomerációval együtt (LUZ**)</td>
</tr>
<tr>
<td>Prága</td>
<td>1.299³</td>
<td>496</td>
<td>2.619</td>
<td>58.000</td>
<td>2.733³</td>
<td>6.980</td>
<td>392</td>
</tr>
<tr>
<td>Stockholm</td>
<td>985⁴</td>
<td>188</td>
<td>5.239</td>
<td>62.600</td>
<td>2.392²</td>
<td>1.761</td>
<td>1.358</td>
</tr>
<tr>
<td>München</td>
<td>1.588⁴</td>
<td>311</td>
<td>5.106</td>
<td>72.600</td>
<td>2.932²</td>
<td>5.499</td>
<td>533</td>
</tr>
<tr>
<td>Barcelona</td>
<td>1.636⁵</td>
<td>982</td>
<td>1.666</td>
<td>27.800</td>
<td>5.728⁴</td>
<td>2.434</td>
<td>2.353</td>
</tr>
<tr>
<td>Belgrád</td>
<td>1.389²</td>
<td>360</td>
<td>3.858</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Bukarest</td>
<td>1.717⁴</td>
<td>240</td>
<td>7.154</td>
<td>24.200</td>
<td>2.260⁴</td>
<td>1.066</td>
<td>2.120</td>
</tr>
<tr>
<td>Bécs</td>
<td>1.915⁵</td>
<td>415</td>
<td>4.614</td>
<td>51.000</td>
<td>2.891³</td>
<td>9.205</td>
<td>314</td>
</tr>
<tr>
<td>Budapest</td>
<td>1.706³</td>
<td>525</td>
<td>3.250</td>
<td>22.900</td>
<td>2.610⁴</td>
<td>6.393</td>
<td>408</td>
</tr>
<tr>
<td>Párizs</td>
<td>2.165¹</td>
<td>105</td>
<td>20.619</td>
<td>96.400</td>
<td>12.349³</td>
<td>12.098</td>
<td>1.021</td>
</tr>
</tbody>
</table>

* NUTS3 területi egység - Nomenclature of Territorial Units for Statistics (Statisztikai Célú Területi Egységek Nömenklatúrája)
** LUZ (Large Urban Zone) – agglomerációs létség
A fejezet hivatkozásai

2 https://www.clubofrome.org/
3 https://www.clubofrome.org/ltg50/
4 Szathmáry Eörs: A szép, a rossz és a fenntartható – Milyen legyen, milyen lehet az új világ? (https://www.youtube.com/watch?v=jRUJ_z3rAP0) és Bartholy Judit: Komolyra fordult a klímaváltozás – A legfrissebb IPCC-klímajelentés üzenete (https://www.youtube.com/watch?v=tUydZr7b7Ak)
5 https://24.hu/belfold/2022/06/10/nyersanyag-globalis-krizis-klimavaltas-gelencser-andras-interjui/?fbclid=IwAR1NDJvVu3taPWdMJBk-PXFeHE4o3kFxvJFGsrR7cwaXSLqP0ZvKS_ErFw
7 Válasz: https://szkeptikus.blog.hu/2022/06/20/osszeomlik_a_civilizacio_v; Majd: https://24.hu/belfold/2022/10/26/gelencser-andras-nyersanyaghany-klimavaltas-vegnajpai-de-azonnal-fel-kell-ebrednunk-610790;
8 https://klimavaltasok.org/index.php/partnerseg
9 https://klimavaltasok.org/
10 https://budapest.hu/Lapok/2020/budapest-kornyezeti-allapoterteklese.aspx
11 Kvt. 46. § (1) bekezdés e) pont
12 Kvt. 46. § (1) bekezdés b) pont alapján a jelenlegi: https://budapest.hu/Lapok/2020/budapest-kornyezetvedelmi-programja.aspx
13 https://kornyezetvedelem.hu/magyarorszag-kornyezeti-allapotarol-magyarorszag-kornyezeti-allapot
14 Kvt. 38. § (g) pont
15 Kvt. 48/E. § (1) bekezdés alapján kötelező, (2) bekezdés alapján ajánlott szakterületek 15 http://budapest.hu/Documents/Bp%20K%C3%B6nyvezeti%20K%20C3%81llapot%C3%A9rt%C3%A9kel%C3%A9se%202014.pdf
16 Kvt. 48/E. § (3) bekezdés és 48/F. § (6) bekezdés
19 https://www.ksh.hu/docs/hun/xstadat/xstadat_eves/1_wbsd003b.html
20 http://statinfo.ksh.hu/Statinfo/haDetails.jsp?query=kshquery&lang=hu
24 2005. évi LXIV. törvény a Budapesti Agglomeráció Területrendezési Tervéről
25 2004. (X. 20.) Korm. rendelet a környezeti zaj értékeléséről és kezeléséről
26 4/2002. (X. 7.) KVVM rendelet a légszennyezettségi agglomerációk és zónák kijelöléséről
I.1. Természeti környezet

Az európai biogeográfiai régiók közül – amelyek mindegyikének sajátos földtana, éghajlata és élővilága van – Magyarország teljes területe a pannóniai biogeográfiai régióba tartozik. Európa Kis-Ázsiával együtt ábrázolt biogeográfiai régiót a Függelék F.1. 3. ábra szemlélteti. Az EU európai területén 7 biogeográfiai régió található, a pannóniai biogeográfiai régió 2010-ben az EU-nak mintegy 3%-ra terjedt ki. A pannóniai régióban különlegesen magas a fajok sokféleségének szintje, csak erre a területre jellemző fajok sokaságával. A régió a madárvilág szempontjából is különös jelentőséggel bír.

A Pannon biogeográfiai régió legnagyobb településeket kivonatosuló Budapest természeti változatossága európai mércével mérve még annak ellenére is egyedülállónak tekinthető, hogy az utóbbi bő évszázad háborúi, illetve nagyszabású építkezései egyre gyorsuló mértékben vezettek a természeti értékek rohamos csökkenéséhez.

Magyarországon a veszélyeztetett, vagy más szempontból védelemre érdemes élőhelyek és fajok védelme, valamint a fajokról szerzett ismereteken bővítése évszázados szakmai fejlődés eredményeképp alakult ki a hazai természetvédelem kezdetén (1879-1919), majd intézményesített megalakításán (1923), és további főbb állomásain keresztül1.

A 2022. évi adatok szerint a főváros területének mintegy 7%-a (3.806 ha) országos vagy helyi jelentőségű védelme alá tartozik.

Az európai közösségi jelentőségű természetvédelmi rendeltetésű területek hálózatába tartozó Natura 2000 területek (kb. 3.313 ha, Budapest területének 6%-a) részben átfedésben vannak a már említett országos, vagy helyi jelentőségű védett területekkel.

A természetvédelmi oltalom alatt álló területeket kiegészíti, illetve részben átfedi az Országos Területrendezési Tervben a területrendezés jogi eszközéivel szabályozott országos ökológiai hálózat rendszere.
Természeti környezet

Természettvédelmi szempontból értékes területek leírása, jellemzése

Élőhelyek

Az Európa Uniós CORINE projekt keretein belül a 90-es évektől kezdődően hazánkban is elkészültek a felszínborítottsági adatbázisok.

A műholdfelvételek alapján modellezett felszínborítás vegetációtípusoknak felelthető meg, így ábrázolhatók a különböző élőhelyek.

1. ábra: Vegetációtípusok (Forrás: CORINE adatbázis, 2018.)

Jellemzően beépített terület
Városi zöldterületek
Sport-, szabadidő- és üdülőterületek
Nem-öntöztet szántóföldök
Szőlők
Gyümölcsösök, bogyósok
Rét / legelő
Komplex művelési szerkezet
Mezőgazdasági területek
természetes növényzet
Lomblevelű erdők
Tűlevelű erdők
Vegyes erdők
Természetes gyep, természetközeli rétek
Átmeneti erdők-szerjes területek
Szárazföldi mocsarak
Folyóvízke, vízi utak

Természettvédelmi oltalom alatt álló területek

Budapest egyedülállóságát erősíti a jelentős kiterjedésű védett, természetközeli állapotú területek és egyes védett növényfajok kizárólagos (unikális) jelenléte. Három védett növényfaj (homoktövis, sárgás habszegfű, vajszínű atracél) az országban kizárólag csak Budapesten fordul elő; ezen kívül itt található a magyar ősziaraszoló, a magyar tavaszi fésübagoly utolsó hazai élőhelye, valamint a Normafánál található Harangvölgyben a csikos boglárka utolsó Kárpát-medencei élőhelye. A hazánkban előforduló mintegy 2.700 őshonos növényfajból több mint 1.400 megtalálható a fővárosban, amelyek közül 197 élvez törvényes oltalmat, 14 faj fokozottan védett kategóriába tartozik. Az állatvilág képviselői közül a hazai madárfajok 65%-a (kb. 265 faj) él a fővárosban, 110 faj pedig évente rendszeresen itt költ. Legfigyelemreméltóbb fészkelő fajok a rétisas, a füleskuvik, a holló, a gyurgyalag és a kuvik.

A természetéért védelmezől szóló törvény (a továbbiakban: Tvt.) szerint a természeti érték és terület kiemelt oltalma a védelte nyilvánítással jön létre, amelyre bárki javaslatot tehet. Országos jelentőségű terület esetén a miniszter, helyi jelentőségű terület esetén rendeletben a települési – Budapesten a fővárosi – önkormányzat nyilvánít védett. A főváros területének mintegy 7%-a külön jogszabályban foglalt védettség alá tartozik. Budapest területén természeti oltalom alatt áll 3.806 ha terület, a védetlen kategóriák területi megoszlását a 2. ábra mutatja be, illetve a következőkben részletezzük.
2. ábra: A főváros természeti értékei (Adatforrás: Duna-Ipoly Nemzeti Park Igazgatósága, Főpolgármesteri Hivatal)

- Országos jelentőségű védett természeti terület
- Országos Ökológiai Hálózat
- Natura 2000 terület
- Fokozottan védett barlang
- Ex lege védett táp
- Ex lege védett földvár
- Ex lege védett forrás
- Helyi jelentőségű védett természeti terület
- Helyi jelentőségű védett természeti érték
- Helyi jelentőségű védett természeti terület, emlék sorszáma
Kiemelt jelentőségű természetmegőrzési területek
(*Natura 2000 területek*)

Az **európai közösségi jelentőségű természetvédelmi rendeltetésű területek** hálózatába tartozó Natura 2000 területeken előforduló közösségi jelentőségű, valamint kiemelt közösségi jelentőségű élőhelytípusok, illetőleg fajok megőrzéséhez szükséges előírásokat az európai közösségi jelentőségű természetvédelmi rendeltetésű terülektől szóló rendelet7 állapítja meg.

A **Natura 2000** területeket a Kormány kellemes és teszi közé, valamint határozza meg az e területekre vonatkozó szabályokat. A Natura 2000 területeken lévő földrészeket a miniszter hirdeti ki.

Országos jelentőségű védett természeti területek

Védett nyilvánítási eljárás nélkül, a törvény erejénél fogva **országszintű védett természeti területek** (ex lege) védett természeti területnek minősülnek a főváros területén található lápok, források, földvárák, továbbá „ex lege” védett természeti értékek a barlangok is9. Az „ex lege” védett természeti területek, földrészletek határozo a természetvédelmi hatóság – Budapesten a Pest Vármegyei Kormányhivatal Könyzetvédettel, Természetvédelmi és Hulladékgazdálkodási Főosztálya (a Közép-Duna-völgyi Környezetvédelmi és Természetvédelmi Felügyeleti) – egyedi határozattal állapítja meg. A lehatárolt és lehatárolásra váró érintett helyrajzi számokat a természetvédelemért felelős minisztérium tájékoztatója tartalmazza. A fővároson az „ex lege” védett lápok (Gyáli-rákos-patak mentén) területe mintegy 82 ha (Budapest területének 0,16%-a).

Budapest területén a természeti vízföldvárosok száma meghaladja a százat, legtöbbük a Budai-hegyvidék területén található, a források adatközlése a VITUKI (Környezetvédelmi és Vízgazdálkodási Kutató Intézet Nonprofit Közhasznú Kft.) korábbi felmérésén és a Duna-Ipoly Nemzeti Park Igazgatóság adatszolgáltatásán11 alapul.

Számos kisebb-nagyobb barlang található a budai hegyekben, a barlangok nyilvántartását, a látogatathatóság és a kutatás feltételeit miniszteri rendelet12 tartalmazza. Itt található hazánk leghosszabb, 29 km-es összetette barlangrendszer (Pálvölgyi-barlang – Mátayás-hegyi-barlang – Hideglyuk – Harcsasáji-hegyi-barlang rendszere). Jelentős kiterjedésű, fokozottan védett barlangok továbbá: a Budai Várbarlang, a Ferenc-hegyi-barlang, a Gellért-hegyi-barlang, a József-hegyi-barlang, a
Természeti környezet

Molnár János-barlang, a Szemlő-hegyi-barlang. A budapesti barlangok felszíni védőövezete közel 670 ha nagyságú, az érintett területek lehatárolását közhiteles nyilvántartás teszi közzé.

Budapest területén egy földvárról van tudomás, amely a Gellért-hegyen található egykori kelta kori település központja volt a Kr.e. I. században.

A Normafa törvény hatálya alá tartozó földrészek esetében a vonatkozó jogszabályokat – így a Tvt. rendelkezéseit – a Normafa törvényben foglalt eltérésekkel kell alkalmazni, amely az eljáró hatóságokat is köti. A Normafa törvény által meghatározott „történelmi sportterület”-tel érintett, az állam tulajdonában álló ingatlanok a Budapest Főváros XII. kerület Hegyvidéki Önkormányzat vagyonkezelésébe tartoznak, ezért itt a természetvédelmi kezelési feladatokat is a Hegyvidéki Önkormányzat látja el.

A többi budapesti országos jelentőségű védett természeti terület természetvédelmi kezelője a Duna-Ipoly Nemzeti Park Igazgatóság.

Helyi jelentőségű védett természeti területek

A Tvt. alapján a fővárosban a helyi védett természeti területtel nyilvánítás kizárólag a Fővárosi Közgyűlés hatáskörére.

A helyi jelentőségű természeti területek állapota

A helyi jelentőségű természetvédelmi területek állapotértékeléséhez szükséges vizsgálati, adatgyűjtési eljárás, továbbá adatértékelnél kialakított módszertanának alkalmazását a korábbi évekhez hasonlóan a Fővárosi Önkormányzati Rendészeti Igazgatóság – amelynek alapvető közfeladata többek között a Fővárosi Önkormányzat illetékességi területein a közterület-felügyeleti feladatainak ellátása – keretein belül működő önkormányzati természetvédelmi órök örszolgálatára (a továbbiakban: FŐRI) folytatja. A protokoll alapján valamennyi helyi jelentőségű természetvédelmi területre vonatkozóan az összövények és tájidegen fajok aktuális borítottságának becslését készítette el.

A tájidegen, idegenhonos és invazív fajok jelenléte és egyes esetekben terjedése továbbra is az egyik legjelentősebb veszélyeztető tényező az ó MOSTOS elölvágás révén. Elsősorban a sikvidéki élőhelyeken jelentkező folyamat visszaszorítása sokszor minden erősítés ellenére sem garantálható. Míg a fásszárúak esetében a folyamatos és szakszerszű településből eredő mérséken tud lenni, addig a lágyzsárú invázión fajok terjedésének megállítása rendszeresebb és intenzívebb beavatkozást igényel.

A végrehajtott természetvédelmi kezelések lokálisan átmenetileg vissza tudják szorítani egy összövényfaj terjedését (pl. Turjános: kanadai aranyvessző, Felsőrákosi-rétek: kanadai aranyvessző és magas aranyvessző, Denevér úti gyepfolt: közönséges
Függelék F.2.

Természeti környezet

orgona), azonban az újratermézés esélye igen nagy, ezért a folyamatos utókövetés és kezelés fontos feladat.

A helyi jelentőségi természetvédelmi területek tájidegen és inváziós fajokkal való fertőzöttségi problémáját a Függelék 1. táblázata és a foglalkozás össze.

Ökológiai Hálózat

A fent említett természetvédelmi oltalom alatt álló értékeket az országos ökológiai hálózat övezeti rendszere – azokat részben átfedve – egészíti ki, amit a területrendezés többször megújított törvényi szabályozása kisebb módosításon túl, a főbb rendelkezéseket tekintve nem változtatott meg. A hálózat magterületből, pufferterületből és ökológiai folyosóból áll. A magterület részben átfedésben van a természetvédelmi oltalom alatt álló területekkel, de a magterületbe tartozó további, természetvédelmi szempontból értékes, de természetvédelmi oltalom alatt nem álló területek is. A magterületeket pufferterületek veszik körül, az ökológiai folyosó pedig összeköti az előbbi értékes élőhelyeket.

Az ökológiai hálózat területi lehatárolása 609 ha-ra bővült, így a törvényben kijelölt ökológiai hálózat a főváros természetes szempontból értékes területének nagy részét tartalmazza (kb. Budapest területének 14%-a). A Budai-hegyvidék, a Duna teljes budapesti szakasza árterével együtt, és a kisvízfolyások partmenti sávja is hálózati elemként funkcionál.

Budapesten több olyan helyi jelentőségi védett természeti terület található, amely korábban nem volt része az ökológiai hálózatnak. Ld.: BKÁÉ 2016 Függelék I.1. fejezet, 32. táblázat. Az új törvényben lehatárolt ökológiai hálózat a helyi jelentőségű védett természeti területek, illetve a természetvédelmi szempontból értékes, védelemre érdemes területek jelentős részét magába foglalja.

Természeti környezeti feladatok változatára ható tényezők

Több esetben a védett területek állapota azért nem megfelelő, mert a tájidegen, illetve invázív fajok elterjedése, az illegális hulladékelhagyások és a bolygatottság mértéke (a túlhasználat, szomszédsági hatások, tiltott és engedély nélküli tevékenységek) fokozatosan romló állapotot eredményeznek. Itt kell megemlíteni a túlzottan elszaporodó vadállományok és károkat is.

A természetközeli élőhelyeket veszélyeztető tényezők között napjainkban az egyik legjelentősebb és egyre nagyobb problémát az idegenhonos, inváziós fajok terjedése jelenti, ami a biológiai sokféleség (a biodiverzitás) csökkenését, az ökológiai folyamatok átalakításával az élőhelyek elszegényedését eredményezi.

Az inváziós fajok terjedését elsősorban a növény- és állatfajok szándékos betelepítése, véletlen behurcolása okozza, továbbá a klimaváltozás helyi folyamatai is elősegítik.

Jelentős szerepet tölt be például a Duna, amely inváziós folyosó az idegenhonos, inváziós fajok terjedésében. Ld.: BKÁÉ 2015 I.1. fejezet, 15. oldal.
Külön meg kell említeni számos szárazföldi gerinctelen fajt, melyek a globális kereskedelemben révén sok sok napi fogyasztásti termékekkel és kertészeti és dísznövény szállítmányokkal jutnak el távoli élőhelyekre, ahol megtelepedve és elterjedve számos problémát okoznak. Ld.: BKÁÉ 2015 I.1. fejezet, 15. oldal.

Az Európai Unió már a 1970-es évek végétől kezdve intézkedéseket tett a biológiai invázió megelőzése, valamint az özönfajok elleni védekezés érdekében, és jelenleg is több jogszabály van érvényben a témához kapcsolódóan. A hazai szabályozás terén a következőkben részletezett hiányosságok adódnak.

Az inváziós fajok jelenlétéét sokszor a megunt házikedvencek jó szándékkal történő helyi élőhelyre juttatása okozza. Ennek hátterében az áll, hogy a kedvetlésből tartott állatok tartásáról és forgalmazásáról szóló 26 Korm. rendelet alapján – amely az állattartással, forgalmazással kapcsolatos jogokat és kötelezettségeket szabályozza (Ld.: BKÁÉ 2015 Függelék I.1. fejezet, 32. táblázat) – az állatkereskedés kötelezettsége az eladás időpontjáig tart, és az állatkerteknek nincs befogadói kötelezettsége. Az állatkert és az állatothont létesítésének, működésének és fenntartásának részletes szabályairól szóló jogszabály 27 u gyanis kimondja, hogy az állatkert a természet- és állatvédelem szolgálóak, de ez a típusú védelem nem terjed ki a díszállatok befogadására, így a megunt kedvencek elhelyezése jogszabályi szinten nem biztosított.

A jogi eszközökön túl – a fővárosi lakosok felelős állattartása és a természeti környezet veszélyeztetésének elkerülése érdekében – a fokozottabb megfelelő tájékoztatás és környezeti nevelés is elősegíti a kedvezőtlen folyamatok lassulását.

Az utóbbi években egyre komolyabb probléma, hogy a főváros külső területein elszaporodó vaddisznó populáció jelenlétéje konfliktusokhoz vezet (pl.: Kőérberki szikes rét). A probléma legfőképpen a lakóterületeken kárt okozó vadakból adódik, ugyanakkor az utakon keresztül vágó állatok is súlyos gondokat okoznak mind a természetvédelem, mind a lakosság részére (anyagi károk). A konfliktust súlyosítja a nem megfelelő jogi szabályozás, ugyanis belterületen csak vadkár-elhárításról beszélhetünk, amelyről a fegyverekről és lőserekről szóló kormányrendelet rendelkezik. A jogszabály nem tisztázza kielégítően a belterületen lévő vaddisznó körülményeit. Ugyanakkor fontos rögzíteni, hogy a Budapesten élő, itt előforduló vagy áthaladó vadon élő állatokat a komplex természeti ökoszisztéma részeiként kell kezelni.

Napjainkban a fényszennyezés egyre nagyobb szerepet játszik életünkben. Nagyvárosi környezetben különösen nagy a jelentősége a fényterhelésnek (lightsmog) és ökológiai, természetvédelmi hatásának. A természetközeli állapotú területeket érintő fejlesztésekhez kapcsolódó közvilágítás fényszennyezéssel zavarja a helyi élővilágot. A rovarokat vonzza minden világítótest, így az élőhelyi körülmények megváltozásával és állattartásának összetetté te is megváltozik. A madarak a rájuk megtévesztően ható fény miatt éjszaka is vadásznak, felnőtt a biológus. A mesterségesen létrejövő poláros fény(szennyezés) a vizes élőhelyeken okozhatja a legnagyobb problémát, és jelentősen hozzájárulhat az eredetileg sokszínű élővilág elszegényedéséhez, de a városi és városközeli élővilág egysíkúvá válásában is döntő szerepe lehet.
Intézkedések

A Tvt. indokolása maga is elismeri, hogy a természett- és tájvédelem kizárólagos körben történő szabályozása nem lehetséges, mivel arra nézve alakító, meghatározó szerepe lehet az épített környezetnek, a gazdálkodási, használati formáknak is. Ezért a Tvt. tartalmazza az építésügyre, településfejlesztésre és -rendezésre vonatkozó szabályokat, ahogy a természetvédelmi szempontok fontosságának elismeréseként az Évt. 2013. január 1-jétől hatályos rendelkezései is szigorú természetvédelmi kikötéseket tesznek30.

Budapest 2021-től 2026-ig tartó időszakra szóló települési környezetvédelmi programjának (BKP 2026) B-1-2 jelű tematikus céljához, feladatához31 kapcsolódóan – a helyi jelentőségű természetvédelmi területek kezelési terveiben – megjelenik az invazív fajok visszaszorítása és ezen keresztül a biológiai sokféleség megőrzése és javítása, amely összhangban van a Nemzeti Biodiverzitás Stratégiá32 célkitűzéseivel. A Nemzeti Biodiverzitás Stratégia kiemelt figyelmet szentel többek között a természetvédelmi öltözmények alatt álló területek védelmének, a táji diverzitás, a zöld infrastruktúra és az ökoszisztéma szolgáltatások fenntartásának, a fenntartható erdő- és vadgazdálkodásnak és a vízi erőforrások védelmének, valamint az inváziós idegenhonos fajok elleni küzdelemek. Ezen célkitűzések fővárosi szintű megvalósításában aktív szerepet vállalt a Fővárosi Önkormányzat.

A közelmúltban elfogadott Radó Dezső Terv (Budapest Zöldinfrastruktúra Fejlesztési és Fenntartási Akcióterve)33 átfogó céljai több ponton kapcsolódnak a természetvédelmi szempontból értékes területekhez. A biodiverzitás növelését segítő városi zöldinfrastruktúra fenntartás és fejlesztés átfogó cél kiemelt figyelm előtt álló területek védelmének; a táji diverzitás, a zöld infrastruktúra és az ökoszisztéma szolgáltatások fenntartásának, a fenntartható erdő- és vadgazdálkodásnak és a vízi erőforrások védelmének, valamint az inváziós idegenhonos fajok elleni küzdelemek. Ezen célkitűzések fővárosi szintű megvalósításában aktív szerepet vállalt a Fővárosi Önkormányzat.

Fővárosi Önkormányzat a fővárosi erdőterületek védelme érdekében rendeltet alkotott a magántulajdonú védett erdőkre vonatkozóan34. A rendelet előzményeként a veszélyhelyzet ideje alatt a tűzelfogynok biztosításához szükséges eltérő szabályok alkalmazásáról szóló Korm. rendelet35 szolgált, amely az ország energiatakarékosságának biztosítása érdekében az erdei biomassa energetikai hasznosításának kiemelt jelentőségét tulajdonít. A jogszabály több passzusa engedményt jelent a korábbi szigorú, az erdőterületek (köztük a védett erdők) megőrzését szolgáló előírásokhoz képest, amelynek következtében a magántulajdonú védett erdőterületeken nem érvényesülne a tarvágás tilalma. A Fővárosi Önkormányzat eredeti jogalkotó hatáskörben eljárva, az országos jogszabály által szabályozott életviszonyokban kiegészítő jelleggel, rendeletet alkotott a budapesti védett természeti területen található erdők tarvágásának tilalmáról.
A területi környezet

A környezeti állapotértékelésekbén ismertetett intézkedések, valamint a további stratégiákban foglaltak is a fenti célokat szolgálják. Az alábbiakban a Fővárosi Önkormányzat kezelésében lévő helyi jelentőségű természetvédelmi területeket érintő intézkedéseket ismertetjük.

Helyi jelentőségű természetvédelmi területek kezelése

A helyi jelentőségű védett természeti területek természetvédelmi kezelését a FŐKERT közszolgáltatási tevékenysége keretében végzi, a BKP 2026 B-1-2 jelű tematikus célban, feladatban foglaltak szerint. A FŐKERT Természetvédelmi és Erdőkezelési Osztálya és a FŐI Természetvédelmi Őrszolgálata szorosan együttműködik, így a helyi védettségű természetvédelmi területeken elvégzendő speciális feladatokat hatékonyan és minél nagyobb szakmai színvonalon végezhetik.

A természetvédelmi kezelés egyik legfontosabb eleme a védett területeken esedékes kaszálás, amelyet a FŐKERT 2022-ben is részben átvállalók után biztosított. A védett területek jelentős részén viszont helyi gazdálkodók folytatnak mezőgazdasági termelőtevékenységet, ezért a természetvédelmi szempontból optimális kaszálások és a gazdálkodó tevékenységek összehangolása érdekében, minden érdekelt számára nagyon fontos a folyamatos egyeztetés.

A Rákosmenti Mezei Őrszolgálattal és a Magyar Madártani és Természetvédelmi Egyesület Hüllővédelmi Szakosztályával közösen 2022-ben is folytatta a tájidegen teknős fajok eltávolítását a Naplás-tó természetvédelmi területen. Az invázív fajok elleni védekezés jegyében a Naplás-tóba úgynevezett napozócsapdákat helyeztek ki, amellyel befogták a teknősöket. A befogott tájidegen állatokat rövid karantén után a Fővárosi Állat- és Növénykert fogadta be, a mocsári teknősöket pedig visszaengedték az élőhelyükre. Az akció hatására az ékszerteknősök állománya jelentősen csökkent a védett területen.

Mind az idegenhonos fajok terjedésének megállításában, mind a természetvédelmi területek kezelésében érdekében nagyobb hangsúlyt kell fektetni a kertészeti hulladékok kerteken belüli kezelésének támogatására, például komposztálási programok indulásával, ugyanis számtalan esetben a kihelyezett zöldhulladékokkal jutnak ki idegenhonos, inváziós növény- és állatfajok a természetes, természetközeli élőhelyekre.

A Rákosmenti Mezei Őrszolgálat és a Magyar Madártani és Természetvédelmi Egyesület Hüllővédelmi Szakosztály közösen 2022-ben is folytatta a tájidegen teknős fajok eltávolítását a Naplás-tó természetvédelmi területen. Az invázív fajok elleni védekezés jegyében a Naplás-tóba úgynevezett napozócsapdákat helyeztek ki, amellyel befogták a teknősöket. A befogott tájidegen állatokat rövid karantén után a Fővárosi Állat- és Növénykert fogadta be, a mocsári teknősöket pedig visszaengedték az élőhelyükre. Az akció hatására az ékszerteknősök állománya jelentősen csökkent a védett területen.

Mind az idegenhonos fajok terjedésének megállításában, mind a természetvédelmi területek kezelésének érdekében nagyobb hangsúlyt kell fektetni a kertészeti hulladékok kerteken belüli kezelésének támogatására, például komposztálási programok indulásával, ugyanis számtalan esetben a kihelyezett zöldhulladékkal jutnak ki idegenhonos, inváziós növény- és állatfajok a természetes, természetközeli élőhelyekre.

Az általános természetvédelmi kezelési feladatokon túl, 2022-ben is fontos, a helyi jelentőségű védett természeti területeket érintő beavatkozások történtek:

- A Felsőrákosi-rétek, Naplás-tó és a Turjános természetvédelmi területen tovább folytatódott az idegenhonos lágy- és fásszárú özönfajok visszaszorítása.
- A Merzse-mocsár természetvédelmi területen a láprétek egyre kiterjedtebb részén történik kaszálás, így egyre több helyen jelennek meg az élőhelyre jellemző védett növények.
- A Tétényi-fennsík egy részének komplex rehabilitációja valósult meg. A védett területen található egykori sertéshizlalda után visszamaradt inert hulladékkupacok felszámolásra kerültek, így újabb területen regenerálódhat a különleges élőhely.
- A Kőérberki szikes-rét természetvédelmi területen a kaszálással kezelt területek kiterjesztésével egyre több helyen jelentek meg az élőhelyre jellemző védett növények, illetve megkezdődtek a vizes élőhely rehabilitációjának munkálatai.
- Az értékes geypfoltok megőrzése érdekében tovább folytatódhat a vizes élőhelykezelési munkálatok az Újpesti homoktővis, Denevér úti geyfoi és a Tétényi-fennsik természetvédelmi területeken.
• A Mocsáros természeti védettség területen folytatódott az illegális hulladékhalmok elszállítása, valamint több használaton kívüli épület is lebontásra került.
• A rendszeres kukaürítések után további területek is régi hulladékdepóniák kerültek felszámolásra (pl. Kőérberki szikes-rét, Felsőrákosi rétek, Jegenye-völgy, Tétényi-fennsík, Nagytétényi Duna-part, Obudai-sziget árteri erdő természettörténeti terület). Különböző szemétszedési akciók valósultak meg a Te-Szedd kapcsán, illetve önkéntesek bevonásával.

Önkormányzati természettörténeti őrszolgálat

A fővárosi helyi jelentőségű védett természeti területek és értékek védelme, valamint őrzése érdemében az országban egyedülállóan Budapest Főváros Közigazgatása döntött a Budapesti (önkormányzati) Természettörténeti őrsögi őrszolgálat (Őrsögi őrszolgálat) felállításáról38, majd a döntést 2014. január 1-jétől módosította úgy, hogy a feladatot „a Fővárosi Önkormányzati Közigazgatási Központ eredeti, önkormányzati természettörténeti őrök őrsögi őrszolgálatára után látja el”. Az önkormányzati természettörténeti őr munkavégzését további felsőbb jogszabályok határozzák meg39.

A fővárosi önkormányzati természettörténeti őrsögi őrszolgálat komplex feladatellátása révén – őrzés, természettörténeti kezelés szakmai felügyelete, szakmai javaslateltető, kapcsolattartás társahatóságokkal, gazdálkodókkal és civil szervezetekkel, környezeti nevelés, védett értékek felmérése, monitorozása – meghatározó szerepe tölt te be a főváros természettörténetében.

Az Őrsögi őrszolgálat részt vett az év elején az ún. országos sasszinkronon40, valamint az ún. országos bagolyszinkronon41, amely a hazánkban teljő madarak éves számolását jelenti. Továbbá Budapest közigazgatási területén belül segít a sérült védett állatok mentésében. Aktivan közreműködött a helyi jelentőségű természettörténeti területekre vonatkozó későbbi erdőtervek kidolgozásában. Továbbá részt vett az év Te-Szedd koordinálásában és irányításában, valamint egyéb rendezvényeken is, ahol népszerűsítette és bemutatta Budapest helyi védett területeit.

Védelemre javasolt területek felmérése, azokkal kapcsolatos egyeztetéseken való részvétel, valamint védett területen épületek, kerékpár- és közútak, valamint egyéb vonalas létesítmények építésével kapcsolatos egyeztetések, és azok kivitelezésének felügyelete is részét képezte az Őrsögi őrszolgálat munkájának.

A helyi jelentőségű természettörténeti területeket jelölő hatósági táblák kihelyezése és pótlása folyamatos volt.

Helyi védelemre érdemes területek

A fővárosban számos olyan terület található, amely nem áll természettörténeti oltalom alatt, de ilyen szempontból értékesség, illetve védelemre érdemes, ezért a helyi természettörténeti értékek kiterjesztésének vizsgálata folyamatos szakmai feladat. Helyi védelemre javasolható értékek körébe olyan természettörténeti szempontból értékes területek tartoznak, amelyek a főváros beépített területeinek növekedése mellett fennmaradtak, őrzik a terület megfeleltettségét, tájképi értékeit. Ilyen területek közé tartozik többek között pl. a Farkas-erdő területe.

A települési környezetben élő értékes egyedi fák, fasonok védelmét nem természettörténeti jelentőségű, hanem városképi megjelenésük, a városi környezetben betöltött szerepeik indokolja. Ennél fogva nem természeti értékként védendők, hanem az épített örökség részeként. A települési környezet szőlő törvény42 és a településtervek tartalmáról, elkészítésének és elfogadásának rendjéről, valamint egyes településrendezési sajátos jogintézményekről szóló rendelet43 az egyes
települések, illetve kerületek területére készítendő arculati kézikönyvön és településképi rendeleten keresztül ad lehetőséget.

Patakrevitalizáció

A fővárosi kisvízfolyások revitalizációja évtizedek óta jelen van a várospolitikai és szakmai köz tudatban. A több szakmát érintő témakör esetében az ökológiai szempontokon túlmenően az árvízvédelmi kérdéseknek is fontos szerepük van: a budai oldal hegyvidéki részén található kisvízfolyások jellemzően meredek terepviszonyú területek felszíni vízelvezetését szolgálják, ahol az árvízvédelem szempontjai elsődlegesek. Jelen fejezetben a pesti oldal kisvízfolyásai szerepelnek, amelyek revitalizációja során a természetvédelmi és ökológiai szempontok kapnak nagyobb hangsúlyt.

A Rákos-patak revitalizációjának tervezése az utóbbi években vett újabb lendületet, ezenkívül a Szilas-patak revitalizációjával kapcsolatban és a Ráckevei (Soroksári)-Duna menti területekre is elkészült egy tanulmány (bővebben Ld.: BKÁÉ 2021).

A Fővárosi Önkormányzat a kisvízfolyások menti területekre is kiterjesztette a Vadvirágos Budapest programot, amely alternatív gyepgazdálkodás alkalmazásával a biológiai sokféleség megóvását célozza (bővebben Ld.: II.7. Zöldfelület-gazdálkodás).

A programban új elemként szerepelnek a fővárosi patakok partjai, összesen 33 kilométer hosszban (Rákos-, Csömör-, Mogyoród-, Gyáli- és Caprera-patakok, továbbá az Illatos-árok ferencvárosi Kiserdő szakasza és a Sósmocsár két ága). Az évente egyszeri kaszálással (az extenzív gyepgazdálkodás folytatásával) változatosabb élővilágú patakparti gyepfelületek alakíthatók ki, a magasabbra engedett gyepek több vizet kötnek meg, kedvezően hatnak a területek vízgazdálkodására is.

További javasolt feladatok

A meglévő védett területek mellett számos olyan természeti, ökológiai értéket képviselő terület található, amelyek jelenleg jogszabályokkal nem védettek, de megőrzésük a főváros biodiverzitása szempontjából különösen fontos. Szükséges az értékes természeti területek védelem alá helyezése.

- **Pufferterületek kialakítása** – Radó D. tervből: A védett területek közvetlen környezete a pufferterület, amely átmeneti zónát alkot a védett terület és az egyéb területhasználatok között. Megőrzésük és funkcióik, hasznosításuk szabályozása fontos.
- **A helyi természetvédelmi területek kezelésének hatékony megvalósítása:** az élőhelyek folyamatos monitorozása, valamint a természetvédelmi kezelés hatékonyabb megvalósítása a FŐKERT és a Budapesti Természetvédelmi Örszolgálat munkájának megerősítésén keresztül, a civil szervezetek bevonásával.
- **A kisvízfolyás-revitalizációs programok megvalósítása** az érintett kerületi és agglomerációs önkormányzatok szoros együttműködésével.
- **Jogszabálymódosítási javaslatok** a természetvédelem érdekében:
 - az élővilágra is káros ünneplési szokások (lufik- és lampionok eregetése, tűzijátékok stb.) szabályozása;
 - az élővilágra káros indokolatlan fényszennyezés kiküszöbölését célzó szabályozás kialakítása: a kapcsolódó országos és helyi önkormányzati rendeletek felülvizsgálata.
- **Ökológiai szempontok további érvényesítése** a fővárosi zöldfelület-gazdálkodásban.

Cél a városi biodiverzitással, városi élőhely-védelemmel kapcsolatos bevonási/érzékenyítőkörnyezeti nevelési programok indítása. Nagy hangsúlyt kell helyezni a szemléletformálásra a természetvédelmi területek, parkok, fasarok fenntartása és fejlesztése tekintetében.
• **Felelős állattartás** elősegítését célzó szemléletformálás és egyeztető fórum kialakítása az állatvédelmi, természetvédelmi szempontok érvényesítése, valamint a közterülethasználati konfliktusok mérséklése érdekében.
Függelék

F.1.

3. ábra: Európa biogeográfiai régiói (Forrás: EEA 44)

F.2.

<table>
<thead>
<tr>
<th>Sor-szám</th>
<th>Terület neve</th>
<th>A területen található özönnövények és egyéb tájidegen növényfajok neve</th>
<th>A fertőzöttség fokozata</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Balogh Ádám-szikla természetvédelmi terület</td>
<td>űrömlevelű parlagfű (Ambrosia artemisiifolia)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bálványfa (Ailanthus altissima)</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Apáthy-szikla természetvédelmi terület</td>
<td>zöld juhar (Acer negundo)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>japán keserűfű (Fallopia sp.)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kanadai aranyvessző (Solidago canadensis)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>feketefenyő (Pinus nigra)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>közönséges orgona (Syringa vulgaris)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>keleti tuja (Platycladus orientalis)</td>
<td>1</td>
</tr>
<tr>
<td>3.</td>
<td>Fazekas-hegyi kőfejtő természetvédelmi terület</td>
<td>kanadai aranyvessző (Solidago canadensis)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>japán keserűfű (Fallopia sp.)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>keleti tuja (Platycladus orientalis)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fehér akác (Robinia pseudoacacia)</td>
<td>1</td>
</tr>
<tr>
<td>4.</td>
<td>Ferenc-hegy természetvédelmi terület</td>
<td>kanadai aranyvessző (Solidago canadensis)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bálványfa (Ailanthus altissima)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>japán keserűfű (Fallopia sp.)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>feketefenyő (Pinus nigra)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kései meggy (Prunus serotina)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nagy meténg (Vinca major)</td>
<td>2</td>
</tr>
</tbody>
</table>

1. táblázat: Helyi jelentőségű védett természeti területek fertőzöttségi fokozata az özönnövények és egyéb tájidegen növényfajok jelenléte szerint (saját adatfelvétel: 2022)
(Az egyes fajok jelenlétének mértéke: - nem vagy kevésbé jellemző; fertőzöttség mértéke: 1 = 0-5%, 2 = 5-10%, 3 = 10-25%, 4 = 25-50%, 5 = 50-75%, 6 = 75-100%)
<table>
<thead>
<tr>
<th>Sor- szám</th>
<th>Terület neve</th>
<th>A területen található özönnövények és egyéb tájidegen növényfajok neve</th>
<th>A fertőzöttség fokozata</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.</td>
<td>Mihályi Ernő kertje természetvédelmi terület</td>
<td>kései meggy (Prunus serotina)</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>keleti tuja (Platycladus orientalis)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>japán keserűfű (Fallopia sp.)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fekete fenyő (Pinus nigra)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fehér akác (Robinia pseudoacacia)</td>
<td>-</td>
</tr>
<tr>
<td>6.</td>
<td>Jegenye-völgy természetvédelmi terület</td>
<td>kései meggy (Prunus serotina)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>keleti tuja (Platycladus orientalis)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>japán keserűfű (Fallopia sp.)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fekete fenyő (Pinus nigra)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fehér akác (Robinia pseudoacacia)</td>
<td>-</td>
</tr>
<tr>
<td>7.</td>
<td>Róka-hegy természetvédelmi terület</td>
<td>kései meggy (Prunus serotina)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>vörös tölgy (Quercus rubra L.)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fehér akác (Robinia pseudoacacia)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>közönséges orgona (Syringa vulgaris)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>alkómós (Phytolacca sp.)</td>
<td>-</td>
</tr>
<tr>
<td>8.</td>
<td>Mocsáros természetvédelmi terület</td>
<td>kanadai aranyvessző (Solidago canadensis)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>keskenylevelű ezüstfa (Elaeagnus angustifolia)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>zöld juhar (Acer negundo)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>japán keserűfű (Fallopia sp.)</td>
<td>2</td>
</tr>
<tr>
<td>9.</td>
<td>Óbudai-szigeti ártéri erdő természetvédelmi terület</td>
<td>zöld juhar (Acer negundo)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kanadai aranyvessző (Solidago canadensis)</td>
<td>2</td>
</tr>
<tr>
<td>10.</td>
<td>Újpesti homoktövis természetvédelmi terület</td>
<td>zöld juhar (Acer negundo)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kanadai aranyvessző (Solidago canadensis)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fehér akác (Robinia pseudoacacia)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fekete fenyő (Pinus nigra)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>egyénnyi seprence (Stenactis annua)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>keskenylevelű ezüstfa (Elaeagnus angustifolia)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>közönséges orgona (Syringa vulgaris)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>közönséges órdócérna (Lycium barbarum)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>szivartfá (Catalpa bignonioides)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bugás csórgófa (Koelreuteria paniculata)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cserjés gyalogakac (Amorpha fruticosa)</td>
<td>2</td>
</tr>
<tr>
<td>11.</td>
<td>Palotai-sziget természetvédelmi terület</td>
<td>zöld juhar (Acer negundo)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kanadai aranyvessző (Solidago canadensis)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>egyénnyi seprence Stenactis annua</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bálványfa (Allanthus altissima)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bibor nebáncsvírág (Impatiens glandulifera)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>adventív öszirózsai faj (Aster sp.)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cserjés gyalogakac (Amorpha fruticosa)</td>
<td>1</td>
</tr>
<tr>
<td>Sor-szám</td>
<td>Terület neve</td>
<td>A területen található özönnövények és egyéb tájidegen növényfajok neve</td>
<td>A fertőzöttség fokozata</td>
</tr>
<tr>
<td>----------</td>
<td>------------------------------------</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>12.</td>
<td>Felsőrákosi-rétek természetvédelmi terület</td>
<td>kanadai aranyvessző (Solidago canadensis)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>magas aranyvessző (Solidago gigantea)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>közönséges selyemkörö (Asclepias syriaca)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>japán keserűfű (Fallopia sp.)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>keskenylevellű ezüstfa (Elaeagnus angustifolia)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>adventív öszirózsa faj (Aster sp.)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>zöld juhar (Acer negundo)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cserjés gyalogakác (Amorpha fruticosa)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bálványfa (Ailanthus altissima)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nyugati ostorfa (Celtis occidentalis)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fehér akác (Robinia pseudoacacia)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>lepényfa (Gleditsia triacanthos)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ürömlevelű parlagfű (Ambrosia artemisiifolia)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>közönséges júdásfa (Cercis siliquastrum)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>közönséges orgona (Syringa vulgaris)</td>
<td>1</td>
</tr>
<tr>
<td>13.</td>
<td>Felsőrákosi-tó természetvédelmi terület</td>
<td>magas aranyvessző (Solidago gigantea)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>keskenylevellű ezüstfa (Elaeagnus angustifolia)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bálványfa (Ailanthus altissima)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>zöld juhar (Acer negundo)</td>
<td>1</td>
</tr>
<tr>
<td>14.</td>
<td>Budai Arborétum természetvédelmi terület</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>153.</td>
<td>Rupp-hegy természetvédelmi terület</td>
<td>erdeiefenyő (Pinus sylvestris) telepítés</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fehér akác (Robinia pseudoacacia)</td>
<td>1</td>
</tr>
<tr>
<td>16.</td>
<td>Kőéberki szikes-rét természetvédelmi terület</td>
<td>bálványfa (Ailanthus altissima)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>fehér akác (Robinia pseudoacacia)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kanadai aranyvessző (Solidago canadensis)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>magas aranyvessző (Solidago gigantea)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>adventív öszirózsa faj (Aster sp.)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nyugati ostorfa (Celtis occidentalis)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>keskenylevellű ezüstfa (Elaeagnus angustifolia)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>cserjés gyalogakác (Amorpha fruticosa)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>közönséges selyemkörö (Asclepias syriaca)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>amerikai kőris (Fraxinus pennsylvanica)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>közönséges orgona (Syringa vulgaris)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>közönséges vadgesztenye (Aesculus hippocastanum)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tóvises lepényfa (Gleditsia triacanthos)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>közönséges dió (Juglans regia)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>közönséges ördögérna (Lycium barbarum)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>zöld juhar (Acer negundo)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ecefa (Rhus typhina)</td>
<td>1</td>
</tr>
<tr>
<td>17.</td>
<td>Órdög-ormo természetvédelmi terület</td>
<td>fehér akác (Robinia pseudoacacia)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>kisvirágú nebáncsvirág (Impatiens parviflora)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>keleti tuja (Platycladus orientalis)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>feketefenyő (Pinus nigra)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>káesi meggy (Prunus serotina)</td>
<td>1</td>
</tr>
<tr>
<td>18.</td>
<td>Kis-Sváb-hegy természetvédelmi terület</td>
<td>feketefenyő (Pinus nigra) telepítés</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>közönséges orgona (Syringa vulgaris)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>zöld juhar (Acer negundo)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bálványfa (Ailanthus altissima)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bugás csörgőfa (Koelreuteria paniculata)</td>
<td>1</td>
</tr>
<tr>
<td>Sor-szám</td>
<td>Terület neve</td>
<td>A területen található özonővények és egyéb tájidegen növényfajok neve</td>
<td>A fertőzöttség fokozata</td>
</tr>
<tr>
<td>----------</td>
<td>--------------</td>
<td>--</td>
<td>-----------------------</td>
</tr>
</tbody>
</table>
| 19. | Denevér utcai-gyepfolt természetvédelmi terület | bálványfa (*Ailanthus altissima*)
fehér akác (*Robinia pseudoacacia*)
közönséges orgona (*Syringa vulgaris*)
kisvirágú nebáncsvirág (*Impatiens parviflora*)
keskenylevellő ezüstfa (*Elaeagnus angustifolia*) | 1 |
| 20. | Fácános természetvédelmi terület | közönséges vadgesztenye (*Aesculus hippocastanum*)
nagy meténg (*Vinca major*) | 3 |
| 21. | Csillagvölgyi út természetvédelmi terület | feketejenyő (*Pinus nigra*)
fehér akác (*Robinia pseudoacacia*)
zöld juhar (*Acer negundo*) | 2 |
| 22. | Ístenhegyi út kert természetvédelmi terület | kanadai aranyvessző (*Solidago canadensis*)
közönséges díó (*Juglans regia*)
zöld juhar (*Acer negundo*) | 1 |
| 23. | Móvész út kert természetvédelmi terület | feketejenyő (*Pinus nigra*)
közönséges vadgesztenye (*Aesculus hippocastanum*)
fehér akác (*Robinia pseudoacacia*) | 2 |
| 24. | Turjános természetvédelmi terület | aranyvessző fajok (*Solidago sp.*)
fehér akác (*Robinia pseudoacacia*)
zöld juhar (*Acer negundo*)
közönséges selyemkóró (*Asclepias syriaca*)
nyugati ostorfa (*Celtis occidentalis*) | 3 |
| 25. | Szilas-tó természetvédelmi terület | zöld juhar (*Acer negundo*)
kandazi aranyvessző (*Solidago canadensis*)
feketé díó (*Juglans nigra*)
fehér akác (*Robinia pseudoacacia*)
ürömlivelő parlagfű (*Ambrosia artemisiifolia*) | 3 |
| 26. | Naplás-tó természetvédelmi terület | kanadai aranyvessző (*Solidago canadensis*)
magas aranyvessző (*Solidago gigantea*)
kesei meggy (*Prunus serotina*)
zöld juhar (*Acer negundo*)
adventív öszirózsa fajok (*Aster sp.*)
cserjés gyalogakác (*Amorpha fruticosa*)
közönséges selyemkóró (*Asclepias syriaca*)
süntök (*Echinocystis lobata*) | 3 |
| | | vadszőlő fajok (*Parthenocissus sp.*)
ürömlivelő parlagfű (*Ambrosia artemisiifolia*) | 1 |
<p>| | | amerikai körös (Fraxinus pennsylvanica) | 1 |</p>
<table>
<thead>
<tr>
<th>Sor-szám</th>
<th>Terület neve</th>
<th>A területen található özönnövények és egyéb tájidegen növényfajok neve</th>
<th>A fertőzött-ség fokozata</th>
</tr>
</thead>
<tbody>
<tr>
<td>27.</td>
<td>Merzse-mocsár természetvédelmi terület</td>
<td>kanadai aranyvessző (Solidago canadensis)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>magas aranyvessző (Solidago gigantea)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>selyemkörö (Asclepias syriaca)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>keskenylevelű ezüstfa (Elaeagnus angustifolia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>bálványfa (Ailanthus altissima)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>zöld juhar (Acer negundo)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>nyugati ostorfa (Celtis occidentalis)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>amerikai kőris (Fraxinus pennsylvanica)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>késsei meggy (Prunus serotina)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>tehér akác (Robinia pseudoacacia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>vörös tölgy (Quercus rubra L.)</td>
<td>1</td>
</tr>
<tr>
<td>28.</td>
<td>Pécelli úti kert természetvédelmi terület</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>29.</td>
<td>Kis-Háros-sziget természetvédelmi terület</td>
<td>vadszőlő fajok (Parthenocissus sp.)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>japán keserűfű (Fallopia sp.)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>zöld juhar (Acer negundo)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>adventív őszirózsa fajok (Aster sp.)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aranyvessző fajok (Solidago sp.)</td>
<td>1</td>
</tr>
<tr>
<td>30.</td>
<td>Tétényi-fennsik természetvédelmi terület</td>
<td>bálványfa (Ailanthus altissima)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>feketejenő (Pinus nigra) telepítés</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>keskenylevelű ezüstfa (Elaeagnus angustifolia)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>közönséges orgona (Syringa vulgaris)</td>
<td>1</td>
</tr>
<tr>
<td>31.</td>
<td>Nagytétényi Duna-part természetvédelmi terület</td>
<td>japán keserűfű (Fallopia sp.)</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>zöld juhar (Acer negundo)</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>aranyvessző fajok (Solidago sp.)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>bálványfa (Ailanthus altissima)</td>
<td></td>
</tr>
<tr>
<td>32.</td>
<td>Soroksári Botanikus Kert természetvédelmi terület</td>
<td>kanadai aranyvessző (Solidago canadensis)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ürömlévelű parlagfű (Ambrosia artemisifolia)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>selyemkörö (Asclepias syriaca)</td>
<td>1</td>
</tr>
<tr>
<td>33.</td>
<td>Bécsi kapu térő védett szőlőtőke</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>34.</td>
<td>Gazda utcai hársfa</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>35.</td>
<td>Kondor utcai libanoni cédrus</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>36.</td>
<td>Heinrich István utcai olimpiai emléktölgy</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>37.</td>
<td>Étvörös úti kocsánytalal tölgy</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>38.</td>
<td>Felhő utcai hegyi mamutfenyő</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>39.</td>
<td>Mártont utcai eperfa</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>40.</td>
<td>Ráth György utcai platán</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>41.</td>
<td>Svájci út bükk</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
A fejezet hivatkozásai

4. 1996. évi LIII. törvény a természet védelméről
5. Tvt. 24. § (1) bekezdés b) pont
7. 275/2004. (X. 8.) Korm. rendelet az európai közösségi jelentőségű természettudományi rendeltetésű területekről
9. a természet védelméről szóló 1996. évi LIII. törvény 23. § (2) bekezdés
12. a barlangok nyilvántartásáról, a barlangok látogatásának és kutatásának egyes feltételeiről, valamint a barlangok kiélítéséről szóló 17/2021. (IV.9.) AM rendelet
13. a barlangok felszíni védőövezetének kijelöléséről szóló 16/2009. (X. 8.) KvVM rendelet
15. A Normafa Park történelmi sportterületről szóló 2013. évi CXLVIII. törvény (a továbbiakban: Normafa törvény) 1. melléklete szerint
16. Normafa törvény 3. § (1) bekezdés
17. A környezettudomány és természettudományi hatósági és igazgatási feladatokat ellátó szervek kijelöléséről szóló 625/2022. (XII.30.) Korm. rendelet 13. és 19. §-ok, és az 2. melléklet II. pont, 5. alpont alapján
18. TVT. 24. § (1) bekezdés b) pontja
19. 25/2013 (IV. 18.) Főv. Kgy. rendelet Budapesten helyi jelentőségű védett természeti területeiről
20. a fővárosi zöldfelületi rendszerbe tartozó zöldterületek és zöldfelületek védelméről, használatáról, fenntartásáról és fejlesztéséről szóló 10/2005. (III. 8.) Főv. Kgy. rendelet 2. § d) pontja és 8. § (1) bekezdése
22. Magyarország és egyes kiemelt térségeinek területrendezési tervéről szóló 2018. évi CXXXIX. törvény 25-27.§ és 43-44.§
26 a kedvetlenségből tartott állatok tartásáról és forgalmazásáról szóló 41/2010. (II. 26.) Korm. rendelet
28 253/2004. (VIII. 31.) Korm. rendelet a fegyverekről és lőszerekről, 36. §
29 a fővárosi zöldfelületi rendszerbe tartozó zöldterületek és zöldfelületek védelméről, használatáról, fenntartásáról és fejlesztéséről szóló 10/2005. (III. 8.) Főv. Kgy. rendelet 2. § d) pontja
30 az épített környezet alakításáról és védelméről szóló 1997. évi LXXVIII. törvény „3. § (1) Az építtetett környezet alakítását és védelmét [...] b) a jogszabályokban előírt [...] környezet- és természetvédelmi követelményekkel összhangban, [...] kell megvalósítani. “ „7.§ (1) A településfejesztés és a településrendezés célja [...] c) a természeti, táji [...] értékek gyarapítása és védelme”
32 28/2015 (VI.17.) OGY határozattal elfogadott, a biológiai sokfélésg megőrzésének 2015-2020 közötti időszakra szóló nemzeti stratégiája
33 664/2021. (III.31.) Főv. Kgy. határozattal elfogadott Radó Dezső Terv (Budapest Zöldinfrastruktúra Fejlesztési és Fenntartási Akcióterve), 2021
34 a védett természeti területen található budapesti erdők tarvágásának tilalmáról szóló 33/2022. (IX. 4.) Főv. Kgy. rendelet
35 aveszélyhelyzet ideje alatt a tűzfajgények biztosításához szükséges eltérő szabályok alkalmazásáról szóló 267/2022. (VIII. 4.) Korm. rendelet
37 Budapest helyi jelentőségű védett természeti területeiről szóló 25/2013. (IV. 18.) Főv. Kgy. rendelet 5. §
38 a településkép védelméről szóló 2016. évi LXXIV. törvény
39 a település tervek tartalmáról, elkészítésének és elfogadásának rendjéről, valamint egyes településrendezési sajátos jogintézményekről szóló 419/2021. (VII. 15.) Korm. rendelet
42 A településkép védelméről szóló 2016. évi LXXIV. törvény
43 A település tervek tartalmáról, elkészítésének és elfogadásának rendjéről, valamint egyes településrendezési sajátos jogintézményekről szóló 419/2021. (VII. 15.) Korm. rendelet
I.2. Épített zöldfelületek

A legfrissebb, 2020-ban közölt kutatási eredmény alapján Budapest területének átlagos zöldfelület-intenzitása 51%. Ez az érték egyszerre fejezi ki a növényzetel fedett területek kiterjedésének arányát és a borítottság minőségét, továbbá a növényzet biológiai aktivitását. A műholdfelvételen alapuló vizsgálat minden növényzettel fedett területre kiterjed függetlenül attól, hogy mi a zöldfelület rendeltetése.

A zöldfelületeken belül kiemelt szerepet töltenek be a közcélú zöldfelületek: az erdők, a közparkok, közkertek.

Budapesten egy lakosra átlagosan 33 m² erdőterület (amelyből 25 m² rekreációs célú parkerdő), továbbá 6 m² közpark, közkert jut. A város – nemzetközi normákhoz képest – alulteljesítő zöldterületi ellátottságát javítják a közcélú zöldfelületek egyik különleges típusa, a lakótelepi zöldfelületek, amelyek kedvező mennyiségükkel (2 m² jut egy lakótelepi lakosra) meghatározó szerepet játszanak a lakótelepen élők (Budapest lakosságának mintegy 29%-a) ellátásában.

Az alacsony közpark-, közkert-ellátottság mellett a különböző közparkok térbeli eloszlása is egyenletes: egyes belvárosi (pl. VI., VII.) kerületekben 1 m² közpark sem jut egy lakosra. Budapest zöldfelületi rendszere jelenleg nem tölti be megfelelően rekreációs és kondicionáló szerepet, mert kevés és helyenként rossz állapotú zöldfelület áll rendelkezésre.

A főváros erdősültsége kb. 11%-os, ami ökológiai szempontból a vizsgált európai városok tekintetében átlagosnak tekinthető.
A zöldfelületi rendszer állapotának leírása, jellemzése

A zöldinfrastruktúra – az EU Bizottság Zöldinfrastruktúra Stratégiája alapján1 – a természetes és féliség természetközeli területek stratégiailag megtervezett hálózata, amelyet úgy terveztek és irányítanak, hogy széleskörű ökoszisztéma-szolgáltatások nyújtására legyen képes.

A zöld (zöldfelületi) és kék (vízfelületi) térelemek hálózata javíthatja a környezeti feltételeket; ezáltal az ott élők, tartózkodók egészségét és életminőségét. Támogatja továbbá a zöldgazdaságot, munkahelyeket teremt és növeli a biológiai sokféleséget.

A zöldinfrastruktúra-tervezés bizonyítottan eredményes eszköz az ökológiai, gazdasági és társadalmi javak megvalósításához, amelyek a természetes műszaki infrastruktúrák kiépítése helyett a természeti ökoszisztémák sokféleségét és ökoszisztémát alkotják.

Emellett elősegíti, hogy a költséges műszaki infrastruktúrák helyett a természeti ökoszisztémák sokféleségét és ökoszisztémát alkotják.

A zöldfelületi rendszer a település sajátos felépítésű, biológiai folyamatokkal és ökológiai törvényességével jellemezhető alrendszerek; hatással van a tőkeklimára, ezen belül is a levegő páratartalmára, hőháztartására (városi hőszigetekre), a talajvíz- és levegőminőségre, az élővilágra és az emberre.

Budapest zöldfelületi rendszer részletezett településtervezési zónánként (5. ábra) eltérő jellegű. A belső és a Duna menti zóna területén szigetes, a belső és az átmeneti zóna határában a városklimát megtervezzük, hogy a területet egyenletesen tervezzük, és a kiterjedésű városi parkoknak köszönhetően. A hegyvidéki zóna területét a Budai-hegység összefüggő erdőterületei és a kertvárosi területek összekapcsolják. Az elővárosi zónába ékelődő zöldfolyosók (mező- és erdőgazdasági területek) az agglomerációs térség zöldfelületi kapcsolják össze a fővárosi zöldfelületekkel.

Mivel az egyes zöldfelületi elemek közötti különbségek elsősorban azok funkcióiból adódnak, a zöldinfrastruktúra típusai alapján a településrendezési eljárásban használt területfelhasználási kategóriákhoz igazodnak (a fővárosi zöldinfrastruktúra típusait, elhelyezkedését az 1. ábra mutatja be).

1. ábra: A fővárosi zöldinfrastruktúra típusai

<table>
<thead>
<tr>
<th>Típus</th>
<th>Leírás</th>
</tr>
</thead>
<tbody>
<tr>
<td>Erdő</td>
<td>Erdőterület</td>
</tr>
<tr>
<td>Erdőgazdálkodási terület</td>
<td>Erdőgazdálkodási terület</td>
</tr>
<tr>
<td>Egyéb</td>
<td>Egyéb</td>
</tr>
<tr>
<td>Fasor és zöldsév</td>
<td>Fasor és zöldsév</td>
</tr>
<tr>
<td>Gyep</td>
<td>Gyep</td>
</tr>
<tr>
<td>Intézménykert</td>
<td>Intézménykert</td>
</tr>
<tr>
<td>Lakókert</td>
<td>Lakókert</td>
</tr>
<tr>
<td>Mezőgazdasági terület</td>
<td>Mezőgazdasági terület</td>
</tr>
<tr>
<td>Vízes élőhely</td>
<td>Vízes élőhely</td>
</tr>
<tr>
<td>Vízfelület</td>
<td>Vízfelület</td>
</tr>
<tr>
<td>Vízparti zöldsév</td>
<td>Vízparti zöldsév</td>
</tr>
<tr>
<td>Zöldfelület intézmény</td>
<td>Zöldfelület intézmény</td>
</tr>
<tr>
<td>Zöldterület</td>
<td>Zöldterület</td>
</tr>
</tbody>
</table>
Zöldfelület-intenzitás

A zöldfelületek felmérésére és elemzésére használt módszerek egyike a zöldfelület-intenzitás (ZFI) számítás, mely ürőfelvételek és légifelvételek kombinált feldolgozásával végzi a zöldfelület térképezését és térinformatikai elemzését, értékelését. A módszer kifejezetten térségi vagy települési szinteken történő hasznosításra került kifejlesztésre, de alkalmazható településrészek, sőt egyes tömbök zöldfelületi intenzitásának jellemzésére is. **A zöldfelület-intenzitás (ZFI) megmutatja, hogy mekkora az adott területrészre eső zöldfelület síkbeli kiterjedésének aránya és borítottságának minősége (tényleges biológiai aktivitása)** (lásd 2. ábra). Az érték nagysága nem egyezik a zöldfelületek tényleges nagyságával (például: egy zárt lombkoronaszint alatt lévő szilárd burkolat nem érzékelhető a felvételeken).

![2. ábra: Budapest zöldfelületi intenzitása, 2020. (Adatforrás: Greenscope Kft.)](image-url)
ZFI% NDVI Terület jellege Minta

<table>
<thead>
<tr>
<th>ZFI%</th>
<th>NDVI</th>
<th>Terület jellege</th>
<th>Minta</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>(-1)-0</td>
<td>Beépített terület, burkolt felszín, bányaterület, csupasz talajfelszín és minden olyan terület, ahol nincs biológiailag aktív zöldfelület.</td>
<td></td>
</tr>
<tr>
<td>0,01-19.99%</td>
<td>0-0,1</td>
<td>Pl.: erőteljesen beépített területek, igen alacsony zöldfelületi aránnyal.</td>
<td></td>
</tr>
<tr>
<td>20-39.99%</td>
<td>0,1-0,2</td>
<td>Pl.: beépített terület, alacsony zöldfelületi aránnyal (sűrűn beépített kertvárosi terület, lakóparkszéria beépítés)</td>
<td></td>
</tr>
<tr>
<td>40-59.99%</td>
<td>0,2-0,3</td>
<td>Pl.: közepes beépítettség mellett közepes zöldfelületi arány (kertvárosi területek)</td>
<td></td>
</tr>
<tr>
<td>60-79.99%</td>
<td>0,3-0,4</td>
<td>Pl.: relatív alacsony beépítettség mellett relatív magas zöldfelületi arány (lakótelepi beépítés nagy kiterjesztésű parkokkal)</td>
<td></td>
</tr>
<tr>
<td>80-99.99%</td>
<td>0,4-0,5</td>
<td>Pl.: alacsony beépítettséggel jellemzethető terület, igen nagy arányú erőteljes növényiakaróval (kertek, parkok, útmenti jelentősebb zöldfelületek)</td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td>0,5-1</td>
<td>Egészséges erdőállomány, park összefüggő fásszárú növényzettel és gyeppe, erőteljes üde gyepterei.</td>
<td></td>
</tr>
</tbody>
</table>

A zöldfelület-intenzitás változása

Budapest zöldfelület-intenzitásának növekedése 1992 óta 1%, ami nagymértékben a felhagyott, használaton kívüli területek spontán cseréjének, erősülésének, illetve a meglévő vegetáció erősodásának köszönhető, ugyanakkor fedve maradnak azok a területhszámítási változások, amelyek a zöldfelületeket csökkentését okozták. A Budapest teljes területére vonatkozó ZFI-változás hibahatáron (±5%) belüli, így nem célszerű egyértelmű következtetéseket levonni. Megállapítható azonban, hogy Budapest zöldfelület-intenzitása 50% körül változott az elmúlt 28 évben, amihez hozzájárul a növényállomány területi csökkenése vagy növekedése, de a minőségi javulása, romlása is. Különösen jelentős hatással van a változásokra a nem öntözött gyeptereket vitalitásának ingadozása és a gyeptereket kezelésének módja, időzítése.

3. ábra: A zöldfelület intenzitás és a terület jellegének viszonya (Jombach Sándor zöldfelület-intenzitás kutatása nyomán)
Épített zöldfelületek

5. ábra: A zöldfelületi intenzitás változása az egyes zónák összterületének százalékában 2015-2020 között (Adatforrás: Greenscope Kft.)
A zöldfelület-intenzitás változását a 1992 és 2020 közötti időszakban vizsgáló térkép az alábbi folyamatokra, jelenségekre világít rá:

- A zöldfelület-intenzitás csökkenése az elővárosi zóna területén dominál, elsősorban a zöldmezős beruházások következtében. Jellemzően a gyorsforgalmi út, az autópálya-hálózat és az elkerülő útak, valamint az ipari parkok, kereskedelmi központok, logisztikai létesítmények, sőt, helyenként a lakóterületek fejlesztése mutatkozik meg a zöldfelület-intenzitás csökkenésében. Ugyanakkor a mezőgazdasági területeken a zöldfelület-intenzitás növekedése figyelhető meg a művelés felhagyása esetén (pl. XVII. ker., III. ker., XXIII. ker.); helyenként spontán erdősülési folyamat is beindult, máshol a tudatos erdőtelepítés jelét lehet tapasztalni (XXII. ker.).

- A Duna menti zónában arányaiiban igen nagy változások zajlottak: bőven akadt példa a ZFI csökkenésére és növekedésére is.

7. ábra: ZFI változás a barnamezős területeken
A belső zónában összességében a zöldfelületi-intenzitás stagnálása figyelhető meg, a csökkenésre és a növekedésre több példa is hozható. Minőségi zöldfelületi-intenzitás növekedés kisebb arányban fordul elő, új park létesítése (pl. Széllkapu park a II. kerületben), fasorok telepítése vagy park- és kerfelülítások eredményezik. Némi esetben azonban a park-és kerfelülítások csökkenést is kiváltanak, új burkolt felületek (járdák, sétányok, új funkciók) megjelenése és fakivágások miatt (pl. Városliget). A belső zónában több építési beruházás is eredményezett zöldfelület-intenzitás csökkenést (Nemzeti Közszolgálati Egyetem, Testnevelési Egyetem).

A hegyvidéki zónában az erdőterületeken stagnálás jellemző, míg a lakóterületek zöldfelület-intenzitása jellemzően csökken. A lakóterületi építkezések miatt a hegyvidéki területeken inkább sok apró foltban mutatkozik csökkenés, nagyobb területen lakóparki beépítésekhez (Harsány nyílt kertváros) köthetően jelentkezik zöldfelület-csökkenés.

Az egyes területhasználattípusok zöldfelületi intenzitásának változását a függelék tartalmazza.

Közhasználatú zöldfelületek

A közhasználatú zöldfelületek (zöldhálózat) korlátozások nélkül, vagy részleges korlátozóssal mindenki számára hozzáférhető; azaz közhasználatra feltart vagy alkalmas zöldfelületi elemek.

A legalapvetőbb területi egységeit a közparkok, közkerületi és lakótelepi zöldfelületek és rekreációs erdőterületek alkotják, amelyek a lakossági rekreáció meghatározó színterei. Ezeket a területeket lineáris zöldfelületi elemek, zöldfolyosók kapcsolják össze. Legjellemzőbb elemeik a fasorok, utak és vízfolyások melletti zöldsávok.

8. ábra: Budapest zöldhálózata (a lineáris zöld elemek nélkül)
A korlátlanul közhasználható zöldfelületek – alapvetően a közparkok, közkertek, lakótelepi zöldfelületek és rekreációs erdőterületek – nagysága és minősége a város élhetőségének, a szabadidő hasznos és kulturált eltöltésének (rekreációnak) egyik legfontosabb feltételei. A főváros zöldhálózatában meghatározó szerepet töltnek be a temetők, valamint a nagy zöldfelülettel rendelkező intézményei területeit, melyek korlátzottan közhasználhatóak (golfpályák, állat- és növénykertek, nagy zöldfelülettel rendelkező sport-és rekreációs területek).

A 9. ábra a közhasználatú rekreációs zöldfelületek nemzetközi összehasonlítását mutatja be az Urban Atlas3 Európa nagyvárosaira egységes módszerrel előállított területhasználat-vizsgálat alapján.

Az Urban Atlas módszertana a korábbiakban részletezett területhasználat-vizsgálatotól eltér, és kevésbé pontos, ugyanis műholdfelvételek további feldolgozása alapján készült elemzésen nyugszik. Ugyanakkor nemzetközi viszonylatban összehasonlítható adatokat nyújt, ezért indokolt a bemutatása.

Ez alapján megállapítható, hogy Budapest közepesen teljesít a közhasználatú zöldfelületekkel való ellátottság tekintetében. Fel kell hivni a figyelmet arra a módszertani problémára, hogy a területhasználat-vizsgálat eredményét jelentősen befolyásolja a közigazgatási terület lehatárolása, különösen a városokat övező erdőterületek esetében. Azt is meg kell jegyezni, hogy a városhatáron kívül elhelyezkedő erdőterületek is jelentős hatással vannak Budapest városklimájára, levegőminőségére.

Közparkok, közkertek

Az OTÉK4 meghatározása alapján a zöldterület állandóan növényzetet fedett közterület (közpark, közkert), amely a település klímaticus viszonyainak megőrzését, javítását, ökológiai rendszerevének védelmét, a pihenést és testedzést szolgálja. Ez a területelhasználati kategória a főváros területének 2%-át adja, ami azt jelenti, hogy átlagosan 6 m² zöldterület jut egy lakosra, amely a nemzetközi célértékekhez (9 m²) képest alacsony.

Az egy lakosra jutó zöldterületek (közkertek, közparkok) nagysága mellett ezek területi eloszlása még fontosabbb. A lakóterületek közparkoktól, közkertektől, erdőterületektől mért távolsága 10. ábra jól szemlélteti az adott lakóterület közhasználati zöldfelülettel való ellátottságát.

Az elérési távolságok meghatározása izokrón térképeken alapul. A módszer szerint a megjelenítés 5,10,15 és 20 perces gyalogos távolságokon alapul, a lakóterületek, valamint az erdő- és zöldterületek közti esetleges korlátozó tényezőket, így a tényleges elérési útvonalakat figyelembe véve.

Körútjai

A körútjai által meghatározott terület a körútjain belüli zöldterületek az adott nagyságú területen sokszor többek között a lakóterületek és a közparkok zöldfelületei, Újpestben és a mai körútjain belüli területek közötti választáson keresztül egységesen nézve.
A lakónépesség megoszlását a gyalogos távolság függvényében vizsgálva – Budapest közigazgatási területének vonatkoztatásában – megállapítható, hogy a lakosság 97%-a 15 perces gyaloglási távolságon belül elér valamilyen rekreációt biztosító zöldterületet (közkert, közpark, városi park). Ugyanez az arány parkerdő és városi park esetében a kevesebb elemszám és az izolált lokalizáció okán kevesebb, 40%. Mivel a városi park és a parkerdők látogatása nem tekinthető mindennapos tevékenységnek, így megközelíthetőségük nem minősül alapkritériumnak, gyalogos elérésük inkább előnyként, mint szükségletként tekinthető.

A zöldterületekkel (közparkokkal, közkertekkel), illetve az erdőterületekkel való ellátottság részben kiegészíti egymást. Így szerencsésen alakul azon városrészek helyzete, amelyek ugyan közkerék, közparkok terén kevésbé ellátottak, viszont az erdőterületek szempontjából kiváló adottságúak. Ezt figyelembe véve jól ellátott térség az I. és XII. kerület, a II. kerület nagyobb része és XI. kerület belső része is.

Kevésbé ellátott térség a XIV. kerület Alsórákos térsége, XVI., XVII. kerülete külső részei, a XXI., XXII. kertvárosias területei.
Az 1 főre jutó zöldterületek szempontjából a legjobban ellátott kerületek az I., a III., a X. és a XIV. Fontos megjegyezni, hogy a XIV. kerület magas értékét nagyrészt a Városiget adja, mely városi jelentőségű közpark. A Margit-sziget, mint különálló közigazgatási egység jelenik meg.

A legrosszabb helyzetben a VI., és VII. kerületek vannak, ahol az egy főre eső zöldterületek mennyisége kevesebb, mint 1 m². Ezek esetében nemcsak a zöldterületek alacsony aránya, hanem a kerületek nagy népessége is meghatározó tényező.

Lakótelepi zöldfelületek

A korlátlanul közhasználatú zöldfelületek különleges elemei a lakótelepi zöldfelületek, amelyek a zöldterületekkel azonos szerepet töltnek be, de a lakótelepi beépítésekkel szerves egységet alkotnak, vonzás közelítője csak a környező lakótelepre terjed ki. Ez a kategória a főváros területének 0,8%-át adja, ami azt jelenti, hogy átlagosan 9 m² lakótelepi zöldfelület jut egy lakótelepi lakosra. (Mivel a lakótelepi zöldfelületek csak a lakótelepen élők zöldterületi ellátásában játszanak szerepet, ezért a viszonyítás alap nem a teljes népesség, hanem a lakótelepen élők száma).

A rendszerváltás előtt épült lakótelepek – általános megítélésük ellenére – jellemző, hogy a zöldfelületek mennyisége sokkal kedvezőbbre értékelhető, mint az elmúlt évtizedekben épült lakóparkoké, ami a korábbi szigorúbb építésügy normáknak tudható be.

Erdőterületek

Az Urban Atlas adatok alapján a főváros erdősültsége mintegy 10%-os, a pontos adatszolgáltatások alapján pedig 11%-os. Összességében kijelenthető, hogy ökológiai szempontból Budapest – a vizsgált európai városok tekintetében – átlagos erdősültséggel rendelkezik, mind a közigazgatási határon, mind a tágabb urbánus környezetben belül (13. ábra).

A 2022-ben jóváhagyott körzeti erdőterv adatai alapján Budapest közigazgatási határán belül mintegy 6.000 ha erdőterület található, amelyből jelenleg az erdőtervezett erdők területe mintegy 5.547 ha, melyek elsődleges rendeltetés szerinti megoszlását a 14. ábra mutatja. A legnagyobb területet (2.457 ha) természetvédelmi rendeltetésű erdők foglalják el, melyek főleg a Budai-hegység területén találhatók, a második legnagyobb területet (1.911 ha) parkerdők alkotják. A körzeti erdőtervben meghatározott elsődleges rendeltetéssel lévőkő más rendeltetések is meghatározóak, így például a jellemzően természetvédelmi elsődleges rendeltetésű budai erdőterületeken a közhasználat szempontjából meghatározó a közjóléti funkció is. A közel 6.000 ha erdőterületből (nem csak üzemtervezett erdőkből) megközelítőleg 4.500 ha rekreációs célú, tehát az összes erdőterület több, mint 70%-a, mely
Épített zöldfelületek jelentősen hozzájárul a város élhetőségéhez, az emberek rekreációs igényeinek kielégítéséhez.

[diagram]

Az erdőtörvény szerint érdekek minősül minden 5.000 m²-t meghaladó, legalább húsz méter széles, két méter átlagmagasságot meghaladó és legalább öven szárazalakban faállománnyal borított terület. A fővárosban számos olyan faállománnyal borított ingatlan található, mely az erdőtörvény szerinti előírásoknak nem felel meg. Az erdőtörvény szerint 6 érdekek minősül minden 5.000 m²-t meghaladó, legalább húsz méter széles, két méter átlagmagasságot meghaladó és legalább öven szárazalakban faállománnyal borított terület. A fővárosban számos olyan faállománnyal borított ingatlan található, mely az erdőtörvény szerinti előírásoknak nem felel meg.

Az erdőtörvény szerint 6 érdekek minősül minden 5.000 m²-t meghaladó, legalább húsz méter széles, két méter átlagmagasságot meghaladó és legalább öven szárazalakban faállománnyal borított terület. A fővárosban számos olyan faállománnyal borított ingatlan található, mely az erdőtörvény szerinti előírásoknak nem felel meg.

Az erdőtörvény szerint 6 érdekek minősül minden 5.000 m²-t meghaladó, legalább húsz méter széles, két méter átlagmagasságot meghaladó és legalább öven szárazalakban faállománnyal borított terület. A fővárosban számos olyan faállománnyal borított ingatlan található, mely az erdőtörvény szerinti előírásoknak nem felel meg.

Az erdőtörvény szerint 6 érdekek minősül minden 5.000 m²-t meghaladó, legalább húsz méter széles, két méter átlagmagasságot meghaladó és legalább öven szárazalakban faállománnyal borított terület. A fővárosban számos olyan faállománnyal borított ingatlan található, mely az erdőtörvény szerinti előírásoknak nem felel meg.

Az erdőtörvény szerint 6 érdekek minősül minden 5.000 m²-t meghaladó, legalább húsz méter széles, két méter átlagmagasságot meghaladó és legalább öven szárazalakban faállománnyal borított terület. A fővárosban számos olyan faállománnyal borított ingatlan található, mely az erdőtörvény szerinti előírásoknak nem felel meg.

Az erdőtörvény szerint 6 érdekek minősül minden 5.000 m²-t meghaladó, legalább húsz méter széles, két méter átlagmagasságot meghaladó és legalább öven szárazalakban faállománnyal borított terület. A fővárosban számos olyan faállománnyal borított ingatlan található, mely az erdőtörvény szerinti előírásoknak nem felel meg.

Az erdőtörvény szerint 6 érdekek minősül minden 5.000 m²-t meghaladó, legalább húsz méter széles, két méter átlagmagasságot meghaladó és legalább öven szárazalakban faállománnyal borított terület. A fővárosban számos olyan faállománnyal borított ingatlan található, mely az erdőtörvény szerinti előírásoknak nem felel meg.

Az erdőtörvény szerint 6 érdekek minősül minden 5.000 m²-t meghaladó, legalább húsz méter széles, két méter átlagmagasságot meghaladó és legalább öven szárazalakban faállománnyal borított terület. A fővárosban számos olyan faállománnyal borított ingatlan található, mely az erdőtörvény szerinti előírásoknak nem felel meg.

Az erdőtörvény szerint 6 érdekek minősül minden 5.000 m²-t meghaladó, legalább húsz méter széles, két méter átlagmagasságot meghaladó és legalább öven szárazalakban faállománnyal borított terület. A fővárosban számos olyan faállománnyal borított ingatlan található, mely az erdőtörvény szerinti előírásoknak nem felel meg.

Az erdőtörvény szerint 6 érdekek minősül minden 5.000 m²-t meghaladó, legalább húsz méter széles, két méter átlagmagasságot meghaladó és legalább öven szárazalakban faállománnyal borított terület. A fővárosban számos olyan faállománnyal borított ingatlan található, mely az erdőtörvény szerinti előírásoknak nem felel meg.

Az erdőtörvény szerint 6 érdekek minősül minden 5.000 m²-t meghaladó, legalább húsz méter széles, két méter átlagmagasságot meghaladó és legalább öven szárazalakban faállománnyal borított terület. A fővárosban számos olyan faállománnyal borított ingatlan található, mely az erdőtörvény szerinti előírásoknak nem felel meg.

Az erdőtörvény szerint 6 érdekek minősül minden 5.000 m²-t meghaladó, legalább húsz méter széles, két méter átlagmagasságot meghaladó és legalább öven szárazalakban faállománnyal borított terület. A fővárosban számos olyan faállománnyal borított ingatlan található, mely az erdőtörvény szerinti előírásoknak nem felel meg.

Az erdőtörvény szerint 6 érdekek minősül minden 5.000 m²-t meghaladó, legalább húsz méter széles, két méter átlagmagasságot meghaladó és legalább öven szárazalakban faállománnyal borított terület. A fővárosban számos olyan faállománnyal borított ingatlan található, mely az erdőtörvény szerinti előírásoknak nem felel meg.

Az erdőtörvény szerint 6 érdekek minősül minden 5.000 m²-t meghaladó, legalább húsz méter széles, két méter átlagmagasságot meghaladó és legalább öven szárazalakban faállománnyal borított terület. A fővárosban számos olyan faállománnyal borított ingatlan található, mely az erdőtörvény szerinti előírásoknak nem felel meg.

Az erdőtörvény szerint 6 érdekek minősül minden 5.000 m²-t meghaladó, legalább húsz méter széles, két méter átlagmagasságot meghaladó és legalább öven szárazalakban faállománnyal borított terület. A fővárosban számos olyan faállománnyal borított ingatlan található, mely az erdőtörvény szerinti előírásoknak nem felel meg.

Az erdőtörvény szerint 6 érdekek minősül minden 5.000 m²-t meghaladó, legalább húsz méter széles, két méter átlagmagasságot meghaladó és legalább öven szárazalakban faállománnyal borított terület. A fővárosban számos olyan faállománnyal borított ingatlan található, mely az erdőtörvény szerinti előírásoknak nem felel meg.
Allergén növények pollenterhelése

Hazánkban közel 2,5 millió ember szenved allergiás, azon belül – az NNGYK becslése szerint – gyakorlatilag egymilliónyian pollenallergiás megbetegedésben. Az allergia megnehezíti a mindennapot, a kellemetlen szem- és orrtünetek, illetve a nehézlégzés befolyásolja lelki egészségünket is. Az orvosi szakirodalom egyértelműen bizonyítja a pollenek allergizáló hatását, a legtöbb tünetet a parlagfű pollenje váltja ki.

A magyarországi pollenterhelés rendszeres vizsgálátát az 1992-ben alakult Aerobiológiai Hálózat végezi. Az országos lefedettséget jelenleg 21 pollenmonitorozó állomás biztosítja, a mintavételek és a vizsgálatok szakmai irányítását a NNGYK látja el. A magasan elhelyezett pollencsapdák által gyűjtött minták jól reprezentálnak egy kb. 50 km sugarú körfogatot, ugyanakkor a mintavételeket az egyes állomások környezetének környezetében előforduló növényfajok is befolyásolhatják.

A nagyvárosi környezetben lévő budapesti pollencsapda (IX., Albert Flórián út 2-6.) esetében naponta végeznek mintavételt és adatszolgáltatást. Az értékelés során az egyes allergén növényfajok hatását a kiváltott tünetek alapján 1-től (alacsony), 4-ig (nagyon magas) terjedően kategorizálják (Függelék 11. ábra). A 2022-es adatokat (az egyes fajok allergenitását és időszakos pollenkoncentrációját) az Aerobiológiai Hálózat által készített 2022. évi pollennaptár foglalja össze (Függelék 13. ábra).

Az éves pollenszámok megoszlását tekintve (16. ábra) – a 2022-es évre vonatkozóan – megállapítható, hogy:

- legnagyobb arányban a fajfajok pollenszáma volt jelen a levegőben (Budapesten 78%);
- a parlagfű összpollenszáma a magyar nagyvárosokban átlagosan 8%, Budapesten szintén 8%;
- parlagfű allergén hatása súlyosabb, mint a fajfajké.

Függelék F.4.
Az elmúlt években a nyír, illetve kis mértékben az éger pollenszáma emelkedett.

A budapesti mérések alapján a fővárosi pollenterheléshez hozzájáruló nagyon magas allergenitási fokkal rendelkező fajok a parlagfű (Ambrosia), az üröm (Artemisia) és a pázsitfűfélék (Poaceae).

Légköri megjelenésüket tekintve a legmagasabb koncentrációban az alábbiak fordulnak elő: a penészgombák (Alternaria, Cladosporium), továbbá a csalánfélék (Urticaceae), a ciprus- és tiszafafélék (Cupressaceae/Taxaceae), a parlagfű (Ambrosia), valamint az eperfélék (Moraceae). Fafajokat tekintve jelentős allergizáló hatással bírnak a fővárosban az éger (Alnus), a nyír (Betula), a kőris (Fraxinus), a platán (Platanus), a tőgy (Quercus), valamint a fűz (Salix) fajok.

A zöldfelületi rendszer állapotát befolyásoló tényezők

A zöldfelületi rendszer állapotát befolyásoló tényezők elsősorban a zöldfelület-csökkenésnek és a meglévő zöldfelületek minőségi változásának okaiban keresendők.

A közcélú zöldfelületek állapotának, minőségi paramétereinek változása a zöldfelület-gazdálkodás téma koréhez kapcsolható, ezért ezeket a hatótényezőket a **II.7. Zöldfelület-gazdálkodás című fejezetében fejtjük ki részletesen.**

A nem közhasznalatú zöldfelületek csökkenése elsősorban az egyre nagyobb mértékű, illetve arányú beépítésekre (lásd részletesen a **II.1. Épített környezet című fejezetet**) az agglomerációs folyamatok erősödésére, továbbá a zöldmezős területek rovására történő vonalas (pl. M0-ás autópálya), vagy területi kiterjedésű (pl. csepeli szennyvíztisztító) fejlesztésekre vezethető vissza. A zöldfelület-intenzitás
növekedését az idővel egyre javuló zöldfelületi vitalitás, valamint az alulhasznosított (pl. barnamezős) területek spontán kialakuló vegetációja okozza.

A zöldfelületi rendszer állapotát környezeti kultúra hiányosságai szintén negatívan befolyásolják: a vandalizmus, az illegális hulladékelhagyások, a bolygatás, a nem rendeltetésszerű használat, a zöldfelületek parkolási célú használata és az új rekreációs és sportolási szokások által okozott zöldfelületi terhelések.

Zöldfelület-védelmi és -fejlesztési intézkedések

A Fővárosi Önkormányzat a hosszú távú városfejlesztési koncepciójában (Budapest 2030) is megerősítette a zöldfelületek védelmét. A koncepció9 Égészséges környezeti feltételek megteremtése című fejezetében az alábbi célokat határozták meg:

- a biológiaiag aktív felületek és a zöldfelületi intenzitás növelése;
- új zöldterületek létesítése az ellátatlan területeken;
- a meglévő zöldterületek, városi terek rehabilitációja és a fenntartás színvonalának javítása.

A Budapest 2030 hosszútávú városfejlesztési koncepció által megfogalmazott zöldfelület-védelmi célkitűzések indokolták Budapest zöldfelületi rendszerének fejlesztési koncepciójának kidolgozását, amelyet 2017-ben elfogadott a közgyűlés10.

Budapest zöldfelületi rendszerének fejlesztési koncepciójában megfogalmazott hosszú távú célkitűzések középtávon megvalósítandó programokra és projektkre bontása a Radó Dezső Tervben11, Budapest Zöldinfrastruktúra Fejlesztési és Fenntartási Akciótervében került meghatározásra összhangban a Fővárosi Önkormányzat kapcsolódó startégiáiban meghatározott célokkal és prioritásokkal; figyelemmel az Európai Unióban megfogalmazott új települési szintű zöld- és kékinfrastruktúra fejlesztési programokra, amelyek a 2021-2027 közötti fejlesztési ciklusban a Zöld Infrastruktúra és Klímavédelmi Operatív Program (ZIKOP) keretében belül az éghajlatváltozás, a környezetszennyezés és a globális kihívások helyi kezelésének finanszírozását, valamint a klímasemleges gazdaság feltételeit teremti meg, és itt kapnak helyet a települési zöldfelület-fejlesztéssel kapcsolatos programok is.

A Radó Dezső Terv célja, hogy az összvárosi szempontokat szem előtt tartva, a Fővárosi Önkormányzat számára határozza meg a közvetlen kompetenciájába tartozó, valamint a közreműködésével, érdekképviseleti (lobbi) tevékenységével megvalósítandó feladatokat.

A Radó Dezső Terv átfogó céljai vezérelvként szolgálnak a főváros zöldinfrastruktúráját érintő programok és projektek kidolgozása során. Átfogó célok a következők:

- egészséges várost segítő zöldinfrastruktúra fenntartása,
- klimatudatos zöldinfrastruktúra üzemeltetés,
- biodiverzitás szinten tartását és lehetőség szerinti növelését segítő városi zöldinfrastruktúra fenntartás és fejlesztés,
- együttműködésen alapuló zöldinfrastruktúra fejlesztés,
- okos zöldinfrastruktúra szolgáltatások bővítése.

Kiemelt cél, hogy 2030-ig az egy főre jutó zöldterületek (parkterületek) mennyiségét a jelenlegi 6 m2-ről, 7 m2-re növekedjen. Ez a vállalás 2020. évi lakossági adatokkal számolva összvárosi szinten 226 hektár új parkterület, azaz több mint két Margitszigetnek megfelelő nagyságú új közparkokat jelent.
Fenntartási programok keretében cél a meglévő zöldinfrastruktúra hálózat elemeinek színvonalas fenntartása, értékeinek megőrzése a fenntartási feladatait ellátó társaságok (különösen a FŐKERT) eszközállományának, telephelyeinek, működésének korszerűítésével. Partnerségi programok keretében a fővárosi zöldinfrastruktúra fenntartási és fejlesztés feladatait ellátó szervezetek közötti hatékony együttműködés elősegítése a cél. Ezzel párhuzamosan a Fővárosi Önkormányzat kiemelt célja megszólítani a használókat, a fővárosban élő, dolgozó lakosságot, az itt működő vállalkozásokat. Ennek érdekében a társadalmi bevonás tájékoztatás és konzultáció szintjei magasabb szintű formáinak, az együttműködésnek, a felhatalmazásnak, valamint a feladat delegálásának a bevezetése tette a fővárosi zöldfelület fejlesztés és fenntartás gyakorlatába. Mivel a közterületekkel, ezen belül a zöldinfrastruktúrával kapcsolatos lakossági elvárások nagyon sokfélek lehetnek, egymásnak nem ritkán ellentmondó igényeket is megfogalmazva, a társadalmi véleményezés során az érintettek széles körét szükséges megszólítani, és a beérkezett vélemények alapján átlátható és többlépcsős közösségi tervezési folyamat keretében kell meghatározni a többség számára elfogadható kompromisszumot. A nagyvolumenű (100 millió Ft feletti értékű) fejlesztések során ezt a Fővárosi Önkormányzat tervezte és tervezett, protokoll szerint meghatározóak.

Az akcióterv tervezési időszakára vonatkozóan – 2030-ig terjedően – meghatározza az akcióterületi projektek és tematikus javaslatokat. Az egyes akcióterületek és a hozzájuk kapcsolódó projektek a Radó Dezső Terv honlapján15 érhetők el.

A mintegy 310 hektáros összterületű fővárosi tulajdonú erdőterületek kezelésében jelentős előrelépést jelent a Budapest Főváros saját tulajdonú erdeinek kezelés-fenntartási feladatai (2022–2031) című erdőkezelési koncepció és munkaterv készítése, amelynek véglegesítése folyamatban van. A készülő feladatterv szerint a főváros tulajdonában álló erdőterületek esetében a faanyagtermelés egyérentülen mellékes szempont, a főváros szövetébe ágyazott saját tulajdonú erdőfoltok esetében egyértülen a védelmi és közjóléti funkcióknak kell prioritást kapniuk. Vagyis a fakivágás, fakitermelés az erdőkezelésnek csak járulékos mozzanata, a kikerülő faanyag nem cél, legfeljebb következményként jelentkezik. Ezzel szemben a településvédelmi szempontok (vízügyi takarás, por elleni védelem), a talajvédelmi szempontok (meredek, erózióveszélyes területek, illetve laza, homokos talajú, gyér növényzet-borítottságú területek védelme), az árvízvédelmi szempontok (folyómenti erdős partszakaszok védelme), és a természetvédelmi szempontok (élőhelyek és fajok védelme) jelentős súlyt esnek latba, s számos helyen a parkerdei-pihenőerédei funkciók (sétálás, nordic walking, futás, kutyafuttatás, kerékpározás, erdei játszóterek használata stb.) biztosítása is elengedhetetlen.
További javasolt feladatok

A Radó Dezső Terv részletesen meghatározza 2030-ig terjedően a beavatkozású feladatokat. Ugyanakkor szükséges az akcióterv nyomonkövetése, amely során meghatározható, hogy mely intézkedési területen van esetleg lemaradás és hova kell az erőforrásokat átcsopornosítani. Emellett megmutatja, hogy az intézkedések mekkora hatékonysággal szolgálják a stratégia céljait és milyen módosításokra lehet szükség a stratégia és az akcióterv felülvizsgálatára során. A felülvizsgálatok során az akciótervben meghatározott feladatok kiegészíthetők, valamint új feladatok hozzáadása is lehetséges, sőt javasolt, hiszen a jelenleg és a jövőben zajló monitoring vizsgálatok, valamint tanulmányok új információkat tartalmazhatnak, új folyamatok és technológiák ismerhetők meg. A végrehajtás, illetve a felülvizsgálat során külön figyelmet célszerű fordítani a zöldinfrastruktúra stratégiával rendelkező európai nagyvárosokra, hazai nagyobb városokra, illetve törekedni kell a fővárosi kerületekkel való szoros együttműködésre, információcserére.

Pollenterhelés mérséklése

A parlagfű-mentesítés mellett a fafajok helyes alkalmazásával is mérsékelhető lehet az allergén növények által kiváltott betegségterhet. A magánterületeken található faegyedek esetében elsősorban a lakosság tájékoztatásával (pl. kiadványok, allergénmentes facsemék címzése a faiskolai áruárában) lehet elősegíteni – elsősorban az erősen allergén hallgatású – pollenterhelés csökkentését. Az egységesen kezelt zöldterületek (közterületeken található növényzet) allergénkibocsátása jogszabályok segítségével szabályozható, melynek alapja az adott terület allergén pollen terhelésének felmérése. A lakosság tájékoztatásához, illetve a szükséges szabályozásokhoz segítségül szolgálhat az NNYK által kidolgozott több módszertan is. A kidolgozott módszertanok13-14 alapján, lehetővé válik a fafajok, fajták osztályozása allergológiai szempontból (nem allergén, enyhén allergén, közepesen allergén, erősen allergén besorolással), valamint a fafajok, fajták kategorizálásával a meglévő zöldterületek allergológiai minősítése a már meglévő fakatasztereket alapul véve, közterületi névvel azonosított területre kiszámíthatva. A Közterületi Sorfák Jegyzékében15 az egyes növénytaxonokra vonatkozóan már feltüntetésre került a potenciális allergenitás érték. A különböző potenciáli allergenitással (erős/nagyon erős) rendelkező faegyedek arányával minősíthetők az egyes zöldterületek (alacsony, közepes és magas allergén kibocsátású terület). Ezek alapján a budapesti fakataszterekben szereplő fák, majd azt követően a zöldterületeket is minősíteni lehet allergenitás szempontjából.

Ugyanakkor fontos megemlíteni, hogy semmiképpen sem támogatandó a már meglévő fák pollenkoncentráció-csökkentő célú kivágása. A cél az, hogy a városi zöldfelületek tervezését, kialakítását kisebje egyfajta közégeszteségügyi szempontú tudatosság, mivel a fák által kiváltott pollenallergiát a szakemberek által végzett megfelelő tervezéssel is csökkenteni lehet. A közterületi sorfák 2018. évi jegyzékében már szerepelnek azok a fajok, kertészeti változatok, amelyek tömeges ültetése kerülendő.

F.2. Az egyes területhasználattípusok zöldfelületi intenzitásának változása

<table>
<thead>
<tr>
<th>Területhasználat</th>
<th>Zöldfelületi intenzitás (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lakóterületek</td>
<td></td>
</tr>
<tr>
<td>A zöldfelület-intenzitás csökkenése jellemző a lakóterületek bővülése miatt. Különösen a kisvárosias és a kertvárosias területeken volt jellemző a csökkenés. A lakotelepeknél növekedés volt jellemző, elsősorban a növényállomány erősödése okán.</td>
<td></td>
</tr>
<tr>
<td>Közösségi célú (Intézményi) területek</td>
<td>Az elmúlt közel 30 évben minimális változások figyelhetőek meg. Az eltelt 30 évenként a csökkenés mutatkozik, ami elsősorban az új intézményterületek kialakításához köthető.</td>
</tr>
<tr>
<td>Irodaterületek</td>
<td>Az irodaterületek esetében szinte folyamatos zöldfelület-intenzitás csökkenés tapasztalható, amely elsősorban az új irodaterületek építése miatt jelentkezik.</td>
</tr>
<tr>
<td>Többfunkciós városias területek</td>
<td>A zöldfelület-intenzitás értéke jellemzően változatlan, mivel ezekben a területeken kevés lehetőség adódik új beépítésre vagy esetleg zöldfelület létesítésére.</td>
</tr>
<tr>
<td>Gazdasági területek</td>
<td>Az 1990-es évektől szinte folyamatos zöldfelület-intenzitás csökkenés jellemző a zöldmézős beruházások miatt.</td>
</tr>
<tr>
<td>Rekreációs területek (sportterületek, strandok, fürdők)</td>
<td>A 2010-2015. közötti időszakot leszámítva a zöldfelület-intenzitás csökkenése folytonos. A legnagyobb visszaesés az elmúlt 4 évben következett be. Ennek oka az elmúlt évek sport és rekreációs területeken beindult vagy megvalósult fejlesztések</td>
</tr>
<tr>
<td>Különleges területek (vásár, stadion, állatkert, honvédsgép)</td>
<td>2015-ig a zöldfelület-intenzitás stagnált, majd ezt követően csökkent a stadionfejlesztések és az egyéb fejlesztések (pl. biodóm) miatt. Egyedül a honvédsgép területeken belül tapasztalható jelentős (8%-os) zöldfelület-intenzitás növekedés, valószínűsíthetően az elzárta területek elhanyagoltsága okán fellépő erősülés, cserjésedés miatt.</td>
</tr>
</tbody>
</table>
Zöldfelületek területei

Erdő- és egyéb természetközeli területek
Az 1990-es évek óta folyamatos zöldfelület-intenzitás növekedés történik. Az emelkedés értéke jelentős, több, mint 10%-os.

Mezőgazdasági területek
A rendszerváltás után egészen 2015-ig a zöldfelület-intenzitás növekedése figyelhető meg. Ugyanakkor a mezőgazdasági területek változó borítottsága (művelése) okán ezek az értékek kevésbé jellemzők a területhasználatot.

Használaton kívüli területek
A rendszerváltást követően az ipari területek többsége bezárt. Ezekben a használaton kívüli területeken a spontán cserjésedés, erdősödésnek köszönhető növekedett a zöldfelület-intenzitás is, közel 10%-kal. Ugyanakkor ez a növekedés elsősobban az azaz fajokból álló gyomvegetáció terjedését jelenti, ami miatt valódi értékmértékkedéssel nem lehet számolni.

F.3. Az erdőrézletek természetességi állapotuk szerinti besorolása

Erdőről, az erdő védelméről és az erdőgazdálkodásról szóló 2009. évi XXXVII. törvény 7. § (1) bekezdés

a) természetes erdők: az adott termőhelyen a bolygatlan erdők természetes összetételét, szerkezetét és dinamikáját mutató erdők, ahol a faállomány természetes úton magról - illetve a természetes körülmények között sarjra - itt a természetes erdő, hogy ez a természetas állapot területén csak szándékosan vagy tisztelettel változott.

b) természeteszerű erdők: az adott termőhelyen a bolygatlan erdők természetes összetételéhez, szerkezetéhez hasonló, természetes úton létrejött vagy mesterségesen létrehozott területen, ahol az idegenfajok és az erdészeti tájidegen fajok együttesen terjednek.

c) származék erdők: az emberi beavatkozás hatására fajzoonkéntében, a természetes állapotra változott vagy átalakult területen, ahol az idegenfajok és az erdészeti tájidegen fajok együttesen terjednek.

d) átmeneti erdők: az emberi beavatkozás hatására fajzoonkéntében, a természetes állapotra változott vagy átalakult területen, ahol az idegenfajok és az erdészeti tájidegen fajok együttesen terjednek.
e) **kultúrerdők**: az emberi beavatkozás célja miatt a termőhelynek megfelelő természetes erdőtársulást alkotó fafajaitól jelentősen eltérő fafajokból álló erdők, amelyek elegyarányát tekintve több, mint 70%-ban idegenhonos, erdészeti tájidegen, vagy több, mint 50%-ban intenzíven terjedő fafajokból állnak, vagy ahol az adott termőhelynek megfelelő természetes erdőtársulást alkotó őshonos fafajai kevesebb, mint 30%-os elegyarányban, vagy egyáltalán nincsenek jelen;

f) **faültetvény**: jellemzően idegenhonos fafajokból vagy azok mesterséges hibridjeiből álló, szabályos hálózatban ültetett, intenzíven kezelt erdő.
F.4. Allergén növények pollenterhelése

11. ábra: Az allergén elemek kategoribezosztásai légköri koncentrációjuk (db/m³) szerint (forrás: Nemzeti Népegészségügyi és Gyógyszerészeti Központ)

12. ábra: A parlagfűpollen országos napi átlagkoncentrációjának alakulása 2021-ben és 2022-ben (a sokéves jellemző tartományt a 2000-2021 időszak alapján számított 50. illetve 75%-os percentis gőrbék közötti sávval szemléltettük – forrás: Nemzeti Népegészségügyi és Gyógyszerészeti Központ)

<table>
<thead>
<tr>
<th>magyar név</th>
<th>latin név</th>
<th>allergénítás</th>
</tr>
</thead>
<tbody>
<tr>
<td>megyoró</td>
<td>Corylus</td>
<td>2</td>
</tr>
<tr>
<td>éger</td>
<td>Alnus</td>
<td>3</td>
</tr>
<tr>
<td>cipruszélék</td>
<td>Cupressaceae / Taxlaceae</td>
<td>1-3</td>
</tr>
<tr>
<td>kóris</td>
<td>Fagaceae</td>
<td>1-2</td>
</tr>
<tr>
<td>nyír</td>
<td>Populus</td>
<td>1</td>
</tr>
<tr>
<td>szit</td>
<td>Ulmus</td>
<td>1</td>
</tr>
<tr>
<td>johor</td>
<td>Acer</td>
<td>0-2</td>
</tr>
<tr>
<td>füz</td>
<td>Salix</td>
<td>1</td>
</tr>
<tr>
<td>nyír</td>
<td>Betula</td>
<td>3</td>
</tr>
<tr>
<td>platán</td>
<td>Platanus</td>
<td>2</td>
</tr>
<tr>
<td>lőgy</td>
<td>Quercus</td>
<td>1</td>
</tr>
<tr>
<td>fenyőfélék</td>
<td>Pinaceae</td>
<td>1</td>
</tr>
<tr>
<td>pásztorhőfélék</td>
<td>Picea</td>
<td>2</td>
</tr>
<tr>
<td>családítások</td>
<td>Urticaceae</td>
<td>2</td>
</tr>
<tr>
<td>hárs</td>
<td>Tilia</td>
<td>1</td>
</tr>
<tr>
<td>járom</td>
<td>Rumex</td>
<td>1</td>
</tr>
<tr>
<td>uttú</td>
<td>Plantago</td>
<td>1</td>
</tr>
<tr>
<td>libatopfélék</td>
<td>Chenopodiaceae</td>
<td>1</td>
</tr>
<tr>
<td>üröm</td>
<td>Artemisia</td>
<td>1</td>
</tr>
<tr>
<td>parlagfű</td>
<td>Ambrosia</td>
<td>4</td>
</tr>
</tbody>
</table>

allergénítás: 0: nem, 1: ornyhén, 2: közepesen, 3: erősen, 4: igen erősen allergén
A fejezet hivatkozásai

4. 253/1997. (XII. 20.) Kom. rendelet az országos településrendezési és építési követelményekről 27. § (1) bekezdés
5. Erdőről, az erdő védelméről és az erdőgazdálkodásról szóló 2009. évi XXXVII. törvény 6. § (1) bekezdés
6. Erdőről, az erdő védelméről és az erdőgazdálkodásról szóló 2009. évi XXXVII. törvény 7. § (1) bekezdés a)-f) pontjai
7. Magyarország Partlagú Ellenő Rövid és Középtávú Védekezési Akciótervéről szóló 1230/2012. (VII. 6.) Kom. határozat 1.1.4. pontja
10. 1257/2017.(VIII.30.) Főv. Kgy. határozat
11. Az akcióterv névadójá, Dr. Radó Dezső, bár a zöldinfrastruktúra kifejezést még nem használta, de évtizedeken át Budapest zöldinfrastruktúrájának fejlesztéséért és megőrzéséért dolgozott. 1962-től 1984-ig, 22 éven át a Fővárosi Kertészeti Vállalat (FÖKERT) igazgatója volt, koordinálva a fővárosi zöldfelületek mára már kiemelkedően értékes részét alkotó lakótelepi területek fatelepítési, parkfejlesztési munkálatait. A civil környezetvédők is nagy tisztelettel emlékeznek rá, hiszen nyugdíjba vonulása után a Budapesti Városvédelmi Egyesület és a Levegő Munkacsoport szakértőjeként, alapító tagjaként sokat tett a város fáiért, a levegőminőség javításáért. Tudományos szempontból kiemelkedő eredménye a fák értékének kimutatására vonatkozó kertészmérnöki és közgazdasági tudományágak ismereteit ötvöző számítási módszer kidolgozása, melyet a szakemberek a mai napig használnak.
12. https://rdt.budapest.hu/dialogs
I.3. Talaj

Budapest közigazgatási területén a művelésből kivett földterületek aránya 75%. A fennmaradó rész, mintegy 13.000 ha termőterület 50%-a (6.550 ha) áll mezőgazdasági művelés alatt, mintegy 42%-uk (5.500 ha) erdő és fásított területek közé tartozik, és 8%-uk (1.100 ha) kivett területnek minősül. Megállapítható, hogy 2019 óta mintegy 150 ha-ral csökkent a termőterületek, azon belül 115 ha-ral a mezőgazdasági területként nyilvántartott területek nagysága.

Az átlagosnál jobb minőségi osztályokba sorolt földek az összes termőterület 22%-át teszik ki (mintegy 2.900 ha).

Az ipari és vasúti területeken a múltban folytatott, a mai viszonyokhoz képest korszerűtlen tevékenységek számos fővárosi helyszínén vezettek a felszín alatti víz, illetve a földtani közeg szennyezettségéhez.

Ennek okán a szennyezettség felszámolása a felszín alatti vízkészletek veszélyeztetése miatt is fontos feladat. Az állami kármentesítési program kezdete, 1996 óta Budapest területén több mint 240 területen vált szükséges résszletes tényfeltárás – ezen időszak alatt a kármentesítésre kötelezett területek több mint felén eredményesen elvégezték a szükséges műszaki beavatkozást is. Az illetékes Kormányhivatal 2023. áprilisi adatszolgáltatása alapján Budapest közigazgatási területén 2017 óta 22 kármentesítési eljárást zártak le eredményesen és 113 kármentesítési eljárás van folyamatban, ebből:

- 54 helyszínen az elvégzett műszaki beavatkozást követő utómonitoring zajlik;
- műszaki beavatkozás van folyamatban 38 szennyezett területen;
- tényfeltárási fázisban tart 21 terület.

2017 előtti évek adatszolgáltatásait áttekintve megállapítható, hogy 107 olyan területről van pontosabb információ, amelyen a kármentesítési eljárás lezárult.

A Fővárosi Önkormányzat érintettségébe, illetve érdekelettségi körébe tartozó/tartozott kármentesítési kötelezettséggel terhelt területek közül eredményesen befejeződött többek között az Orczy-kert kármentesítése, de jelentős, beavatkozást igénylő szennyezettséggel érintett még a Cséry-telep.
Talajállapot leírása, jellemzése

Meglepőnek tűnhet, de a közigazgatási határon belüli budapesti külterületeken számottevő kedvező termőhelyi adottságú, nagyrészt mezőgazdasági művelés alatt álló földterület található. Mivel a kedvező tulajdonságú, művelés alatt álló földterületek mezőgazdasági célú használatára – a termőföld védelméről szóló törvény (a továbbiakban: Tfvt.) alapján elsőbbséget élvez az ettől eltérő használatokkal szemben, ezért a fő célkultúzás e jelentősebb degradáció nélkül fenmarradt; átlagos vagy annál jobb minőségű termőföldek megőrzése, függetlenül a városi környezethasználattal összefüggő további talajállapoti problémáktól.

A termőföldek mezőgazdasági termelésből való kivonása és egyéb, beépítésre szánt területi működtetésének ismeretében a termőföldek folyamatos csökkenését eredményezi a város környékén, ezért az ún. zöldmezős beruházásoknak gátat kell szabni a településrendezés eszközeivel. Ugyanakkor az intenzív mezőgazdasági hasznosítás is környezeti kockázatot hordoz magában: a műtrágyák és növényvédő kemikáliák túlzott mértékű alkalmazása különböző talajdegradációs folyamatokat, a termőföldek minőségromlását eredményezik.

A főváros területén az eredeti talajok nagy részben átalakultak. A mesterséges feltöltések, valamint jelentős antropogén eredetű talajdegradációs folyamatok (a beépítettség, a különböző szilárd burkolatok nagy felületi aránya) végső soron talajpusztuláshoz vezetnek (1. ábra).

A talajállapotokkal összefüggő, a város fejlődésével erősödő probléma a közműlétesítmények fokozott jelenlétének és kiterjedésének megőrzése a főváros területén. A mesterséges feltöltések és antropogén eredetű talajdegradációs folyamatok kiterjedése a talajállapot vizsgálata eszközeivel. Úgy akkor az intenzív mezőgazdasági hasznosítás is környezeti kockázatot hordoz magában: a műtrágyák és növényvédő kemikáliák túlzott mértékű alkalmazása különböző talajdegradációs folyamatokat, a termőföldek minőségromlását eredményezik.

1. ábra: Városi talaj metszete (Illusztráció)

Budapest területén a múltban folytatott környezetszennyező ipari-gazdasági (pl. energia-, vegy-, kohó- és gépipari, katonai, vasúti) tevékenységek számos helyen vezettek a földtani közegek, illetve a felszín alatti víz szennyezettségéhez. Mivel a szennyezettségek légkör és vízkereskedelem, az emberi egészség és éghajlat közvetlen vagy közvetett hatásait okozhatják.

Mivel a nagyvárosi környezetben a talajállapotot leginkább befolyásoló tényezők a beépített és a szennyezés, a talajállapot vizsgálata kiterjed:

- Budapest mezőgazdasági földterületeinek és azok termőképességének elemzésére, valamint
- a művelés alól kivett (beépített) és különböző talajdegradációval, talajterheléssel, súlyos esetben talajszennyezéssel érintett területek vizsgálatára.

E két szélsőséges (legkevesebb és legrosszabb) állapot közötti átmenetet a ható tényezők között áthelyezik a kármentesítési eljárások folyamatát bemutatva.
A termőföldek művelési ágak és minőségi osztályok szerinti megoszlása

A Földhivatal 2023. januári adatai alapján Budapest közigazgatási területének mindössze 25%-a (kb. 13.000 ha) termőterület, melyek jelentősebb kiterjedésben a város peremterületein találhatóak. A termőterületek 50%-a (6.550 ha) áll mezőgazdasági művelés alatt, mintegy 42%-uk (5.500 ha) erdő és fásított területek közé tartozik, és 8%-uk (1.100 ha) kivett területnek minősül. Megállapítható, hogy 2019 óta mintegy 150 ha-ral csökkent a termőterületek, azon belül 115 ha-ral a mezőgazdasági területként nyilvántartott területek nagysága.

Az erdők mellett leginkább a szántó a meghatározó művelési ág, de jellemző még a legelő, gyümölcsös, rét és kert besorolás is. Kiterjedt mezőgazdasági területek a pesti (XVI., XVII., XXIII.) kerületekben jellemzőek. A budai oldalon a kisparcellás zártkert jellegű területek dominálnak. Kertes területek jelentősebb, 100 hektárt meghaladó kiterjedésben Budán a III., XI., XXII. és XXI. kerületekben, Pesten a XXI., XVI., XVII., XXIII. kerületekben találhatók. A kerületek termőterületeinek művelési ág szerinti megoszlását 2. ábra mutatja be.

Az fővárosi kivett és a művelés alatt álló termőterületek valós, aktuális beépítettségi állapotát a II.1 Épített környezet c. fejezet mutatja be. A műholdfelvételeken alapuló felszínborítás vizsgálatát (vegetációtípusok) lásd az I.1 Természeti környezet állapota fejezetben.

A város beépített területeinek 1868 és 2020 közötti változását a II.1 Épített környezet c. fejezet tartalmazza.

A Tfvt.4 eredménye átlagos minőségű termőföld az adott település azonos művelési ágú termőföldje 1 hektárra vetített aranykora értékeinek területtől súlyozott átlagának megfelelő termőföld. Az aranykora érték meghatározásához a
termőföldket becsüljárások alapján 1-8 közötti minőségi osztályba sorolják a művelési ág figyelembevételével.

3. ábra: Átlagosnál jobb minőségű termőföld eloszlása kerületenként, az erdő művelési ág kivételével (Adatforrás: Budapest Főváros Kormányhivatalának Földhivatala, 2023, január)

Budapest Főváros Kormányhivatalának Földhivatala tájékoztatása szerint Budapest termőterületeinek jelentős hányada (22%-a) átlagosnál jobb minőségű, amelyek döntő része a XVII. és XXIII. kerületekben található. Ezek zömében mezőgazdasági művelés alatt állnak, kisebb részük erdősült vagy egyéb fásított területként funkcionál. Az átlagosnál jobb minőségű termőföldel elhanyagolható hányada tartozik a legjobb, 1. osztályba, 11%-a 2., míg 21% a 3. minőségi osztályba sorolható, a többi termőföld a kevésbé értékes, 4-6. osztályok között oszlik meg.

Talajszennyezettség

Budapest talajviszonyait az elmúlt évszázadok alatt jelentősen megváltoztatta az emberi jelenlét – a város beépülése a talajok degradációját és nagyarányú pusztulását okozta, a múltban folytatott környezetszennyező ipari-gazdasági (pl. energia-, vegy-, kohó- és gépipari, katonai, ásványi nyersanyag kitermelési és vasúti) tevékenységek pedig számos helyen vezettek a földtani közeg, illetve a felszín alatti víz szennyezettségéhez. **Budapest** ugyanakkor – kiemelt iparipolitikai központi helyzetéből fakadóan – az elmúlt évszázadból hátrahagyott kéményezeti károk számát és súlyát tekintve kilégt adatokkal rendelkezik az országos átlaghoz viszonyítva. Az ismert (tényfeltárással igazolt) és a potenciális (még nem feltárt) szennyezett területek száma, kiterjedése mellett a sűrűn lakott és a vizek szempontjából is sérülékeny környezeti adottságok miatt is kiemelt jelentőségű környezeti problémaként kell kezelni. A főváros egykori külterületi részére telepített iparvállalatok ma már lakott településrészekkel körbevett, sok esetben már az eredeti tevékenység felhagyásával leromlott, alulhasznosított, ún. barnamezős területként várnak sorsukra, miközben a felszín alatt a szennyező anyagok terjedésével egyre nagyobb és nagyobb térrészek károsodását okozzák. A felszín alatti szennyezettség az emberi szem elől rejte marad, és ezért váratlanul okoz – akár más környezeti elemek keresztül is – humán egészség- és környezetkárosító hatást.

60
Ugyanakkor az egyes szennyezettségek, a(z egykori) tevékenységek, kibocsátási források vizsgálata alapján jól azonosíthatók. Jól elkülöníthetők az eltérő, jellegzetes tevékenységek szerint az egykori hulladékerakók, a földalatti tartályparkok és csővezetékek, közlekedési gőcpontok, vasúti átrakó helyek, a gépipari, járműjavító, kohászati, fémmegmunkálási, textilipari, vegyiipari, gyógyszergyártási stb. helyszínek. A feltárt környezetkárosodások magas száma ellenére Budapest átfogó felméréssel nem tekinthető teljes körűnek. Sajnos még becsülettel se rendelkezünk az esetlegesen felszín alá rejtett kockázatos anyagok mennyiségére, kiterjedésére, a feladat egészségeinek nagyságára vonatkozóan.

A talajszennyezettséggel kapcsolatos problémák az alábbi pontokban foglalhatók össze:

- a Főváros területén több olyan korábbi „szeméttelep”, feltöltött homok és kőbánya terület, beépített terület létezik, ahol a potenciális szennyezettség valószínűsíthető;
- a korábbi szennyezések területe beépített, burkolt, épületek alatti térre érint, ami megnehezíti a méréseket, vizsgálatokat, beavatkozásokat;
- a sűrű területhasználat miatt egyes szennyezőanyag csóvák összefolyik, így nehezül azok forrásának felderítését, azonosítását, utánpótlódásának megszüntetését;
- a feltételezett szennyezettségű, kármentesítést igénylő területekről nem áll rendelkezésre naprakész, térinformatikai nyilvántartás;
- minden esetben az építészeti eljárás során kellene megbízonyosodni a talaj állapotáról, és a kitermelt föld további felhasználásának, vagy kezelésének módjáról, azonban jelenleg nincs ennek szükségességét kellő erővel érvényre juttató jogszabályi követelmény (pl. a kitermelt és a területről elszállított föld, azbeszt tartalmú építőipari hulladékok stb.);
- teljes biztonsággal jelenleg csak a folyamatban lévő kármentesítési eljárással érintett ingatlanok mutathatók be a környezeti állapotértékelésben (megjegyezve, hogy az adott, kármentesítéssel érintett ingatlan teljes területét nem feltétlenül érinti a szennyezettség);
- a szennyezettség háromdimenziós kiterjedésének bemutatására nincs elérhető megoldás;
- az egyes területek kármentesítési eljárása során megállapított „D” határértéket mindig egyedi kockázatfelmérés alapján, a helyi körülmények, az aktuális területhasználat apályán állapítja meg a környezetvédelmi hatóság. Amennyiben a terület rendeltetése (tervezett területhasználata) megváltozik, előfordulhat, hogy a „D” határérték már nem felel meg az újabban tervezett használati rendeltetésnek. Ezért (is) lenne szükség valamennyi potenciálisan szennyezett és kármentesítéssel érintett terület nyilvántartására, a változtatások nyomon követhetőségére, akár az egyes ingatlanok szintjére lebontva. A hatályos jogszabály ezt csak a tartós környezeti kár ingatlanbejegyzése esetében teszi lehetővé, illetve írja elő.

A környezet kármentesítések keretében hosszú távú cél a fővárosi talajszennyezettségek kapcsolatos információk összegyűjtése, folyamatos aktualizálása, és évenkénti publikálása – lehetővé téve a változások nyomon követését és a városfejlesztés során az ismeretek felhasználását. A folyamatosan fejlődő adatbázis az alábbi – egymással sok esetben átfedésben lévő – kategóriákából épül fel:

- barnamezős területek, mint a hátrahagyott elsődleges, és az alulhasznosíthatatlanból fakadó másodlagos felülhasznosítéssel (illégalis hulladék és veszélyes hulladék lerakás, mint pl. a csepeli galvániszap-ügy) leginkább érintett és veszélyeztetett területek,
- potenciális talajszennyezettségi területek: iparágazat szerinti bontásban, következtetve a szennyeződés várható mértékére és az előforduló szennyezőanyagokra (volt ipari zónák);
Talaj

- a XX. században jellemzően hulladéklerakóként hasznosított egykori anyagnyerőhelyek,
- a kármentesítési eljárással érintett, vagy korábban érintett területek a kármentesítés fázisa szerint megkülönböztetve.

Barnamezős területek

Az egységes európai barnamező-fogalom 7 értelmében barnamezősnek tekintjük azon területeket, amelyekről elmondható, hogy:

- erőteljes – legtöbbször negatív – hatással van rájuk saját, valamint a közvetlen környezetük korábbi hasznosítása,
- felhagyottak, vagy alulhasznosítottak,
- vélt, vagy valós környezeti szennyezettséggel terheltek,
- részben, vagy egészében fejlett városi térségben találhatóak,
- újra történő használatbavételük beavatkozást igényel.

(Adatforrás: Barnamezős területek katasztere 8)

Az épített környezet alakításáról és védelméről szóló 1997. évi LXXVIII. törvény (Étv.) a barnamezős területként 9, elsősorban az ipari, kereskedelmi, közlekedési vagy honvédelmi célú felhasználást követően felhagyott vagy leromlott állapotúvá vált ingatlanokat definiálja. Az Étv. kiegészült azzal a követelményekkel, hogy az önkormányzatok (Budapesten a fővárosi és kerületi önkormányzatok is) kötelesek a területükön található barnamezős területeket lehatárolni, továbbá azok fejlesztési és újrahasznosítási lehetőségeit meghatározni 10.

Az egyéb „klasszikus” barnamezős területek között szerepelnek azok a területek, amelyek nem tartoznak az Étv. szerinti fogalom meghatározásába, de a nemzetközi értelmezésnek megfelelnek. Ilyenek például a korábbi közjöléti, recreációs használattal rendelkező, ma használaton kívüli területek (pl.: OPNI, Svábhegyi Szanatórium, Cinkotai strand, újpesti Clarisseum) vagy a városszerkezeti pozícióból
adódóan jelentős fejlesztési potenciállal rendelkező területek (pl.: MOL csepeli bázistelepe, csepeli III. (egykori Mahart-) öböl, Posta-Járműtelep, Keleti pályaudvar alulhasznosított területei).

A Fővárosi Önkormányzat 2016 óta évente elkészítteti a város barnamezős területeinek kataszterét, amely a fentiek szerint meghatározott földrészletek mellett a városszerkezeti pozíciójuk miatt jelentős belvárosi használaton kívüli ingatlanokat is tartalmazza, valamint foghíj és üres épület szerint is tovább tagol.

A Duna menti zóna déli területein, és jellemzően – a történelmi városfejlődés eredményeképp a korábbi városhatáron lévő, de ma már – az átmeneti zónában található területek hasznosítását sok esetben hátráltatja a saját, illetve közvetlen környezetének korábbi funkciójából eredő vét, vagy valós környezeti szennyezettségük.

Ezeken a használaton kívüli, vagy alulhasznosított területeken a kiépített infrastruktúrák mellett sok esetben értekes épület, részben műemlékek is pusztulnak, kedvezőtlen városképi megjelenésük teret ad az illegális hulladéklerakás mellett az invázív gyomnövények, vagy szúnyogos esetben rágcslálók terjedésének is.

A barnamezős területeken a hasznosítás akadály a gyakran máig rendezetlen tulajdonviszony-rendszer. Ezt tovább súlyosbíthatja, ha az ingatlanhoz tartozó földterület aktuális szennyezettségi állapota.

Budapest barnamezős területei a város több mint százéves iparfejlődésének lenyomatát hordozzák magukon (az ipartörténeti összefoglalót l. BKÁÉ 202112).

Potenciális talajszennyezettségű területek

A Budapesti feltételezett szennyezettségű térségeinek lehatárolására – a mindenkori fővárosi településrendezési tervek (ÁRT, FSZKT, TSZT) mintegy két évtizedes távlatban kísérletet tettek és tesznek a közreműködő városrendezési szakemberek helyismerete, szakmai tapasztalata alapján. A potenciálisan talajszennyezett területek pontosabb lehatárolása, és a bennük rejlő kockázatok feltárása jelentős kutatómunkát igényel: korabeli térképek, ortofotók elemzését, leváltári iratok feldolgozását. A potenciálisan talajszennyezett területek jelentős átfedésben vannak a barnamezős területekkel, lehatárolásuk a kármentesítési eljárások alapján folyamatosan aktualizálásra szorul.

A potenciálisan talajszennyezett területekkel kapcsolatos jelenlegi ismereteket tükrözi a 5. ábra, amely az egykori, meghatározó jellegű szennyező tevékenységek szerint ábrázolja a talajállapot szempontjából problematikus térségeket.
A legjelentősebb, potenciálisan szennyezett területek Budapesten, az egykor ott működtetett, jellemző iparágak szerint csoportosítva:

- gyógyszergyárak: Újpest, Kőbánya, Nagytétény;
- vegyipar: Kőbánya, Külső-Ferencváros (Határ út), Nagytétény;
- növényvédelészergyártás, kiszerelés, tárolás: Soroksár;
- bőripar: Újpest;
- textilipar: Óbuda, Kőbánya-Kispest, XI. Budafoki út;
- élelmiszeripar: Kőbánya, Rákospalota, Óbuda, Budafok.
- fémipar: Csepel, Soroksár, Kőbánya;
- honvédség (részben volt szovjet laktanyák): Újpest, Mátyásföld, „Vecsés”, Köérberek, XXII. Háros);
- gépjárműjavítás, járműjavítás: Kőbánya, Újpest, Józsefváros, Népsziget, Óbudaisziget;
- áruszállítás: vasúti pályaudvarok, rendezőpályaudvarok környezete (I. VIII. IX. X. XI. XIV. kerület).

A potenciális szennyező tevékenységek körét jelenleg szigorú környezetvédelmi követelmények szabályozzák, rögzítve a kockázatos anyagok felhasználásával járó engedélyköteles tevékenységeket (FAVI ENG): szennyező anyag elhelyezése, a földtani közegbe illetve a felszíni és felszín alatti vízbe történő közvetlen vagy közvetett bevezetése, amelyek közül külön kiemelendők az egységes környezethasználati engedély (EKHE) köteles tevékenységek.

A potenciális szennyezés veszélye fokozottan fennáll a veszélyes anyagok kezelése, szállítása során lehetséges havária eseményeknél (pl. üszik az olaj a Dunán, felborul a tartálykocsi, kigyullad a gyógyszerraktár, megsérül a vegyszeres vezeték stb.), ami a katasztrófavédelmehez beérkező azonnali beavatkozást igénylő kárelhárítási feladatokat jelenti. A budapesti, jelentősebb környezeti kockázattal járó veszélyes anyagokkal foglalkozó ipari üzemeket a II.4. Gazdasági tevékenység fejezet mutatja be.
Egykori anyagnyerőhelyek

A 6. ábra által bemutatott területek részletes ismertetését a Függelék tartalmazza.

Az egykori lerakók rekultivációja részben már megszakadt (pl. nagytétényi és óbudai lerakók egy része), a lebomlásai folyamat végéig mélyen maradtak be, ezért a terület rendezése nyomású és képességügyi kaphat. A legtöbb helyen azonban a rekultiváció még folyamatban van (pl. Dunapart II. hulladéklerakó, kőbányai lerakók), és van néhány terület, ahol műszaki beavatkozások még nem kezdődtek meg (pl. a jelentős szennyezettséggel érintett Cséry-telep és depóniája).
Intézkedések

Termőföldvédelem

A Tfvt. vonatkozó rendelkezései alapján termőföldet más célra igénybe venni csak kivételesen, elsősorban gyengébb minőségű termőföld igénybevételével lehet. A törvény úgy vedi az átlagosnál jobb minőségű termőföldterületeket, hogy azok igénybevételére kizárólag időlegesen, valamint helyhez kötött beruházás esetén kerülhet sor.

A talaj- és termőföldvédelem szükségességét a Fővárosi Önkormányzat is megerősítette a hatályos városfejlesztési dokumentumaiban: a Budapest 2030 hosszú távú városfejlesztési koncepció egyik célja a földelem-takarékos fejlesztések ösztönzése, azaz a további zöldmezős terjeszkedésekkel szemben elsősorban a barnamezős (akár kármentesítési kötelezettséggel terhelt) területek használatának előnyben részesítése.

A fenti fejlesztési iránnyal összhangban a barnamezős területek használatának előnyben részesítése a korábban fejlesztésre kijelölt, beépítésre szánt zöldmezős területekkel szemben) a 2015-ben elfogadott Fővárosi Településszerkezeti Terv és Fővárosi Rendezési Szabályzat készítése során felülvizsgálták a külterületi fejlesztési területeket az építési jogok figyelembevétele mellett. A jó termőhelyi adottságú, vagy ökológiai szempontból értékes területeken – a 2005-ös településszerkezeti tervhez képest – összességgében közel 200 hektárral csökkent a beépítésre szánt területek nagysága. Új beépítésre szánt területek jellemzően a már műszakilag igénybe vett barnamezős területek igénybevételével (pl. vasúti területek), és az elővárosi zónában munkahelyteremtés céljából (pl. XVII., M0 menti területek) lettek kijelölve, de továbbra is jelentős az igény a zöldmezős beruházások iránt.

Barnamezős területek

A rendszerváltás utáni fejlesztések a zöldmezős területeket célozták meg, így a város indokolatlan módon terjeszkedett és létrejött a mai napig indokolatlan módon terjeszkedett és létrejött a mai napig

A rozsdázövetei akcióterületek létrehozásával kapcsolatos törvény bevezette a „rozsdázövetei akcióterület” fogalmát, ami olyan területeket jelöli, amelyek a Városi Önkormányzat és a szerkezeti szempontból szükséges, hiányzó funkciók városszövete integritáshoz a meglévő infrastruktúra felhasználásával. Ez Budapest fenntartható térbeli rendszerének alapja, a városfejlesztés célterületének magja.

A 2021-2027-es európai uniós támogatási időszakra szóló Integrált Településfejlesztési Stratégia (ITS) önálló beavatkozási területben foglalkozik a barnamező területek hasznosításával. A Fővárosi Önkormányzat a barnamezős területek funkcióváltozásának elősegítésére elkötelezett a barnamezős területek kataszterét, amely az egyes területek városépítészeti jellemzőit, az esetleges értékesítésüket kapcsolatos információkat, továbbá a belvárosi használaton kívüli ingatlankétfajta telkek, üres épületek) is
tartalmazza, összesen mintegy 3.000 ha területet lefedve. Folyamatan van az adatbázis közzétételét biztosító interaktív honlap kialakítása. A barnamezős területek kataszterének, valamint a kármentesítési kötelezettség gell terhelt helyszínek adatbázisainak rendszeres aktualizálása és közzététele a környezeti állapotértékelés honlapján is indokolt, ezzel is elősegítve rehabilitációra szoruló egyes területek megújítását, valamint a környéken élők tájékoztatását.

Környezeti kármentesítés, rekvítváció, rehabilitáció

Minden olyan műszaki, gazdasági és igazgatási tevékenységet, amely a veszélyeztetett, szennyezett, károsodott felszín alatti víz, illetőleg földtani közeg 21 megismerésére, a szennyezettség, károsodás és a kockázat mértékének csökkentésére, és a szennyezettség monitoringjára irányul, összefoglaló néven kármentesítésnek nevezzünk.22

A kármentesítéssel kapcsolatos szabályokat, összefoglaló ismereteket a BKÁÉ 202123 tartalmazza.

Budapest területén 1996 óta több mint 240 területen vált szükségessé részletes tényfeltárás, ezen időszak alatt a kármentesítésre kötelezett területeken több, mint felénél eredményesen elvégezték a szükséges műszaki beavatkozást is. Az illetékes Kormányhivatal 2023. áprilisi adatszolgáltatása alapján a főváros közigazgatási területén 2017 óta 22 db kármentesítési eljárást zártak le eredményesen és 113 db kármentesítési eljárás van folyamatban, ebből:

- 54 helyszínen az elvégzett műszaki beavatkozást követő utómonitoring zajlik;
- műszaki beavatkozás folyamatban van 38 szennyezett területen;
- tényfeltárási fázisban tart 21 terület.

Az elmúlt évek adatszolgáltatásait áttekintve jelenleg 107 olyan területről van pontosabb információ, amelyen az elmúlt években a kármentesítési eljárás sikeresen lezárásra került.

Fenti területek elhelyezkedését a 7. ábra szemléltei. A legtöbb kármentesítési eljárással érintett terület a város egykori ipari zónájában található, a IX., X., XI., XIII., XIV. és XXII. kerületben.

7. ábra: Lezárt és folyamatban lévő kármentesítési eljárások 2023. áprilisi adatok alapján (Adatforrás: PVMKH)
Az utóbbi évek kármentesítési eljárásainak alakulását a 8. ábra szemlélteti.

![8. ábra: Regisztrált, lezárt és folyamatban lévő kármentesítési eljárások számnának alakulása 2017-2023. között (Adatforrás: PVMKH)](image)

Az aktuális kármentesítési eljárások adatai alapján a talajszennyezések legnagyobb hányadában az alifás szénhidrogének (TPH) a domináns szennyezőanyagok, de meghatározóak a benzol és alkilbenzolok (BTEX), a poliaromás szénhidrogének (PAH), valamint a fémek és felfémek előfordulása is. Talajvizek esetében szintén az alifás szénhidrogének (TPH), valamint benzol és alkilbenzolok (BTEX) a jellemző szennyezőanyagok, de itt is előfordulnak fémek, poliaromás szénhidrogének (PAH), valamint halogénezett aromás szénhidrogének is (lásd 9. ábra).

A szennyezett talajok kármentesítési technológiája túlnyomó részét talajcserével (kitermelés, elszállítás és deponálás – ex situ eljárással) történt, de helyszínen végrehajtott biológiai és fizikai-kémiai eljárásokat is alkalmaztak (pl. átlevegőztetés, talajmosás).

A szennyezett talajok kármentesítési technológiája túlnyomó részét talajcserével (kitermelés, elszállítás és deponálás – ex situ eljárással) történt, de helyszínen végrehajtott biológiai és fizikai-kémiai eljárásokat is alkalmaztak (pl. átlevegőztetés, talajmosás).

A Kormányhivatal adatszolgáltatása alapján jelenleg 11 olyan kármentesítési eljárással érintett helyszín található Budapesten, amely részben, vagy egészében a Fővárosi Önkormányzat, vagy érdekelt ségei tulajdonában áll. Ebből 5 helyszínen a műszaki beavatkozás befejeződött, utómonitoring zajlik, 4 helyszínen még műszaki beavatkozás, 2 területen pedig részletes tényfeltárás van folyamatban.
A legjelentősebb kármentesítési kötelezettséggel terhelt terület a Cséry-telep (Magyar Nemzeti Vagyónkezelő Zrt. és Budapest Főváros Önkormányzata a kötelezett). Összességében a jelenleg zajló budapesti kármentesítési eljárások 9%-ában érintett a Fővárosi Önkormányzat (118 db közül 11-ért).

A Fővárosi Önkormányzat érdekeltégébe tartozó részletes kármentesítési adatokat a Függelék 4. táblázata tartalmazza. A jelentős szennyezettségű budapesti területek helyzetében az elmúlt éven nem történt érdemi előrelépés, azokkal kapcsolatos információkat a BKAÉ 2021/24 tartalmazza.

További javasolt feladatok

- **Termőföldek mennyiségi (és minőségi) védelme** – településrendezési eszközökön (TSZT, FRSZ) keresztül, a beépítésre nem szánt területek megőrzésével.

- **Barnamezős területek előnyben részesítése** a zöldmezős fejlesztések helyett – a termőföld védelme és a szennyezettségek felszámolása szempontjából is kedvezőbb állapotot eredményez. A fővárosi településrendezési eszközök felülvizsgálata; a barnamezős területek zöldfelületi célú hasznosításának előnyben részesítése.

- A fővárosi barnamezős terület kataszter, a potenciális talajszenyezett, valamint a kármentesítési kötelezettséggel terhelt, vagy sikeresen kármentesített helyszínek adatbázisainak rendszeres aktualizálása és közzététel a környezeti állapotértékelés honlapján is indokolt. A potenciális talajszenyezett területek felderítése során nagy segítséget jelenthet a kerületi önkormányzatok részletes helyismerete, helyi tapasztalata.

- Átmeneti zöldfelületi hasznosítások támogatása a mérsékelt szennyezettségű területeken – természetes regenerálódás elősegítése (fitoremediáció).

- **Szennyezettségek felszámolása, kármentesítések, rekultivációs munkák folytatása.** Különösen a Fővárosi Önkormányzat felelősségi körébe tartozó Cséry-telep, és további hét szennyezett terület részletes tényfeltárásának, vagy megtisztításának előkészítése, illetve elvégzése, az ezzel kapcsolatos hiteles információk közzététele.

- A kármentesítés tényét rögzíteni kellene a közhiteles ingatlan nyilvántartásban. A tulajdoni lapon láthatóvá kell tenni, ha történt, vagy folyamatban van az eljárás, és azt is, hogy milyen területihasználatra, funkcióra került meghatározásra a tervezési, azaz a (D) kármentesítési célállapot határérték.
Függelék

F.1. A termőföldek művelési ágak és minőségi osztályok szerinti megoszlása

F.2. Potenciális talajszennyezettségű területek

11. ábra: Potenciálisan talajszennyezett területek nagysága (ha) kerületi bontásban
12. ábra: Budapesti kerületek potenciálisan talajszennyezett területeinek aránya a közigazgatási területük arányában (%)

F.3. Egykori anyagnyerőhelyek

<table>
<thead>
<tr>
<th>Sor-szám</th>
<th>Megnevezés</th>
<th>Cím</th>
<th>Rekultiváció fázisa, Megjegyzés</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Csillaghegyi bánya</td>
<td>III., Ürömi út</td>
<td>rekultivált, kármentesítéssel, monitoringgal nem érintett</td>
</tr>
<tr>
<td>2.</td>
<td>Solymár I. dolomitbánya</td>
<td>III., Solymárvölgyi út</td>
<td>feltöltés nem ismert, rekultivációt Igényel, kármentesítéssel, monitoringgal nem érintett</td>
</tr>
<tr>
<td>3.</td>
<td>Bécsi út III. sz. (Drasche) agyagbánya</td>
<td>III., Testvérhegyi út</td>
<td>feltöltés nem ismert, rekultivációt Igényel, kármentesítéssel, monitoringgal nem érintett</td>
</tr>
<tr>
<td>4.</td>
<td>Bécsi u. II. sz. (Bohn) agyagbánya</td>
<td>III., Táborhegyi út</td>
<td>részben rekultivált, feltöltés anyaga nem ismert, kármentesítéssel, monitoringgal nem érintett</td>
</tr>
<tr>
<td>5.</td>
<td>Bécsi u. I. sz. (Újlaki) agyagbánya</td>
<td>III, Kiscelli utca</td>
<td>rekultivált (golfpálya)</td>
</tr>
<tr>
<td>6.</td>
<td>Akna utcai hulladéklakó</td>
<td>X., Akna utca</td>
<td>kármentesítési utómonitoringozás folyik, rekultiváció Igényel</td>
</tr>
<tr>
<td>7.</td>
<td>Gergely utcai hulladéklakó</td>
<td>X., Gergely utca</td>
<td>kármentesítés folyamatban, monitoringozás alatt</td>
</tr>
<tr>
<td>8.</td>
<td>Sarjú úti söderbánya</td>
<td>XVI., Sarjú út</td>
<td>feltöltés nem ismert, rekultivációt Igényel, kármentesítéssel, monitoringgal nem érintett</td>
</tr>
<tr>
<td>9.</td>
<td>Csoyaj bánya (homok, kavics)</td>
<td>XVI., Csoyaj utca</td>
<td>feltöltés anyaga nem ismert, rekultivációt Igényel, monitoringgal nem érintett</td>
</tr>
<tr>
<td>10.</td>
<td>Ostoros úti homokbánya</td>
<td>XVI., Ostoros út</td>
<td>rekultivált, kármentesítéssel, monitoringgal nem érintett</td>
</tr>
</tbody>
</table>

1. táblázat: Egykori anyagnyerőhelyek, lerakók
<table>
<thead>
<tr>
<th>Sorszám</th>
<th>Megnevezés</th>
<th>Cím</th>
<th>Rekultiváció fázisa, Megjegyzés</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.</td>
<td>Naplás úti hulladéklérakó (nyugati)</td>
<td>XVII., Naplás út</td>
<td>kármentesítési eljárás alatt, beavatkozás előtt áll</td>
</tr>
<tr>
<td>12.</td>
<td>Naplás úti hulladéklérakó (keleti)</td>
<td>XVII., Naplás út</td>
<td>kármentesítési eljárás alatt, beavatkozás előtt áll</td>
</tr>
<tr>
<td>13.</td>
<td>Ferihegyi kavicsbánya</td>
<td>XVIII., Felsőbabád utca</td>
<td>hulladékkel feltöltött (anyaga nem ismert), rekultivációt igényel, kármentesítéssel, monitoringgal nem érintett</td>
</tr>
<tr>
<td>14.</td>
<td>Haladás utcai agyagbányaüreg</td>
<td>XVIII., Haladás utca</td>
<td>feltöltés anyaga nem ismert (hulladékok), rekultivációt igényel, kármentesítéssel, monitoringgal nem érintett</td>
</tr>
<tr>
<td>15.</td>
<td>Cséry-telep</td>
<td>XVIII., Ipacsfa utca</td>
<td>kommunális hulladékkel feltöltött, kármentesítés előtt áll, monitoringozás folyik</td>
</tr>
<tr>
<td>16.</td>
<td>Helsinki út melletti agyagbánya</td>
<td>XX., Zodony utca</td>
<td>feltöltés anyaga nem ismert, rekultivációt igényel, kármentesítéssel, monitoringgal nem érintett</td>
</tr>
<tr>
<td>17.</td>
<td>Észak-Csepeli hulladéklérakó</td>
<td>XXI., Nagy-Duna sor</td>
<td>szennyvíziszap lerakó, kármentesítés előtt</td>
</tr>
<tr>
<td>18.</td>
<td>Egykori III-as öböl</td>
<td>XXI., Szikratáviró u.</td>
<td>inerhulladékkal feltöltött, rekultivációt igényel, kármentesítéssel, monitoringgal nem érintett</td>
</tr>
<tr>
<td>19.</td>
<td>Balatoni úti hulladéklérakó</td>
<td>XXII., Balatoni út</td>
<td>rekultivált (golfpálya)</td>
</tr>
<tr>
<td>20.</td>
<td>Tátra utcai hulladéklérakó</td>
<td>XXII., Tátra utca</td>
<td>kármentesítés vizsgálati fázisban, rekultivációt igényel (rekultivációs határozat érinti), monitoring nem folyik</td>
</tr>
<tr>
<td>21.</td>
<td>Dunapart II. hulladéklérakó</td>
<td>XXII., Dunapart utca</td>
<td>kommunális hulladékkel feltöltött, kármentesítés folyamatban, monitoringozás folyik</td>
</tr>
<tr>
<td>22.</td>
<td>Belső Major-dűlő, III. sz. bányaüreg</td>
<td>XXIII., Belső Major-dűlő</td>
<td>rekultivált, kármentesítéssel, monitoringgal nem érintett</td>
</tr>
<tr>
<td>23.</td>
<td>Péteri Major II. sz. bányaüreg</td>
<td>XXIII., Péteri Major</td>
<td>feltöltés anyaga nem ismert, rekultivációt igényel, kármentesítéssel, monitoringgal nem érintett</td>
</tr>
</tbody>
</table>
F.4. Kármentesítéssel érintett területek

<table>
<thead>
<tr>
<th>Kötelezett neve</th>
<th>Szennyezett terület megnézése</th>
<th>Szennyezett terület címe</th>
<th>Szennyezőanyagok</th>
<th>Kármentesítés jelenlegi fázisa</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FTSZV Kft.</td>
<td>telephely</td>
<td>XV. ker. 88863/5 hrsz.</td>
<td>alifás szénhidrogének, policiklikus aromás szénhidrogének, fémek és félőmék (azén, bór, bárium, kadmium, réz, higany, molibdén, szelen, cink)</td>
<td>kármentesítés befejezettnél nyilvánítva</td>
</tr>
<tr>
<td>Budapesti Közlekedési Zrt.</td>
<td>autóbusz-garázs</td>
<td>XI. ker. Hamzsabági út 55-57. (4568/222 hrsz.)</td>
<td>alifás szénhidrogének, benzol, toluol, etilbenzol, xilolok, egyéb alkilbenzolok, policiklikus aromás szénhidrogének</td>
<td>kármentesítés befejezettnél nyilvánítva</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bosnyai és Család Zrt., BKM Zrt.</td>
<td>termesztő telep</td>
<td>X. ker. Keresztúri út 130. (042802/3, 042802/5 hsz.)</td>
<td>alifás szénhidrogének, policiklikus aromás szénhidrogének etilbenzol, xilolok, egyéb alkilbenzolok</td>
<td>kármentesítési monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kőbányai Vagyon ezelő Zrt., BKM Zrt.</td>
<td>Gergely u. (bezárhatuladékelrakó)</td>
<td>X. ker. Gergely u. (42137/34, 42137/38 hsz.)</td>
<td>szervetlen vegyületek (szulfát, foszfát, ammónium, nitrát, klorid, réz, arzén, fémek és félőmék (bór, króm, molibdén, nikkel, ólom, szelen)</td>
<td>kármentesítési monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magyar Nemzeti Vagyon ezelő Zrt., Budapest Főváros Önk.</td>
<td>Csérytelep (bezárhatuladékelrakó)</td>
<td>XVIII. ker. Ipacsfa utca 14. (140018/2 hsz.)</td>
<td>alifás szénhidrogének, benzol, toluol, etilbenzol, xilolok, egyéb alkilbenzolok, policiklikus aromás szénhidrogének, azüt, arzén</td>
<td>kármentesítési monitoring</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fővárosi Csatornázi Művek Zrt., Magyar Nemzeti Vagyon ezelő Zrt.</td>
<td>FCSM Csepeli larakó</td>
<td>XXI. ker. Hrsz.: 210001, 210005/1 és 210007/4 hsz.</td>
<td>alifás szénhidrogének, benzol, toluol, etilbenzol, xilolok, egyéb alkilbenzolok, fémek és félőmék, általános vízkémiai komponensek</td>
<td>kármentesítési monitoring (eljáró hatóság: Bács-Kiskun Vármegyei Kormányhivatal)</td>
</tr>
</tbody>
</table>

2. táblázat: A Fővárosi Önkormányzat érdekeltségi körébe tartozó kármentesítési eljárással érintett területek 2023. április (Adatforrás: PVMKH)
<table>
<thead>
<tr>
<th>Kötelezett neve</th>
<th>Szennyezett terület megnevezése</th>
<th>Szennyezett terület címe</th>
<th>Szennyőanyagok</th>
<th>Kármentesítés jelenlegi fázisa</th>
</tr>
</thead>
<tbody>
<tr>
<td>BKM Zrt.</td>
<td>telephely II. ker. Erőd utca 5. (13754 hrsz. és környezete)</td>
<td>alifás szénhidrogének, foszfát, klorid, nátrium, ammónium</td>
<td>kármentesítési monitoring</td>
<td></td>
</tr>
<tr>
<td>Budapesti Közlekedési Zrt.</td>
<td>telephely III. ker. Pomzáti út 1-5. (19944/4, 19944/3 hrsz.)</td>
<td>alifás szénhidrogének, benzol, toluol, etilbenzol, xilolok, egyéb alkilbenzolok</td>
<td>beavatkozás és kármentesítési monitoring</td>
<td></td>
</tr>
<tr>
<td>Magyar Nemzeti Vagyonkezelő Zrt., Budapest Főváros Önk.</td>
<td>telephely Csérytelep (bezárt hulladéklerakó) XVIII. ker. Ipacsfa u. 19. (140018/3 hrsz.-ú telephely és környezete, összesen kb. 600 ingatlan érint)</td>
<td>alifás szénhidrogének, benzol, toluol, etilbenzol, xilolok, egyéb alkilbenzolok, polciklikus aromás szénhidrogének, halogénezett alifás és aromás szénhidrogének, fémek és félfémemek, szervetlen vegyületek</td>
<td>beavatkozás (jelenleg nem történik) és kármentesítési monitoring</td>
<td></td>
</tr>
<tr>
<td>BKM Zrt. (kötelezett megállapítása folyamatban)</td>
<td>Naplás úti keleti bánya területe és környezete (bezárt hulladéklerakó) XVII. ker. Naplás út (138529-138531,138532/2-6, 138533, 138534/1-15, 138534/17-29,138537/1-12,138538/1-12,138539 és 138541/1 hrsz.)</td>
<td>alifás szénhidrogének, benzol, toluol, etilbenzol, xilolok, egyéb alkilbenzolok, klorbenzol, fenolok, halogénezett alifás szénhidrogének (dikloretilén, dikloretánok), fémek és félfémemek (azrén, nikkel, bárium, bór, kobalt, szelén, molibdén, olom), tetrahidro-furán</td>
<td>eljárás folyamatban</td>
<td></td>
</tr>
</tbody>
</table>

Műszaki beavatkozás folyamatban

<p>| BKM Zrt. | telephely II. ker. Erőd utca 5. (13754 hrsz. és környezete) | alifás szénhidrogének, foszfát, klorid, nátrium, ammónium | kármentesítési monitoring |
| Budapesti Közlekedési Zrt. | telephely III. ker. Pomzáti út 1-5. (19944/4, 19944/3 hrsz.) | alifás szénhidrogének, benzol, toluol, etilbenzol, xilolok, egyéb alkilbenzolok | beavatkozás és kármentesítési monitoring |
| Magyar Nemzeti Vagyonkezelő Zrt., Budapest Főváros Önk. | telephely Csérytelep (bezárt hulladéklerakó) XVIII. ker. Ipacsfa u. 19. (140018/3 hrsz.-ú telephely és környezete, összesen kb. 600 ingatlan érint) | alifás szénhidrogének, benzol, toluol, etilbenzol, xilolok, egyéb alkilbenzolok, polciklikus aromás szénhidrogének, halogénezett alifás és aromás szénhidrogének, fémek és félfémemek, szervetlen vegyületek | beavatkozás (jelenleg nem történik) és kármentesítési monitoring |
| BKM Zrt. (kötelezett megállapítása folyamatban) | Naplás úti keleti bánya területe és környezete (bezárt hulladéklerakó) XVII. ker. Naplás út (138529-138531,138532/2-6, 138533, 138534/1-15, 138534/17-29,138537/1-12,138538/1-12,138539 és 138541/1 hrsz.) | alifás szénhidrogének, benzol, toluol, etilbenzol, xilolok, egyéb alkilbenzolok, klorbenzol, fenolok, halogénezett alifás szénhidrogének (dikloretilén, dikloretánok), fémek és félfémemek (azrén, nikkel, bárium, bór, kobalt, szelén, molibdén, olom), tetrahidro-furán | eljárás folyamatban |</p>
<table>
<thead>
<tr>
<th>Kötelezett neve</th>
<th>Szennyezett terület megnevezése</th>
<th>Szennyezett terület címe</th>
<th>Szennyezőanyagok</th>
</tr>
</thead>
<tbody>
<tr>
<td>Révai Nyomda Kft. "f.a."</td>
<td>volt Révai nyomda</td>
<td>III.ker. Kunigunda útja 68. (19810/1 hrsz.)</td>
<td>alifás szénhidrogének, nikkel</td>
</tr>
<tr>
<td>Robert Bosch Kft.</td>
<td>Bosch Budapest Innovation Campus területe (egykori baramezős terület)</td>
<td>X.ker. Győmrői út 90. (42274/3, 42274/7 és 42274/8 hrsz.)</td>
<td>alifás szénhidrogének, benzol, toluol, etil-benzol, xilolok, egyéb alkilbenzolok, policiklikus aromás szénhidrogének, halogénezett alifás szénhidrogének, nikkel, arzén, ólom, réz</td>
</tr>
<tr>
<td>Budapesti Közlekedési Zrt.</td>
<td>autóbusz-garázs</td>
<td>XI.ker. Hamzsabégi út 55-57. (4568/222 hrsz.)</td>
<td>alifás szénhidrogének, benzol, toluol, etil-benzol, xilolok, egyéb alkilbenzolok, policiklikus aromás szénhidrogének</td>
</tr>
<tr>
<td>Zahara Park Kft.</td>
<td>Danubio Lakópark (FOKA-öböl)</td>
<td>XIII.ker. 25880/3 hrsz.</td>
<td>alifás szénhidrogének, policiklikus aromás szénhidrogének, fémek és félfémek</td>
</tr>
<tr>
<td>Városliget Ingatlanfejlesztő Zrt.</td>
<td>Városliget</td>
<td>XIV.ker. 29732/11 hrsz.</td>
<td>policiklikus aromás szénhidrogének, arzén</td>
</tr>
</tbody>
</table>

3. táblázat: Utóbbit 1 évben befejezett kármentesítési eljárással érintett területek, 2023. április
(Adatforrás: PVMKH)
<table>
<thead>
<tr>
<th>Adatszolgáltató név</th>
<th>Szennyezett terület megnevezése</th>
<th>Szennyezett</th>
<th>Adatszolgáltató név</th>
</tr>
</thead>
<tbody>
<tr>
<td>Magyar Nemzeti Vagyonkezelő Zrt.</td>
<td>XVI. ker. Légcsavar utca</td>
<td>alifás szénhidrogén, benzol, etil-benzol, xilolok, egyéb alkilbenzolok</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(103772/15 hrsz. és a 103772/51 hrsz.)</td>
<td>alifás szénhidrogén, benzol, toluol, etil-benzol, xilolok, egyéb alkilbenzolok, policiklikus aromás szénhidrogén, fenolok, cianid, fémek és félfémek, szulfát, foszfát, nitrát, ammónium, piridin</td>
<td></td>
</tr>
<tr>
<td>Örszágos Vízügyi Főigazgatóság</td>
<td>XXII. ker. Budafoki barlanglakások térsége</td>
<td>halogénezett alifás szénhidrogén</td>
<td></td>
</tr>
<tr>
<td>Knorr-Bremse Vasúti Jármű Rendszerek Hungária Kft.</td>
<td>telephely XXIII. ker. Helsinki út 121-123. (184005/3 hrsz.), és Helsinki út 105. (184088/1 hrsz.)</td>
<td>halogénezett alifás szénhidrogén</td>
<td></td>
</tr>
</tbody>
</table>
A fejezet hivatkozásai

1. A termőföld védelméről szóló 2007. évi CXXIX. törvény 11. § (1) bekezdés
4. A termőföld védelméről szóló 2007. évi CXXIX. törvény 2. § 1. pontja
5. Előzetes tájékoztatás a fővárosi településszerkezeti terv és a rendezési szabályzat felülvizsgálatához (Ügyiratszám: 10.019/2/2015.)
6. 219/2004. (VII. 21.) Korm. rendelet 33. § (2) bekezdése
7. A megfogalmazás a CABERNET (Concerted Action on Brownfield and Economic Regeneration Network) szervezet nevéhez fűződik
8. 76/2016. (I.27.) Főv. Kgy. határozat „Barnamezős területek katasztere”
10. 1997. évi LXXVIII. törvény 8. § (7)
13. 219/2004. (VII. 21.) Korm. rendelet 35. § (1) bekezdés a) pontja szerinti engedélyköteles tevékenységek
15. A termőföld védelméről szóló 2007. évi CXXIX. törvény 11. § (1) bekezdése
17. 2020. évi LXXVII. törvény a rozsdáveszeti akcióterületek létrehozásához szükséges intézkedésekről
18. 9/2020-10-15/FKT határozat alapján
20. A Fővárosi Közgyűlés a 76/2016. (I.27.) Főv. Kgy. jóváhagyta a Barnamezős területek katasztere című dokumentumot, továbbá felkérte a Főpolgármestert, hogy gondoskodjon a kataszter adatbázisának frissítéséről, és egy online felület létrehozásával annak további fejlesztéséről
I.4. Vizek

Felszíni vizek minősége

A vízfolyások vízminőségének elemzésénél általánosságban problémát okoz, hogy a kapott adatszolgáltatásokban egymástól eltérő adatok szerepelnek, illetve jelentős az adathiány, ami az értékelés bizonytalanságát növeli. A Víz Keretirányelv – mint a közösségi cselekvés kereteinek meghatározásáért felelős vízpolitikai EU-irányelv – magyar minősítési rendszerében szerint a fővárosi felszíni víztestek ökológiai állapota/potenciálja mérséklődik, gyenye, vagy rossz; kémiai állapota jó, vagy adathiány miatt nem állapítható meg.

Vízbázisok védelme

Vizek állapotának leírása, jellemzése

Magyarország vizeinek típusai

A Víz Keretirányelv (VKI) a vízgyűjtő-gazdálkodási tervek (VGT) legkisebb egységeiként víztesteket határoz meg. A VKI alapján a 10 km²-nél nagyobb vízgyűjtővel rendelkező vízfolyások vízfolyás víztestként, az 50 hektárnál nagyobb természetes tavak és tócsortanok pedig állóvíz víztestként kerültek kijelölésre. A VKI meghatározása szerint:

• "felszíni víztest" a felszíni víznek egy olyan különálló és jelentős elemét jelenti, amilyen egy tó, egy tározó, egy vízfolyás, folyó vagy csatorna, illetve ezeknek egy része;
• "felszíni víz" a szárazföldi vizek, kivéve a felszín alatti vízet;
• "felszín alatti víztest" a felszín alatti víz térben lehatárolt része egy vagy több víztartó képződményen belül;
• "felszín alatti víz" minden olyan víz, ami a föld felszíne alatt a telített zónában helyezkedik el, és közvetlen kapcsolatban van a földfelszínnel vagy az altalajjal;

Felszíni vizek típusai

A VKI alapján a következő víztest kategóriák kerültek kijelölésre:

• természetes felszíni vizek: vízfolyás és állóvíz víztestek;
• erősen módosított víztestek: olyan természetes eredetű felszíni vizek, amelyek az emberi fizikai tevékenység eredményeként jelentősen megváltoztak;
• természetes felszíni vizekhez hasonló mesterséges eredetű víztestek;
• felszín alatti víztestek.

A Duna vízgyűjtő-gazdálkodási tervezésében Magyarország területe négy részvízgyűjtőre, azok pedig további tervezési alegységekre osztottak, amit az 1. ábra mutat be.

1. ábra: Vízgyűjtő-gazdálkodási tervezés egységeinek felépítése (Forrás: Vízgyűjtő-gazdálkodási terv felülvizsgálata)
Az összesen nyilvántartott 18.373 magyarországi vízfolyásból a VGT3 szerint 886 vízfolyás víztest került lehatárolásra, amelyek közül 277 a természetes, 463 az erősen módosított és 146 a mesterséges víztestek közé sorolt.

Az állóvizek tekintetében összesen 186 állóvíz víztestet jelölték ki a Magyarországon nyilvántartott 9.123 tó és vizes területből („wetland”). A kijelölt állóvíz víztestek közül 33 a természetes, 123 az erősen módosított és 30 a mesterséges kategóriába került.

Felszín alatti vizek típusai

A VKI a felszín alatti vizekkel kapcsolatban a következő fogalmakat vezette be:

- **„felszín alatti víz”:** minden olyan víz, ami a föld felszíne alatt található, és közvetlen kapcsolatban van a földfelszínnel vagy az alattalajjal;
- **„felszín alatti víztest”:** az egy víztoron vagy víztorakon belül lehatárolható rész;
- **„vízadó vagy vízadó réteg”:** olyan felszín alatti közetréteget, vagy közetrétegeket, illetve más földtani képződményeket jelent, amelyek porozitása és áteresztő képessége lehetővé teszi a felszín alatti víz jelentős áramerősségét, vagy jelentős mennyiségű felszín alatti víz kitermelését.

A VGT-ben a felszín alatti vizek esetében geológiai szempontból a következő vízföldtani főtípusokat alkalmazták:

- medencébeli, uralkodóan porózus vízadók a törmelékes üledékes kőzetekben;
- karszt (csak a főkarsztba, azaz a triász korú dolomit és mészkő közé sorolható) a karbonátos kőzetekben;
- vízadók a hegyvidéki területek vegyes összetételű kőzeteiben (kivéve a főkarszt).

A 185 lehatárolt magyarországi felszín alatti víztestből 55 sekély porózus, 48 porózus, 8 porózus és hasadékos termál, 29 karszt (amiből 14 hideg karszt és 15 termál karszt), 22 sekély hegyvidéki és 23 hegyvidéki víztest.

Budapest vízrajza

Felszín alatti vizek

Budapest felszín alatti vízai a Duna részvízgyűjtőn belül az 1-9 jelű Közép-Duna és az 1-10 jelű Duna-völgyi főcsatorna alegységekbe tartoznak (amelyek lehatárolását a Bevezetés 1. ábra szemlélteti). A budapesti kisvízfolyások végső befogadója a Duna.

A domborzati adottságok miatt Budán jóval több kisvízfolyás található, mint a pesti oldalon, azonban ezeknek a vízgyűjtő területe nem minden esetben éri el a VKI-ben meghatározott 10 km²-t, így nem lettek vízfolyás víztestként kijelölve a VGT-ben.

A Budai-hegységből gyorsan összegyűlő nagy mennyiségű csapadékvíz hamar utat tör megállni, míg a pesti oldalon a vízek lefolyása – a közel szorosan épült – jóval lassabb. A főváros egyes állandó és időszakos vízfolyásai, mint pl. az óbudai Barátpatak, általában a tavasz hőolvasás során és nagyobb esőzések alkalmával vezetnek el nagyobb mennyiségű csapadékvízet.

Budapest közigazgatási területén a jelentősebb vízfolyásokat – figyelembe véve a közigazgatási határon belüli, nyilvántartási hosszút, a kilépő vízhozamot (Q1%) és a vízgyűjtő terület nagyságát – a Függelék 2. táblázata tartalmazza (forrás: FCSM Zrt., 2018): 2

Kijelölt felszín alatti víztestek

Magyarország 2022 áprilisában elfogadott és felülvizsgált 2021. évi vízgyűjtő-gazdálkodási tervében Budapest területén a 2. ábra szerinti felszín alatti víztesteket

Függelék F.1.
határozták meg – a 2016-ban közzétett korábbi vízgyűjtő-gazdálkodási tervező (VGT2) képest a főváros közigazgatási területére vonatkozóan az alábbi változások következtek be: a Barát-patak természetes, állandó időszakosságú víztest helyett erősen módosított, időszakos víztestként, a Nagy-Ördög-árok felső állandó időszakosságú víztest helyett időszakos víztestként, valamint a Szilas-patak és vízgyűjtője természetes víztest helyett erősen módosított víztestként szerepel.

2. ábra: Budapest felszíni víztestei 2022-ben elfogadott VGT3 alapján (Forrás: www.euvki.hu)

Kisvízfolyások revitalizációja

Budapest kisvízfolyásai jellemzően a főváros és az agglomeráció felszíni vízelvezetését biztosítják. Ezen vízfolyások szinte mindegyike erősen módosított, illetve mesterséges jellegű, ahol a vízrendezési beavatkozások háttérbe szorították az ökológiai szempontokat, ezzel veszélyeztette a biológiai diverzitást, továbbá romboló hatást gyakorolhatnak a tájégyiségekre. Az elmúlt évtizedekben elkezdődött a szemléletváltás, így több fővárosi vízfolyás újra természetessé, élővé alakítása (revitalizációja) is előtérbe került, ugyanakkor eddig csak részeredmények születtek; a teljes revitalizációs beavatkozások még váratnak magukra. Ennek oká főként – főleg a budai helyeken (például: Ördög-árok) – a beavatkozás, a rendezéshez szükséges területek hiányán túl a – leginkább egy tervezett létesítmény felett és alatt lévő érintettek sokszor egymáson ellentmondó álláspontra miatt – szükséges támogatottság hiánya, és csak másodszorban a pénzügyi források hiánya. Továbbá megjegyzendő, hogy az utóbbi években egyre inkább jellemző szélsőséges időjárási következmények, többszöröken alakulnak ki villámárvizek, amelyek gyakran előtérbe kerülnek, ahol a beépítések megöredekedése miatt még nagyobb problémát jelent a csapadékvizek megfelelő elvezetése.

A Rákos-patak revitalizációjának igénye az utóbbi húsz-huszonöt éven többször megfogalmazódott. A korábbi revitalizációs résztervek tapasztalatai alapján a Fővárosi Önkormányzat koordinálása és az érintett kerületi önkormányzatok (XIII., XIV., X., XVII.) aktiv közreműködésével elkészült a Rákos-patak és környezetének revitalizáció - Megvalósíthatósági tanulmány és mesterterv, amely a patak
hidrológiai, ökológiai és rekreációs szempontú fejlesztésére, rendezésére tartalmaz javaslatokat. A terv elfogadása óta a Rákos-patak egyes rövid szakaszain (pl. XIV. Pascal mellett, Mogyoródi út – Egressy út) a revitalizáció megtörtént.

A Rákos-patak tervezésénél szerzett kedvező tapasztalatok alapján a Fővárosi Önkormányzat kezdeményezte a – sok tekintetben hasonló adottságú, ugyanakkor jelentős fejlesztési lehetőségekkel bíró – Szilas-patak komplek felszínes megalkapási javaslatokat, mivel a patak természeti lelőhelyének helyreállítását, a pataknak élőhelyek megőrzését és a közöttük lévő ökológiai kapcsolatok javítását, valamint a vízpart menti gyalogos-kerrék és a vízi állóhidrológiai értékek megőrzését, ahol indokolt, ott az árvízvédelmi szempontokon túl, a természetvédelmi szempontokat és a közöttük lévő közösségi kapcsolatok javítását, valamint a pályázati és társadalmi elvárásoknak (rekreáció, gazdagabb élővilág, természetvédelmi értékek megőrzése, stb.) jobban megfelelő társadalmi szempontból.

A Hosszúréti-patak és a hozzá kapcsolódó mellékágak rendezése már a XIX. század közepétől megkezdődött, a változások hatására vízfolyások egyenes vonalvezetésű, szabályos trapéz keresztmetszetű medreket kaptak. A tanulmányterv során már a Rákos-patakra készült revitalizációs tervek mintájára történt a részletes vizsgálat. A terv dokumentációja alapján felvázoltak, hogy a különböző részletek vizsgálata tartozik, melyek közül a jelentős „álválasztó szakaszok” vizsgálatára volt szükség. A terv konkrét javaslatokat tartalmaz a vízszintes és magassági vonalvezetés érdekében, a leginkább a kis léptékű ökológiai problémák megoldásával foglalkozik.

A Hosszúréti-patak és a hozzá kapcsolódó mellékágak rendezése már a XIX. század közepétől megkezdődött, a változások hatására vízfolyások egyenes vonalvezetésű, szabályos trapéz keresztmetszetű medreket kaptak. A tanulmányterv során már a Rákos-patakra készült revitalizációs tervek mintájára történt a részletes vizsgálat. A terv dokumentációja alapján felvázoltak, hogy a különböző részletek vizsgálata tartozik, melyek közül a jelentős „álválasztó szakaszok” vizsgálatára volt szükség. A terv konkrét javaslatokat tartalmaz a vízszintes és magassági vonalvezetés érdekében, a leginkább a kis léptékű ökológiai problémák megoldásával foglalkozik.

A Hosszúréti-patak és a hozzá kapcsolódó mellékágak rendezése már a XIX. század közepétől megkezdődött, a változások hatására vízfolyások egyenes vonalvezetésű, szabályos trapéz keresztmetszetű medreket kaptak. A tanulmányterv során már a Rákos-patakra készült revitalizációs tervek mintájára történt a részletes vizsgálat. A terv dokumentációja alapján felvázoltak, hogy a különböző részletek vizsgálata tartozik, melyek közül a jelentős „álválasztó szakaszok” vizsgálatára volt szükség. A terv konkrét javaslatokat tartalmaz a vízszintes és magassági vonalvezetés érdekében, a leginkább a kis léptékű ökológiai problémák megoldásával foglalkozik.

A Hosszúréti-patak és a hozzá kapcsolódó mellékágak rendezése már a XIX. század közepétől megkezdődött, a változások hatására vízfolyások egyenes vonalvezetésű, szabályos trapéz keresztmetszetű medreket kaptak. A tanulmányterv során már a Rákos-patakra készült revitalizációs tervek mintájára történt a részletes vizsgálat. A terv dokumentációja alapján felvázoltak, hogy a különböző részletek vizsgálata tartozik, melyek közül a jelentős „álválasztó szakaszok” vizsgálatára volt szükség. A terv konkrét javaslatokat tartalmaz a vízszintes és magassági vonalvezetés érdekében, a leginkább a kis léptékű ökológiai problémák megoldásával foglalkozik.

A Hosszúréti-patak és a hozzá kapcsolódó mellékágak rendezése már a XIX. század közepétől megkezdődött, a változások hatására vízfolyások egyenes vonalvezetésű, szabályos trapéz keresztmetszetű medreket kaptak. A tanulmányterv során már a Rákos-patakra készült revitalizációs tervek mintájára történt a részletes vizsgálat. A terv dokumentációja alapján felvázoltak, hogy a különböző részletek vizsgálata tartozik, melyek közül a jelentős „álválasztó szakaszok” vizsgálatára volt szükség. A terv konkrét javaslatokat tartalmaz a vízszintes és magassági vonalvezetés érdekében, a leginkább a kis léptékű ökológiai problémák megoldásával foglalkozik.

A Hosszúréti-patak és a hozzá kapcsolódó mellékágak rendezése már a XIX. század közepétől megkezdődött, a változások hatására vízfolyások egyenes vonalvezetésű, szabályos trapéz keresztmetszetű medreket kaptak. A tanulmányterv során már a Rákos-patakra készült revitalizációs tervek mintájára történt a részletes vizsgálat. A terv dokumentációja alapján felvázoltak, hogy a különböző részletek vizsgálata tartozik, melyek közül a jelentős „álválasztó szakaszok” vizsgálatára volt szükség. A terv konkrét javaslatokat tartalmaz a vízszintes és magassági vonalvezetés érdekében, a leginkább a kis léptékű ökológiai problémák megoldásával foglalkozik.
Budapest több kerületében is találhatóak mélyen fekvő nagyobb területek, így többek között a III. kerületben (pl. Sport utca és környéke, Mocsáros dűlő és térsége), a X. kerület Magládi út északi részén, a XVII. kerületben (pl. Napfény utca és környéke), továbbá a XIX. és a XX. kerületben (pl. Magyar utca, Szilágyi út és környéke). Ezen természetes lefolyás nélküli területeknél a fokozott beépítés tovább nehezíti a keletkező csapadék beszivárgásának időbeli lefolyását, így fokozva a belvízes területek kialakulását.

Egyes esetekben a budai hegyekről lezúduló szélsőséges csapadékok is okozhatnak a Duna mentett oldalán belvízi károkat.

Ugyancsak veszélyeztetett terület a Hosszúréti-patak Rózsavölgy menti, szorosan a patak mellett elterülő szakasza, ahol a beépítések a patak korábbi árterén létesültek, így a fenntartásra, védekezésre ma már nincs elegendő hely. A szélsőséges csapadékok az utóbbi években a pesti oldal kisesésű vízfolyásait is fokozott terhelésnek vetették alá.

További veszélyforrást jelentenek az úgynevezett villámárvízek és az előírások, amelyek azt az eseményt jelentik, amikor egy viszonylag kis területen olyan mennyiségű víz gyűlik össze, amelyet a hagyományos elvezető rendszerek (vízfolyás, árok, csatorna stb.) már nem tudnak kezelni, elvezetni, ezért azok kilépnek mértékőből, illetve csatorna esetében túlélődnek. A villámárvíz kialakulásához több, kedvezőtlen körülmény egyidejűségére van szükség, így kialakulásában nemcsak a rövid idő alatt lehulló nagymennyiségű csapadék, hanem a domborzat, a talaj és a felszínborítás, a nem megfelelő karbantartás, illetve a földhasználat paramétereire is szerepet játszik. A villámárvízek és az előírások csak tervezett megelőzéssel haríthatók el.

Felszín alatti vizek

A 3. ábra bemutatja, hogy a talajvíz-szintje a Duna medre felé közeledve emelkedik, mivel a meder környezetében áramló felszín alatti víztesttel – az árvízvédelmi műtárgyak által ugyan zavarva – szerves egészként „működik együtt” a talajvíz.

A Duna jobbparti vízgyűjtője zömében karsztos, hegy-, illetve dombvidéki terület, itt a talajba jutó víz jelentős mennyisége leáramló hidrodinamikai jellemzőivel rendelkezik és mélyebb rétegekben tározódik átmenetileg.

Kijelölt felszín alatti víztestek

A Budapestet érintő, kijelölt felszín alatti víztesteket a Függelék 5. táblázata tartalmazza a víztest típusának és a víztest megnevezésével.

Víztestek monitoringja és minősége

A VKI célkitűzéseinek eléréséhez - a vizek jó állapotba helyezése és állapotuk romlásának megelőzése -, valamint az ehhez szükséges intézkedések megalapozásához a monitoring hálózat kialakítása, és az adatok értékelése elengedhetetlen. Magyarországon a korábbi monitoring rendszer átalakításával, bővítésével lett kialakítva a VKI szerinti többszintű monitoring rendszer:

- A feltáró monitoring célja a vizek általános állapotértékelése, jellemzése.
- Az operatív monitoring az ökológiai és/vagy kémiai szempontból veszélyeztetettenknek tekintett vizek vizsgálatát célozza, és az intézkedések eredményességét ellenőrzi.
- A felszíni vizek vizsgálati monitoringjának működtetése olyan bizonytalanságok esetében szükséges, ha valamilyen határérték túllépésének az oka ismertetlen, vagy rendkívüli események mértekét, következményeit kell megismerni, vagy ahol operatív monitoring még nem üzemel, de az intézkedési program kidolgozásához információk gyűjtésére van szükség.

Felszíni víztestek monitoringja

A felszíni vizek rendszeres vizsgálata (monitoringja) kiterjed az ökológiai és a kémiai állapotot jelző (indikátor) biológiai szervezetek és speciális veszélyes anyagok meghatározására, valamint azokra a fizikai, kémiai paraméterekre és hidromorfológiai jellemzőkre, amelyek az ökológiai állapotot befolyásolják.

VGT3 alapján:
Feltáró monitoring: A vizek általános állapotértékelését, jellemzését tüzi ki célul, hozzájárul a vízgyűjtő-gazdálkodási tervciklus monitoring programjának végrehajtásához, a természeti viszonyok értékeléséhez, és az emberi tevékenységből származó változások nyomon követéséhez.
Operatív mérés: Az ökológiai és/vagy kémiai szempontból veszélyeztetett vizek vizsgálatát célzó, és az intézkedések eredményességét ellenőrzi.

Vízfolyások minősége és szennyezéssel szembeni érzékenysége

A mérési adatok értékeléséről a vonatkozó jogszabály alapján a vízvédelemért felelős miniszter gondoskodik a feladat- és hatáskörel rendelkező területi szervek és szakintézmények bevonásával, valamint a kibocsátók adatszolgáltatásainak feldolgozásával. E rendelet 1. és 2. számú mellékletei tartalmazzák a vonatkozó határértékeket, amelyekkel a mért adatok éves átlagértékeit összevetve képet kaphatunk a Duna vízminőségéről (táblázatokat lásd a Függelékben). Fontos megjegyezni, hogy a vízfolyások vízminőségének elemzésénél problémát jelent, hogy a kapott adatszolgáltatásban egymástól eltérő adatok szerepelnek, illetve jelentős az adathiány.

A 2018 és 2022 közötti időszakot vizsgálva megállapítható, hogy a Duna vízminősége néhány paraméteről eltérő profilszervezésűen megfelel a jogszabályban előírt határértékeknél. A Duna vízminőségével kapcsolatban a legnagyobb problémának az minősül, hogy a 2018-2022 közötti időszakban a víz biológiai úton lebontható szervesanyag-tartalma (biokémiai oxigénigény) a határérték fölött volt.

A Duna budapesti szakaszáról elmondható, hogy a különböző minőségi szempontok (biológiai, fizikai-kémiai, hidromorfológiai jellemzők) tekintetében (lázd Függelék táblázatai) mérsékelt potenciál jellemzi, azonban a főváros területét érintő víztestek közül ökológiai szempontból a Duna van a legjobb állapota. A VKI minősítési rendszere szerint a Budapest közigazgatási területét érintő felszíni víztestek ökológiai
állapota/potenciálja (a biológiai, fizikai-kémiai és hidromorfológiai állapot alapján, a „ha egy rossz, mind rossz” elvet alkalmazva) mérsékelt, gyenge, vagy rossz, illetve kémiai állapota jó, vagy nem jó állapítható meg.

5. ábra: Budapest felszíni víztestek összegzett víztest állapota a 2022-ben elfogadott VGT3 alapján

A szerves- és tápanyag-szennyezettség szempontjából Budapestig jönak mondható a vízminőség. Korábban a szennyezés fővárosi térségében történő növekedésének fő oka a szennyvíz nem megfelelő módon való tisztítása volt, amely során a Duna-folyó vízminősége tovább romlott. 2010 augusztusa óta a Budapesti Központi Szennyvíztisztító Telep már megkezdte működését, amely a szennyvizek nagyobb arányú tisztítását teszi lehetővé (a Duna vízminőségi adatait a Függelék 6. - 12. táblázattáblázatait tartalmazzák).

A Ráckevei (Soroksári) Duna gyakorlatilag állóvíz jellegű, mivel az 1910-20-as években a Duna-ág két végét zsilippel lezárták, és vízpótlását ezekkel szabályozták. Vízminősége éves átlagban jönak mondható, azonban néhány évben a mért biokémiai oxigénigény kis mértékben, a nitrát-nitrogén és az összes nitrogén koncentrációk pedig jelentősen túllépték a rendeletben előírt határértékeket. (Az RSD vízminőségi adatait lásd Függelék 14. táblázattáblázat.) A lezárás hatására feliszapolódott mederszakaszon a KDV-VIZIG 2003 óta folyamatos mederszabályozási munkákat végez, amely a vízminőség védelmét, javítását szolgálja.

A budapesti kisvízfolyások vízminőségi paraméterei kevés kivételtől eltekintve nem felelnek meg a vonatkozó határértékeknek. A patakok szinte mindegyike már szennyezetten érkezik a fővárosba. Az oxigénháztartás, valamint a nitrogén- és foszforháztartás jellemzői tekintetében a korábbi évekre jellemző szennyezett és
erősen szennyezett vízminőség nem javult (a kisvízfolyások vízminőségi adatait a Függelék 15. táblázattáblázattól a 18. táblázattáblázataig tartalmazzák).

Állóvizek vízminősége

A felszín alatti vizek

A felszín alatti vizek szennyeződészel szembeni érzékenység szempontjából a vonatkozó kormányrendelet14 szerint három csoportra oszthatók. Az utánpótlódási viszonyok, a földtani közeg vízeztő képessége és a kapcsolódó, védelem alatt álló területek alapján megkülönböztetünk kevésbé érzékeny (Budapesten ilyen nincs), érzékeny és fokozottan érzékeny területeket. Utóbbi csoporton belül értelmezett a kiemelten érzékeny területi kategória is, amelybe a fokozottan érzékeny nyílt karsztok, valamint az üzemelt és távlati ivóvízbázisok, ásvány- és gyögyvíz-hasznosítást szolgáló vízkivételek kijelöltek, vagy kijelölés alatt álló különböző védőterületeket tartoznak (a témdrót bővebben ld.: Budapest Környezeti Állapotértékelése 201515). A felszín alatti víztestek kémiai állapotértékelése a küszöbérték és a monitoring adatok összehasonlításán alapul. A küszöbértékek tüllépését okozhatják azonban olyan helyi szennyeződések is, amelyek a víztestek szintjén nem okoznak kockázatot. Ilyen esetben a víztest nem kap gyenge minősítést, de a szennyezést helyi szinten kezelni kell. A felszín alatti víztestek állapotértékelése az EU által készített útmutatók alapján végzett tesztek szerint készültek el. A VGT3 által a 2016. évtől A Budapesten tervezett monitoringhelyeket és a vizsgált jellemzőket a Függelék 21. táblázat tartalmazza.

A VGT3-ban lehatárolt, a főváros területét érintő felszín alatti víztestek (14 db) közül 9 víztest kémiai állapota jó, de a víztestek minősítése a VGT2-höz képest összességében romlott. Az 5 gyenge kémiai állapotú víztest oka a nitrát (NO3-) szennyezés (az sp.1.9.1., a h.1.5., az sp.1.14.2. és az sp.1.13.2 jelűknél), a diffúz eredetű nitrátszennyezés az sp.1.9.1 jelű víztestnél, ami így nitráttal szennyezett ívővízbázis is, míg az sp.1.13.1. jelű víztest a diffúz eredetű nitrátszennyezettség mellett nitráttal, ammóniával (NH4+), szulfáttal (SO42-) szennyezett ívővízbázis. Az sp.1.14.2 víztest gyomirtószerszennyezettség (glifozát) szempontjából „jó, de fennáll a gyenge állapot kockázata” értékelésű. A h.1.5 jelű víztest minősítése a VGT2-höz képest tovább romlott (a VTG3-ban gyenge minősítést kapott).

A mennyiségi állapot tekintetében kis mértékben változott az érintott víztestek minősítése a VGT3-ban, illetve a VTG2-ben megállapítottakhoz képest. A VGT3-ban a 14 víztest közül 5 jó, 8 jól, de gyenge kockázatú (gyenge állapot kockázata áll fenn), 1 pedig gyenge minősítést kapott. A VGT 2-ben 5 jól, 8 jól, de gyenge kockázatú (gyenge állapot kockázata áll fenn), 1 pedig gyenge minősítést kapott. A VGT1-ben 9 jól, 2 jól, de bizonytalan és 3 gyenge minősítésű volt a víztestek közül. A „jó, gyenge kockázatú” (sh.1.6, h.1.6, sh.1.5, h.1.5, p.1.14.2, p.1.9.1, sp.1.13.1 és sp.1.13.2) a vízmérleg teszt eredményei, a gyenge (sp.1.9.1.) minősítést a süllyedésteres és a vízmérleg teszt eredményei alapján kapták a víztestek. A vízmérleg teszt a felszín alatti víztől függő ökoszisztémák célállapotához tartozó vízigények és a vízkészlet túlhasználásának (a vizivétel nagyobb, mint a hasznosítható vízkészlet) konfliktusát,

[Függelék F.4.]

[Függelék F.5.]

87
egymáshoz viszonyított arányát vizsgálja. A süllyedékest alapján trendelemzéseken alapszik, kimutatja, hogy a víztesten hol, és milyen mértékű vízszint-süllyedés következett be.

Kármentesítés

Vízhasználatok

Természetes fürdőhelyek

Budapest területén csupán három kijelölt természetes fürdőhely található, a Soroksár területén lévő Joker-tó, valamint a Kopaszi-gátán megnyitott SHO Beach és a III. kerületi Római-parti Plázs. A Duna mentén Szob és Baja között 10 természetes kijelölt fürdőhely található, melyek a következők:

- Zebegényi strand;
- Nagymaros-Hunyadi sétány strand;
- Verőcei strand;
- Göd: Felsőködi strand, Széchenyi strand;
- Szigetmonostor: Horányi strand;
- Dunakeszi strand;
- Dunabogdány: Forgó Étterem előtti strand;
- Szentendre: Postás strand;
- Dunaújváros: Szalki-szigeti szabad strand.

A fürdőhelyek többnyire Budapesttől északra helyezkednek el, azonban ez nem jelenti azt, hogy Budapesten a Duna vízminősége nem felelhet meg a hatályos jogszabályban előírt vízminőségi követelményeknek. A vizek minősítését a Nemzeti Népegészségügyi Központ végzi és teszi elérhetővé dokumentum, illetve online térkép formájában. Az üzemeltetők által megbízott laboratóriumiok a fürdővízekből a fürdési idény megkezdése előtt, majd a szezon ideje alatt havonta mintát vesznek, amiben a szennyvíz eredetű szennyezést jelző baktériumok (E. coli és Enterococcus) számát vizsgálják. A felsorolt természetes fürdőhelyek mindegyik őse „jó”, illetve „kiváló” minősítésű. Minősítés tekintetében kivételt képeznek az utóbbi időben megnyitott fürdőhelyek (SHO Beach és Római-parti Plázs), mivel az éves értékelés a legutolsó négy fürdési idény összesített eredményei alapján, statisztikai módszerrel állapítható meg. Az utóbbi fürdőhelyek vízminősége, a kellő számú minta hiányában, a fürdővíz éves értékelése szempontjából még "nem minősítethető".

A Duna és a Ráckevei-Soroksné-Dunaág vízminősége vízhigiéniai szempontból az elmúlt évtizedben jelentősen javult, így ma már nem lenne akadálya a Ráckevei-Soroksné-Dunaág budapesti szakaszán egy természetes fürdőhely kijelölésének. A fürdőhelyek kijelölésektől, üzemeltetéséről, a fürdővízek minőségi követelményeiről kormányrendelet rendelkezik, amely szerintiügyi fürdőhely-kijelölési eljárást a járási hivatal folytat le a vízparti terület tulajdonosának kérelmére (megjegyezzük, hogy a vízfeldolgozásról szóló törvény a települési önkormányzathoz rendeli a természetes vizek fürdésre alkalmas partszakaszainak és azzal összefüggő vízfelületének kijelölésével kapcsolatos feladatokat).

Termálvízkivétel

A budapesti hévizek a természeti értékeken túl szintén a fővárosi természeti kincsei közé sorolhatók.
Budapesten 16 termál-, gyógy-, karszt-, illetve ásványvizes fürdő, strand üzemel, amelyek közül tizenkettőt a Budapest Gyógyfürdői és Hévizei Zrt. üzemeltet.

Budapest területén 59 db hővízkútataszteri számmal rendelkező termálkút és forrás található, amelyek több mint fele a XI. kerületben található. Ezen felül 113 db 30°C-nál alacsonyabb kifolyóvíz hőmérsékletű aktív termelőkút üzemel.

A BGYH Zrt. üzemeltetésébe 65 db kút/forrás tartozik, ezen közül 4 db megfigyelő, 6 db tartalék és egy darab ipari műemlék kút/forrás. 13 db kút ásványvíz minősítéssel, míg 14 db gyógynyí viz minősítéssel rendelkezik.

Az Országos Vízügyi Főigazgatóság kút adatbázisa szerint Budapest területén 72 termál vízkivétel van, amelyből 44 kút, 28 pedig forrás. A 72 termál vízkivételből 49 fürdő/gyógyászati célú. 16 minősített ásványvízkút, és 20 pedig minősített gyógyvízkút. A vízkészletet a világszerte híres fürdőkből használják fel; kisebb részük gyógyvízként kerül közforgalomba.

A termálfürdőkből a használt termálvízet sok esetben a közeli felszíni vízfolyásba vezetik, ami károsan befolyásolhatja a vízfolyás minőségét. A VGT3-ban a terhelés minősítése során figyelembe vettük a bevezetett termálvíz hígulási arányát, hőmérsékletét, sótartalmát és a befogadó sótartalmát. Az alábbi táblázatban jól látszik, hogy a kisebb vízfolyások esetében jelentős a termálvíz bevezetésénak hatása a befogadó vízminőségére, míg a Duna esetében, feltételezhetően a jelentős mértékű hígításnak köszönhető, nem jelentős a terhelés hatása.

<table>
<thead>
<tr>
<th>Befogadó víztest neve (kódja)</th>
<th>Klíomszántó neve</th>
<th>terhelés minősítése (VGT2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duna-Budapest (AOC752)</td>
<td>Dandár Fürdő Gellért Gyógyfürdő és Uszoda Pünkösdfürdői Strand Római Strandfürdő Rudas Gyógyfürdő és Uszoda Szent Lukács Gyógyfürdő</td>
<td>nem jelentős nem jelentős nem jelentős nem jelentős nem jelentős</td>
</tr>
<tr>
<td>Szilas-patak és vízgyűjtője (AEQ012)</td>
<td>Aquaworld Vízibirodalom és Ramada Plaza Hotel komplexum</td>
<td>lehet, hogy jelentős</td>
</tr>
<tr>
<td>Duna bal parti vízgyűjtő – Vác-Budapest (s.p.1.13.1)</td>
<td>Széchenyi Gyógyfürdő és Uszoda</td>
<td>lehet, hogy jelentős</td>
</tr>
<tr>
<td>Ráckevei–Soroksári-Dunaág (AIQ014)</td>
<td>Csepeli strandfürdő</td>
<td>lehet, hogy jelentős</td>
</tr>
</tbody>
</table>

1. táblázat: Termálvíz bevezetések víztestekbe a 2022-ben közzétett VGT3 alapján (Forrás: www.vizeink.hu)

Ivóvízkivétel

A főváros vízellátását a Duna-part mentén telepített vízkivételi művek (jellemzően parti szűrős kutak) biztosítják. Az északi víznyerő rendszerhez tartoznak a Szentendrei-szigeten és a Váci Duna-ág bal partján lévő kutak, a középső vízbázis a Margitszigeti csáposkutak, a budai oldalon a Budaújlaki Vízmű, a pesti oldalon a Margit hidtól északi és déli irányban húzódó felső rakpart alatti galériák, valamint a kelet-pesti mélyfúrású kutak, a déli vízbázis pedig a Csepel-szigeten helyezkedik el.

A budapesti ivóvízbázisok mindegyike sérülékeny vízbázis.

A vízbázisokat négy védelmi kategóriájú zóna határolja, mely kijelölése felülvizsgálata és jóváhagyása az elmúlt évtizedben nagyrészt megtörtént, részben még folyamatban van (pl. a Margitszigeten).

A zónák a kormányrendelet szerinti védőterületeknek és védőidomoknak megfelelő kategóriáik alapján belső, külső, hidrogeológia A és hidrogeológia B évezetekbe soroltak. A szabad területek hasznosítása is igen kötött, melyet a vízbázisok védelméről szóló Korm. rendelet szabályoz.
Az ivóvízbázis belső zónája gyakorlatilag a kút közvetlen környezetét védi, oda illetéktelen személy nem juthat be, míg a hidrogeológia B zónán belüli szennyezések megakadályozása a majd 50 év múlva bekövetkező vízminőségi problémák elkerülése érdekében kiemelten fontos. Hosszú távon tehát nem csak a kutak közvetlen környezetének védelmére, hanem a kijelölt védőidomokon belüli megfelelő területhasználatra és ártalommentesítésre is figyelmet kell fordítani.

Felszíni és felszín alatti vizek állapotára ható tényezők, okok

Felszíni vizek

A felszíni vizek állapotára elsősorban a tisztítatlan és tisztított szennyvizek bevezetése, a kitermelt termálvizek visszavezetése, valamint a települési felszínről lefolyó, szennyzezté vált csapadékvizek vannak hatással.

A felszíni vizek pontszerű terhelését legnagyobb arányban (a tápanyag és a szerves anyag tekintetében) a települési szennyvízbevezetések okozzák. A tisztított szennyvizek biológiaiag és kémiaiag bontható szerves anyagokat, növényi tápanyagokat és egyéb sókat, fémekeket, toxikus anyagokat és gyógygenszeresanyagokat és tartalmazhatnak. Az ökoszisztémák a bevezetett anyagokat azok koncentrációjától, valamint a hígulás mértékétől függően tolerálnak tudják.

A Dél-pesti Szennyvíztisztító Telep jelentős környezeti konfliktust teremt, főként a tisztított szennyvíz Ráckevei (Soroksári)-Dunába (RSD) történő bevezetésével, mely hordalék befolyással és a levegő bűzterhelésével jár. Az RSD problémáinak egyik alapja tehát a mellékága bevezetett tisztított szennyvízterhelés adja. Az Országos Vízgyűjtő-gazdálkodási Terv alapján a Duna-ágot közvetve és közvetlenül négy szennyvíztisztító objektum terheli: közvetlenül a Budapest (Dél-Pest) – Szennyvíztisztító Telep, közvetve pedig a Kiskunlacháza – Szennyvíztisztító Telep, a Dunaharaszti – Szennyvíztisztító Telep és az Alsónémedi – Szennyvíztisztító Telep.

Szennyvíz eredetű terhelések szempontjából a Dél-pesti Szennyvíztisztító Telep tisztított szennyvíz kibocsátása a legjelentősebb, annak ellenére, hogy technológiája korszerűnek tekinthető és az önellenőrzési eredmények szerint megfelel az előírt határáttételeknek.

A Dél-pesti Szennyvíztisztító Telep záporokiömlő működése jelenleg is probléma és a jövőben is gondot okozhat, még annak ellenére is, hogy 2019-ben elkészült a 2001-ben átadott záporokiömlő kapacitásának 7000 m3-re történő bővítése. Az időben és térben lokális szennyvízdugók kialakulása csak az RSD fokozott ütemű átobbításával enyhíthető. Cél az, hogy a szennyezés-dugó minél hamarabb hagyja el a víztestet. Ehhez fokozott mértékű és állandó tápvíz-betáplálás szükséges. A jelenleg megvalósítás alatt álló új működő építésével nagyobb mennyiségű víz leeresztése válik lehetővé és annak mennyisége pontosabban szabályozható, így a havária helyzetek előfordulásának valószínűsége csökkenthető lesz.

Egy komplex RSD projekt előkészítése során 2009-ben tervezésre került a szennyvíztisztító telep tisztított szennyvízének a Dunaföldvárba való átvezetése, azonban a komplex RSD projekt keretében ezt a beruházást egyelőre még nem valósult meg.

Az RSD medre több helyen is feliszapolódott. A Molnár-sziget és a soroksári magaspart között az RSD mellékága ugyancsak erőteljesen feliszapolódott, ami pangóvizes mederszakaszot, jelentősen lecsökkent vízfelületet eredményez. Ennek következtében kiterjedt nádasok jelentek meg, melyek a Duna mentén nem jellemzőek. A nádasok jelzik, hogy az RSD ezen mellékágán minimális a vízmozgás (szinte teljesen állóvíz).
A burkolt felületek növekedésével (beszivárgás mértéke csökken, lefolyási tényező megnő) a nagy intenzitású csapadékkal járó zivatarok során az egyesített rendszerű csatornahálózaton lévő záporok működési problémáiról és megoldásairól beszélünk. Budapest területén kb. 35 helyen található zápor, ami a vizeket a Dunába juttatja zápor idején.

A kitermelt termálvizek hasznosítását utáni felszíni vízbe történő bevezetése szintén problémákat okozhat, a jelenlegi szabályozások értelmében pedig kezelés nélkül tilos. A termálvíz kémiai összetétele (sótartalma, ionösszetétele) és hőmérséklete jelentős mértékben eltér a felszíni víztől, így kismértékű hígítás esetén is annak ökoszisztémájában átalakulását okozhat, azonban nagymértékű hígulása már nem okoz problémát.

Budapest területén tisztított ipari szennyvízbevezetés főként szolgáltató, feldolgozó és energiaipari szennyvizekből származik. Ezen tisztított szennyvizek már megfelelő kezelés után kerülnek a befogadóba.

A közúti közlekedésből származó (diffúz eredetű) szervetlen és szerves mikroossznész-nek terhelése – az elválasztott rendszerű csapadéksztorma rendszereken, illetve a záporokon keresztül – a felszíni víztestekbe jutva jelentős terhelést okoz.

A több, mint húsz budapesti tó – bár ezek a csepeli Kavicsos-tó kivételével nem víztestek, de – jelentős értéket képvisel a körjük telepített parkkal, vagy arborétummal együtt. Ezeket jellemzően a talajvíz, kisebb rész csapadékvíz táplálja, vízminőségük a főváros belső területei felé haladva egyre romlik.

Felszín alatti vizek

A felszín alatti víz minőségét a tartózkodási idő függvényében elsősorosan az a kőzet határozza meg, amelyben a víz elhelyezkedik (oldott anyag tartalom), de hatással vannak rá az áramlások, a mélység, illetve a hőmérséklet is.

Egy felszín alatti víztest szennyezettsége számos pontszerű (pl. gyárak, állattartó telepek, kutak stb.) és diffúz (mezőgazdasági művelés, talajerózió, savas eső, városi lefolyás stb.) forrásból származhat. Nitrát szennyezettsége erősen függ a feldhasználat módjától, a műtrágyázás mértékétől. Az ammónium tartalmát a felszín alatti vizeinkben elsősorban természetes (földi) eredetű.

Főbb antropogén tevékenységből származó szennyezés, veszélyeztető tevékenység Budapest területén (bővebben Ld.: BKÁÉ 2021 I.4. fejezet):

- **Hulladéklérakók:** A nem megfelelően kialakított, üzemeltetett hulladéklérakókból a szennyezett változásos szennyeződésnek számít.

- **Szennyvíz talajba, talajvízbe szivárgása, szivárogtatása:** a csatornahálózaton területeken a szennyvíztárolók nem megfelelő bejutása komoly szennyezőforrásnak számít.

- **A felszín alatti vizek vízminősége szempontjából komoly problémát jelentenek a nem megfelelően kialakított, üzemeltetett, illetve a(z) - sok esetben több évével belül elérő és elérhető kutak, amelyek „átjárót” képeznek a felszíni és a mélyebb rétegek között, megnyújtva az utat a felszín alatti szennyeződéshez.

- **A klórdaftalaj tartalom:** A felszín alatti vízben szennyezettség és veszélyeztető tevékenység Budapest területén (bővebben Ld.: BKÁÉ 2021 I.4. fejezet):

 - **Szénhidrogén:** A korábbi, szimplafalú üzemeltetett üzem és a korábbi üzemeltetett üzemekbe való kioldódása miatt, kisebb és közös balették során, továbbá szennyezett feltöltések és anyagokból a talajba és haladva a felszíni vízelődéshez.
A burkolt felületek arányának növekedése a beszivárgás mértékének csökkenését okozza, ami a felszín alatti vizek utánpótlódását, újtást, minőségét befolyásolja.

Az ipari célból és ivóvízellátás céljára történő vízkivétel.

Intézkedések

- Magyarország, 2021. évi vízgyűjtő-gazdálkodási terve (VGT3) 2021-ben elkészült és 2022 áprilisában elfogadásra került. A 2016-ban elfogadott VGT2-höz és a jelen anyagban felhasznált adatokhoz képest az alábbi számszaki-technikai változtatások történtek:
 - Magyarországon az összes nyilvántartott vízfolyás: 18.373 db
 - kijelölt vízfolyás víztestek: 886 db
 - mesterséges vízfolyás víztestek: 146 db
 - Magyarországon az összes nyilvántartott állóvíz vagy vizes élőhely (wetland): 9.123 db
 - kijelölt állóvíz víztestek: 186 db
 - mesterséges állóvíz víztestek: 30 db
 - A VGT3-ban a felszín alatti vizek esetében a következő lehatárolásokat alkalmazták (vízföldtani főtípusok):
 - medencebeli, uralkodóan porózus vízadók a törmelékes üledékes közetekben,
 - karszt (csak a főkarsztra, azaz a triász korú dolomit és mészkő közé sorolható) a karbonátos közetekben,
 - vízadók a hegyvidéki területek vegyes összetételű közeteiben (kivéve a főkarszt)
 - porózus víztestek: 111 db
 - karszt víztestek: 29 db
 - hegyvidéki víztestek: 45 db
 - termál víztestek: 23 db
 - sekély víztestek: 77 db
- A Budapest Központi Integrált Szennyvízelvezetése Projekt (BKISZ) I. és II. szakaszának lezárásával Budapest csatornázottsága eléri a közel 100%-ot. A még csatornázatlan területek szennyvízelvezetésének kiépítése és a meglévő szennyvízelvezetési hálózatok elkészülése továbbra is kiemelt feladat.
- A víziközmű szolgáltatásról rendelkező törvény alapján a víziközmű-ötvözeteknek és a magyarországi területek szövetségének kiépítése és a meglévő szennyvízelvezetési hálózatok elkészülése továbbra is kiemelt feladat.
- A víziközmű szolgáltatásról rendelkező törvény alapján a víziközmű-vagyon önkorlátozásait elfogadva folyamatos; a víziközmű-üzemeltetési feladatok megvalósítása a Magyar Energetikai és Közmű-üzemeltetési Hivatal (MEKH) engedélyével történhet meg.
- A kisvízfolyások kapcsán általánosságban szükséges megemlíteni a revitalizáció és a tajharmonikus környezethasználat lehetőségét, különösen amiatt, hogy a korábbi évadokban kiépített medrek anyagával hamarosan cserére szorulhat. A medrekkel kapcsolatos beavatkozásokhoz a tájhasználat egyéb igényeit is meg kell fogalmazni, és ezzel párhuzamosan a helyi viszonyokhoz illeszkedő megoldásokat szükséges kidolgozni. Továbbá a felszíni vízrendezési feladatoknak és a vízfolyások revitalizálójaiknak összhangban kell lennie a VGT3 intézkedéseivel.
A kisvízfolyások vízgyűjtő területein történt jelentős beépítések kapcsán a lefolyási tényező olyan mértékben megváltozott, amit mindenképpen figyelembe szükséges venni revitalizációs tervek készítése során. A kisvízfolyások érintett önkormányzatainak új beépítés esetén szorgalmazni szükséges a csapadékvizek teljes, vagy részleges helyben tartását.

2015 során befejeződött két, az Európai Unió által támogatott, a Ráckevei (Soroksári) Duna-ág vízgazdálkodásának és vízminőségének javítására irányuló projekt. Az egyik projekt keretében megtörtént a Tassi-zsilip és a Kvasay-zsilip rekonstrukciója, a Tassi műtárgy megépítése és a monitoring rendszer fejlesztése28. A vízminőség javításának érdekében a partmenti települések szennyvízelvezető rendszerénél kiépítése valósult meg „A Ráckevei (Soroksári) – Duna-ág (RSD) vízgazdálkodásának, vízminőségének javítása: szennyezőanyagok kivezetése a parti sávból" elnevezésű projekt keretén belül27. A Ráckevei-Soroksári Duna-ág revitalizációs projekt megvalósításával összefüggő közigazgatási hatóságok nemzetközi szempontból kiemelt jelentőségi ügygés nyilvánította a Magyar Kormány28.

Függelék F.6.
Függelék

F.1. Budapest jelentősebb vízfolyásai

<table>
<thead>
<tr>
<th>Vízfolyás</th>
<th>Fővárosi szakasz hossza (m)</th>
<th>Kilépő vízhozam (Q1%) (m³/s)</th>
<th>Vízgyűjtőterület nagysága (km²)</th>
<th>Heves lefolyás (m³/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rákos-patak</td>
<td>21.859</td>
<td>41,3</td>
<td>185,0</td>
<td></td>
</tr>
<tr>
<td>Szilas-patak</td>
<td>17.597</td>
<td>41,3</td>
<td>178,11</td>
<td></td>
</tr>
<tr>
<td>Nagy-Ördög-árok</td>
<td>7.319</td>
<td>25,63</td>
<td>42,17</td>
<td>20,29</td>
</tr>
<tr>
<td>Gyáli-patak I. ág</td>
<td>7.217</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Határ-árok</td>
<td>6.404</td>
<td></td>
<td>26,9</td>
<td>10,0</td>
</tr>
<tr>
<td>Aranyhegyi-patak</td>
<td>5.923</td>
<td>46,6</td>
<td>120,0</td>
<td></td>
</tr>
<tr>
<td>Csömörö-patak</td>
<td>5.876</td>
<td>18,76</td>
<td>35,94</td>
<td></td>
</tr>
<tr>
<td>Gyáli-patak VII. ág</td>
<td>5.873</td>
<td></td>
<td>33,25</td>
<td></td>
</tr>
<tr>
<td>Hosszüreti-patak</td>
<td>5.834</td>
<td>36,6</td>
<td>116,7</td>
<td>35,71</td>
</tr>
<tr>
<td>Gyáli-patak VI. ág</td>
<td>4.981</td>
<td></td>
<td>4,76</td>
<td></td>
</tr>
<tr>
<td>Gyáli-patak II. ág</td>
<td>4.553</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mogyoródi-patak</td>
<td>4.025</td>
<td>28,73</td>
<td>90,63</td>
<td></td>
</tr>
<tr>
<td>Spanyolréti-ág</td>
<td>3.969</td>
<td>2,40</td>
<td>4,40</td>
<td>4,11</td>
</tr>
<tr>
<td>Diós-árok</td>
<td>3.351</td>
<td>11,23</td>
<td>6,50</td>
<td>5,53</td>
</tr>
<tr>
<td>Kutti árok</td>
<td>3.084</td>
<td>4,50</td>
<td>1,71</td>
<td></td>
</tr>
<tr>
<td>Kis-Ördög-árok</td>
<td>3.066</td>
<td>12,20</td>
<td>7,35</td>
<td></td>
</tr>
<tr>
<td>Péter-Pál utcai árok</td>
<td>2.524</td>
<td>6,92</td>
<td>2,10</td>
<td>2,68</td>
</tr>
<tr>
<td>Illatos úti árok</td>
<td>2.489</td>
<td>11,97</td>
<td>4,55</td>
<td></td>
</tr>
<tr>
<td>Hidegkúti úti árok</td>
<td>2.436</td>
<td>8,46</td>
<td>2,60</td>
<td>4,59</td>
</tr>
<tr>
<td>Beregszási úti árok</td>
<td>2.374</td>
<td>23,7</td>
<td>4,7</td>
<td>4,39</td>
</tr>
<tr>
<td>Gazda úti árok</td>
<td>2.352</td>
<td>11,45</td>
<td>3,64</td>
<td>4,42</td>
</tr>
<tr>
<td>Irhás-árok</td>
<td>2.219</td>
<td>2,3</td>
<td>2,74</td>
<td></td>
</tr>
<tr>
<td>Péterhegyi-árok</td>
<td>2.030</td>
<td>9,96</td>
<td>3,55</td>
<td></td>
</tr>
<tr>
<td>Budárosi-árok</td>
<td>551</td>
<td>29,2</td>
<td>17,6</td>
<td>10,77</td>
</tr>
<tr>
<td>Sasadi-árok</td>
<td>1.558</td>
<td>24,2</td>
<td>5,5</td>
<td>4,21</td>
</tr>
<tr>
<td>Szépvölgyi úti árok</td>
<td>1.974</td>
<td>11,66</td>
<td>2,99</td>
<td></td>
</tr>
<tr>
<td>Caprera patak</td>
<td>1.898</td>
<td>10,54</td>
<td>4,80</td>
<td></td>
</tr>
<tr>
<td>Sulák-patak</td>
<td>162,5</td>
<td></td>
<td>27,7</td>
<td></td>
</tr>
</tbody>
</table>

2. táblázat: Budapest jelentősebb vízfolyásai

Megjegyzés: A táblázatban csak azon vízfolyások kerültek feltüntetésre, amelyeknek a közigazgatási határon belüli, nyilvántartási hossza nagyobb, mint 2.000 méter, vagy a kilépő vízhozama (Q1%) nagyobb, mint 10 m³/s, vagy a vízgyűjtő területének nagysága nagyobb, mint 20 km².

Átlagos, illetve maximális vízhozam adat nem áll rendelkezésre, a táblázat csak becsüléses eljárással megállapított vízhozam adatokat tartalmaz (az átlagosan 100 événtől egyszer előforduló vízhozamot, amelyet az Országos Vízügyi Főigazgatóság (OVF) által legutóbb kiadott segédlet felhasználásával állítottak elő). Ez az érték nem mért, nem észlelt, csak becslésként fogadható el.

A vízhozamok pontosabb meghatározásához lefolyás modellezésére van szüksége.
A vízfolyások felmért hosszai a 2016-os adatok alapján kerültek feltüntetésre.

A vízfolyások részletesebb leírását a 2015. évi környezeti állapotértékelés tartalmazza.
F.2. Budapest jelentősebb állóvizei

<table>
<thead>
<tr>
<th>Felület (m²)</th>
<th>Térfogat (m³)</th>
<th>Üzemi vízszint (mBF)</th>
<th>Átlagos vízmélység (m)</th>
<th>Maximum vízmélység (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Margit-szigeti japán kerti tó</td>
<td>827</td>
<td>497</td>
<td>n.a.</td>
<td>0,5 - 0,7</td>
</tr>
<tr>
<td>Hidegkúti horgásztó</td>
<td>4 500</td>
<td>6 750</td>
<td>224,5</td>
<td>1,5</td>
</tr>
<tr>
<td>Gödösk-tó</td>
<td>kb. 5 000</td>
<td>n.a.</td>
<td>n.a.</td>
<td>kb. 0,5</td>
</tr>
<tr>
<td>Orczy kerti tó</td>
<td>5 960</td>
<td>9 540 – 6 560</td>
<td>110,35</td>
<td>1,10</td>
</tr>
<tr>
<td>Újhegyi horgásztó (Mély tó / Gutman-tó)</td>
<td>10 333</td>
<td>37 333</td>
<td>122,69</td>
<td>3,6</td>
</tr>
<tr>
<td>Fenekeleti-tó</td>
<td>10 000</td>
<td>20 000 – 25 000</td>
<td>103,5</td>
<td>3,0</td>
</tr>
<tr>
<td>Kána-tó</td>
<td>35 000</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n. a.</td>
</tr>
<tr>
<td>Kelemenögyi Kék-tó (Pulay-féle téglagyári tó)</td>
<td>kb. 200</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Békás-tó</td>
<td>kb. 25</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Városligeti-tó</td>
<td>20 000</td>
<td>10 000</td>
<td>n.a.</td>
<td>1,0</td>
</tr>
<tr>
<td>Kavicsbánya tó</td>
<td>14 400</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Merze mocsár</td>
<td>494 744</td>
<td>30 000</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Naplás-tó (Szilas-tározó)</td>
<td>157 000</td>
<td>280 000</td>
<td>150,04</td>
<td>2,0</td>
</tr>
<tr>
<td>EVM víztározók</td>
<td>2000</td>
<td>kb. 8 000</td>
<td>n.a.</td>
<td>3,0 – 4,0</td>
</tr>
<tr>
<td>Rauch tó (Csali tó / Majorhegyi-tározó)</td>
<td>2 500</td>
<td>50 000</td>
<td>150,50</td>
<td>n.a.</td>
</tr>
<tr>
<td>Balázs-tó (Vajk utcai iskola+árok befogadója)</td>
<td>5 144</td>
<td>20 576</td>
<td>130,59</td>
<td>4,0</td>
</tr>
<tr>
<td>Csepeli Kavicsos-tó</td>
<td>1 250 000</td>
<td>7 millió</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Katalin horgásztó</td>
<td>30 000 – 35 000</td>
<td>120 000</td>
<td>min. 89</td>
<td>3,4 – 4,0</td>
</tr>
<tr>
<td>Soroksári botanikus kert tava</td>
<td>5 000</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Golfpálya tava</td>
<td>17 000</td>
<td>30 000</td>
<td>109,9</td>
<td>2,0</td>
</tr>
<tr>
<td>Horázs club tava</td>
<td>10 000</td>
<td>35 000</td>
<td>n.a.</td>
<td>3,5</td>
</tr>
<tr>
<td>Joker tó</td>
<td>55 000</td>
<td>220 000</td>
<td>100,70</td>
<td>4,0</td>
</tr>
<tr>
<td>Péter-majó horgásztó (BM horgásztó)</td>
<td>33 000</td>
<td>33 000</td>
<td>100,70</td>
<td>1,0</td>
</tr>
</tbody>
</table>

3. táblázat: Budapest jelentősebb állóvizei

Az állóvizek elsődleges hasznosítása és elhelyezkedését a 4. táblázat foglalja össze:
4. táblázat: Állóvizek elsődleges hasznosítása és elhelyezkedése

<table>
<thead>
<tr>
<th>Vizek</th>
<th>Függelék</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elsődleges hasznosítás</td>
<td>Elhelyezkedés</td>
</tr>
<tr>
<td>Margit-szigeti japán kerti tó</td>
<td>látványtó</td>
</tr>
<tr>
<td>Hidegkúti horgásztó</td>
<td>horgásztó</td>
</tr>
<tr>
<td>Orczy kerti tó</td>
<td>látványtó</td>
</tr>
<tr>
<td>Újhegyi horgásztó (Melé tó / Gutman-tó)</td>
<td>horgásztó</td>
</tr>
<tr>
<td>Feneukettent-tó</td>
<td>látványtó</td>
</tr>
<tr>
<td>Kána-tó</td>
<td>árvízvédelmi tározó, horgásztó</td>
</tr>
<tr>
<td>Kelevölgyi Kék-tó (Pulay-féle téglagyári tó)</td>
<td>horgásztó</td>
</tr>
<tr>
<td>Békás-tó</td>
<td>természetvédelmi funkció</td>
</tr>
<tr>
<td>Városligeti-tó</td>
<td>látványtó</td>
</tr>
<tr>
<td>Kavicsbánya tó</td>
<td>hasznosítás elképzelés nem ismert</td>
</tr>
<tr>
<td>Merzsze mocsár</td>
<td>természetvédelmi funkció</td>
</tr>
<tr>
<td>Naplás-tó (Szilas-tározó)</td>
<td>árvízvédelmi tározó, horgásztó</td>
</tr>
<tr>
<td>EVM víztározók</td>
<td>horgásztó</td>
</tr>
<tr>
<td>Rauch tó (Csali tó / Majorhegyi-tározó)</td>
<td>horgásztó</td>
</tr>
<tr>
<td>Balázs-tó (Vajk utcai iskola + árok befogadója)</td>
<td>horgásztó</td>
</tr>
<tr>
<td>Csepel Kavicsos-tó</td>
<td>horgásztó</td>
</tr>
<tr>
<td>Katoln horgásztó</td>
<td>horgásztó</td>
</tr>
<tr>
<td>Soroksári botanikus kert tava</td>
<td>látványtó, természetvédelmi funkció</td>
</tr>
<tr>
<td>Golfpálya tava</td>
<td>látványtó</td>
</tr>
<tr>
<td>Horgász club tava</td>
<td>horgásztó</td>
</tr>
<tr>
<td>Joker tó</td>
<td>strand, horgásztó</td>
</tr>
<tr>
<td>Péter-majori horgásztó (BM horgásztó)</td>
<td>horgásztó</td>
</tr>
</tbody>
</table>
A 2022 áprilisában elfogadott, Magyarország 2021. évi vízgyűjtő-gazdálkodási tervében Budapest területén az alábbi felszín alatti víztesteket határozták meg.

A korábbi, 2016-ban közzétett, felülvizsgált vízgyűjtő-gazdálkodási tervhez (VGT2) képest a tervben (VGT3) a felszín alatti víztestek darabszáma és határa nem módosult, viszont a víztestek elnevezése - a közérthetőség érdekében – kiegészítésre került, pl. a talajvíz és a rétegvíz elnevezésekkel kiegészültek, mivel ezek régóta ismert fogalmak a hazai vízgazdálkodásban.

<table>
<thead>
<tr>
<th>Víztest típusa</th>
<th>Víztest neve</th>
</tr>
</thead>
<tbody>
<tr>
<td>karszt és termálkarszt</td>
<td>Dunántúli-középhegység – Budai-források vízgyűjtője (jele: k.1.3, kódja: AIQ543)</td>
</tr>
<tr>
<td></td>
<td>Budapest környéki termálkarszt (jele: kt.1.3, kódja: AIQ503)</td>
</tr>
<tr>
<td>porózus termál</td>
<td>Nyugat- Alföld (jele: p.t.1.2, kódja: AIQ623)</td>
</tr>
<tr>
<td>porózus és hegyvidéki</td>
<td>Duna jobb parti vízgyűjtő – Budapest-Paks (jele: p.1.9.1, kódja: AIQ538)</td>
</tr>
<tr>
<td></td>
<td>Duna-Tisza közéRights Reserved. For re-use or republication see www.vizeink.hu.</td>
</tr>
<tr>
<td>sekély porózus és sekély hegyvidéki</td>
<td>Dunántúli-középhegység - Duna-vízgyűjtő Budapest alatt (jele: h.1.6, kódja: AIQ502)</td>
</tr>
</tbody>
</table>
F.4. Felszíni vizek minősége

A vízminőséget korábbi években egy magyar szabvány (és nem jogszabály) alapján osztályozták. Ez a szabvány hatályát vesztette, ezért a 2011-es évtől kezdődően a vízminőségi adatokat a hatályos rendelet szerint értékeltük. (Adatforrás: Kormányhivatal, OKIR):

<table>
<thead>
<tr>
<th>Vízminőségi jellemzők</th>
<th>Mérési időszak - Átlagértékek</th>
<th>Határérték</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2018</td>
<td>2019</td>
</tr>
<tr>
<td>Klorid (mg/l)</td>
<td>21,8</td>
<td>18,7</td>
</tr>
<tr>
<td>pH (helyszíni mérés)</td>
<td>n.a.</td>
<td>n.a</td>
</tr>
<tr>
<td>pH (labor mérés)</td>
<td>n.a.</td>
<td>n.a</td>
</tr>
<tr>
<td>Ammonia-ammonium-nitrogén (mg/l)</td>
<td>0,07</td>
<td>0,00</td>
</tr>
<tr>
<td>Foszfát foszfor (PO₄³⁻) (µg/l)</td>
<td>47</td>
<td>42</td>
</tr>
<tr>
<td>Összes foszfor (µg/l)</td>
<td>92</td>
<td>108</td>
</tr>
<tr>
<td>Oxygén (oldott) (mg/l)</td>
<td>8,1</td>
<td>9,1</td>
</tr>
<tr>
<td>Biokémiai oxygénigény (BOI₅) (mg/l)</td>
<td>3,1</td>
<td>3,75</td>
</tr>
<tr>
<td>Oxygénfogyasztás (KOld) (mg/l)</td>
<td>12,1</td>
<td>13,6</td>
</tr>
<tr>
<td>Oldott oxygén (oxigén telítettségi százalék, %)</td>
<td>76,5</td>
<td>88,4</td>
</tr>
<tr>
<td>Nitrát-nitrogén (NO₃⁻N) (mg/l)</td>
<td>0,015</td>
<td>0,00</td>
</tr>
<tr>
<td>Összes nitrogén (mg/l)</td>
<td>2,09</td>
<td>1,17</td>
</tr>
</tbody>
</table>

n.a.: nincs adat

<table>
<thead>
<tr>
<th>Vízminőségi jellemzők</th>
<th>Mérési időszak - Átlagértékek</th>
<th>Határérték</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2018</td>
<td>2019</td>
</tr>
<tr>
<td>Klorid (mg/l)</td>
<td>21,9</td>
<td>18,7</td>
</tr>
<tr>
<td>pH (helyszíni mérés)</td>
<td>n.a.</td>
<td>n.a</td>
</tr>
<tr>
<td>pH (labor mérés)</td>
<td>n.a.</td>
<td>n.a</td>
</tr>
<tr>
<td>Ammonia-ammonium-nitrogén (mg/l)</td>
<td>0,06</td>
<td>0,00</td>
</tr>
<tr>
<td>Foszfát foszfor (PO₄³⁻) (µg/l)</td>
<td>43</td>
<td>46</td>
</tr>
<tr>
<td>Összes foszfor (µg/l)</td>
<td>75</td>
<td>101</td>
</tr>
<tr>
<td>Oxygén (oldott) (mg/l)</td>
<td>8,0</td>
<td>9,2</td>
</tr>
<tr>
<td>Biokémiai oxygénigény (BOI₅) (mg/l)</td>
<td>3,1</td>
<td>3,5</td>
</tr>
<tr>
<td>Oxygénfogyasztás (KOld) (mg/l)</td>
<td>12,7</td>
<td>13,4</td>
</tr>
<tr>
<td>Oldott oxygén (oxigén telítettségi százalék, %)</td>
<td>76,1</td>
<td>88</td>
</tr>
<tr>
<td>Nitrát-nitrogén (NO₃⁻N) (mg/l)</td>
<td>0,012</td>
<td>0,000</td>
</tr>
<tr>
<td>Összes nitrogén (mg/l)</td>
<td>2,11</td>
<td>1,25</td>
</tr>
</tbody>
</table>

* országos törzshálózati mintavételi hely Budapest, Duna - Nagytétény, sodorvonal

n.a.: nincs adat (2020-as és 2021-es évre nincs adat)
8. táblázat: Duna vízminősége - országos törzshálózati mintavételi hely Budapest Duna - Nagytétény, jobb part, 2018-2022

<table>
<thead>
<tr>
<th>Vízminőségi jellemzők</th>
<th>Mérési időszak - Átlagértékek</th>
<th>Határérték</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2018</td>
<td>2019</td>
</tr>
<tr>
<td>Klorid</td>
<td>22,3</td>
<td>18,6</td>
</tr>
<tr>
<td>pH (helyszíni mérés)</td>
<td>n.a.</td>
<td>n.n</td>
</tr>
<tr>
<td>pH (labor mérés)</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Ammónia-ammonium-nitrogén</td>
<td>0,04</td>
<td>0,00</td>
</tr>
<tr>
<td>Foszfát foszfor (PO₄-P)</td>
<td>37</td>
<td>40</td>
</tr>
<tr>
<td>Ósszes foszfor</td>
<td>57</td>
<td>84</td>
</tr>
<tr>
<td>Oxigén (oldott)</td>
<td>8,1</td>
<td>8,9</td>
</tr>
<tr>
<td>Biokémiai oxigénigény (BOI5)</td>
<td>3,2</td>
<td>3,5</td>
</tr>
<tr>
<td>Oxigénfogyasztás (KOId)</td>
<td>13,3</td>
<td>13,3</td>
</tr>
<tr>
<td>Óldott oxigén (oxigén telítettségi százalék)</td>
<td>77,7</td>
<td>86,9</td>
</tr>
<tr>
<td>Nitrát-nitrogén (NO₃-N)</td>
<td>0,011</td>
<td>0,000</td>
</tr>
<tr>
<td>Összes nitrogén</td>
<td>2,14</td>
<td>1,25</td>
</tr>
</tbody>
</table>

n.a.: nincs adat

<table>
<thead>
<tr>
<th>Vízminőségi jellemzők</th>
<th>Mérőpont - Átlagértékek</th>
<th>Határérték</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IV. kerület</td>
<td>% *</td>
</tr>
<tr>
<td>Klorid</td>
<td>21,8</td>
<td>55</td>
</tr>
<tr>
<td>pH (helyszíni mérés)</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>pH (labor mérés)</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Ammónia-ammonium-nitrogén</td>
<td>0,07</td>
<td>35</td>
</tr>
<tr>
<td>Foszfát foszfor (PO₄-P)</td>
<td>47</td>
<td>59</td>
</tr>
<tr>
<td>Összes foszfor</td>
<td>92</td>
<td>31</td>
</tr>
<tr>
<td>Oxigén (oldott)</td>
<td>8,1</td>
<td>86</td>
</tr>
<tr>
<td>Biokémiai oxigénigény (BOI5)</td>
<td>3,1</td>
<td>103</td>
</tr>
<tr>
<td>Oxigénfogyasztás (KOId)</td>
<td>12,1</td>
<td>81</td>
</tr>
<tr>
<td>Óldott oxigén (oxigén telítettségi százalék)</td>
<td>76,5</td>
<td>92</td>
</tr>
<tr>
<td>Nitrát-nitrogén (NO₃-N)</td>
<td>0,015</td>
<td>50</td>
</tr>
<tr>
<td>Nitrát-nitrogén (NO₂-N)</td>
<td>1,71</td>
<td>86</td>
</tr>
<tr>
<td>Összes nitrogén</td>
<td>2,09</td>
<td>70</td>
</tr>
</tbody>
</table>

* határérték túllépés a határérték százalékában; n.a.: nincs adat
10. táblázat: Duna vízminősége – Budapest, 2019.

<table>
<thead>
<tr>
<th>Vízminőségi jellemzők</th>
<th>Mérőpont - Átlagértékek</th>
<th>Határérték</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IV. kerület</td>
<td>% *</td>
</tr>
<tr>
<td>Klorid mg/l</td>
<td>18,7</td>
<td>47</td>
</tr>
<tr>
<td>pH (helyszíni mérés) n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>pH (labor mérés) n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Ammoniium-nitrogén mg/l</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>Foszfát foszfor (PO₄-P) µg/l</td>
<td>42</td>
<td>52</td>
</tr>
<tr>
<td>Összes foszfor µg/l</td>
<td>188</td>
<td>72</td>
</tr>
<tr>
<td>Oxigén (oldott) mg/l</td>
<td>9,1</td>
<td>77</td>
</tr>
<tr>
<td>Biokémiai oxigénigény (BOIS) mg/l</td>
<td>3,75</td>
<td>125</td>
</tr>
<tr>
<td>Oxigénfogyasztás (KOId) mg/l</td>
<td>13,6</td>
<td>91</td>
</tr>
<tr>
<td>Oldott oxigén (oxygen utilisation efficiency) %</td>
<td>88,4</td>
<td>79</td>
</tr>
<tr>
<td>Nitril-nitrogén (NO₂-N) mg/l</td>
<td>1,0</td>
<td>50</td>
</tr>
<tr>
<td>Összes nitrogén mg/l</td>
<td>1,17</td>
<td>39</td>
</tr>
</tbody>
</table>

* határérték túllépés a határérték százalékában; n.a.: nincs adat

<table>
<thead>
<tr>
<th>Vízminőségi jellemzők</th>
<th>Mérőpont - Átlagértékek</th>
<th>Határérték</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IV. kerület</td>
<td>% *</td>
</tr>
<tr>
<td>Klorid mg/l</td>
<td>17,6</td>
<td>44</td>
</tr>
<tr>
<td>pH (helyszíni mérés) n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>pH (labor mérés) n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Ammoniium-nitrogén mg/l</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>Foszfát foszfor (PO₄-P) µg/l</td>
<td>41</td>
<td>51</td>
</tr>
<tr>
<td>Összes foszfor µg/l</td>
<td>85</td>
<td>59</td>
</tr>
<tr>
<td>Oxigén (oldott) mg/l</td>
<td>10,1</td>
<td>69</td>
</tr>
<tr>
<td>Biokémiai oxigénigény (BOIS) mg/l</td>
<td>3,85</td>
<td>128</td>
</tr>
<tr>
<td>Oxigénfogyasztás (KOId) mg/l</td>
<td>13,5</td>
<td>90</td>
</tr>
<tr>
<td>Oldott oxigén (oxygen utilisation efficiency) %</td>
<td>98,3</td>
<td>82</td>
</tr>
<tr>
<td>Nitril-nitrogén (NO₂-N) mg/l</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>Összes nitrogén mg/l</td>
<td>1,23</td>
<td>62</td>
</tr>
</tbody>
</table>

* határérték túllépés a határérték százalékában; n.a.: nincs adat

<table>
<thead>
<tr>
<th>Vízminőségi jellemzők</th>
<th>Mérőpont - Átlagértékek</th>
<th>IV. kerület</th>
<th>%*</th>
<th>Nagytétény sodorvonal</th>
<th>%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klorid</td>
<td>mg/l</td>
<td>20,2</td>
<td>51</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>pH (helyszíni mérés)</td>
<td>n.a.</td>
<td></td>
<td></td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>pH (labor mérés)</td>
<td>n.a.</td>
<td></td>
<td></td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>Ammoniá-ammoniúm-nitrogén</td>
<td>mg/l</td>
<td>0,00</td>
<td>0</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>Foszfat foszfor (PO₄-P)</td>
<td>µg/l</td>
<td>37</td>
<td>46</td>
<td>42</td>
<td>53</td>
</tr>
<tr>
<td>Őszes foszfor</td>
<td>µg/l</td>
<td>82</td>
<td>55</td>
<td>97</td>
<td>58</td>
</tr>
<tr>
<td>Oxigén (oldott)</td>
<td>mg/l</td>
<td>9,5</td>
<td>74</td>
<td>9,6</td>
<td>73</td>
</tr>
<tr>
<td>Biokémiai oxigénigény (BOI5)</td>
<td>mg/l</td>
<td>3,92</td>
<td>131</td>
<td>3,67</td>
<td>122</td>
</tr>
<tr>
<td>Oxigénfogyasztás (KOltd)</td>
<td>mg/l</td>
<td>13,3</td>
<td>89</td>
<td>13,2</td>
<td>88</td>
</tr>
<tr>
<td>Oldott oxigén (oxigén teillettségi százalék)</td>
<td>%</td>
<td>91</td>
<td>76</td>
<td>93</td>
<td>78</td>
</tr>
<tr>
<td>Nitrit-nitrogén (NO₂-N)</td>
<td>mg/l</td>
<td>0,000</td>
<td>0</td>
<td>0,000</td>
<td>0</td>
</tr>
<tr>
<td>Nitrát-nitrogén (NO₃-N)</td>
<td>mg/l</td>
<td>1,33</td>
<td>67</td>
<td>1,33</td>
<td>67</td>
</tr>
<tr>
<td>Őszes nitrogén</td>
<td>mg/l</td>
<td>1,58</td>
<td>53</td>
<td>1,75</td>
<td>58</td>
</tr>
</tbody>
</table>

* határérték túllépés a határérték százalékában; n.a.: nincs adat

<table>
<thead>
<tr>
<th>Vízminőségi jellemzők</th>
<th>Mérőpont - Átlagértékek</th>
<th>IV. kerület</th>
<th>%*</th>
<th>Nagytétény sodorvonal</th>
<th>%*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Klorid</td>
<td>mg/l</td>
<td>18,75</td>
<td>47</td>
<td>19,3</td>
<td>48</td>
</tr>
<tr>
<td>pH (helyszíni mérés)</td>
<td>n.a.</td>
<td></td>
<td></td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>pH (labor mérés)</td>
<td>n.a.</td>
<td></td>
<td></td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>Ammoniá-ammoniúm-nitrogén</td>
<td>mg/l</td>
<td>0,00</td>
<td>0</td>
<td>0,00</td>
<td>0</td>
</tr>
<tr>
<td>Foszfat foszfor (PO₄-P)</td>
<td>µg/l</td>
<td>36</td>
<td>45</td>
<td>n.a.</td>
<td></td>
</tr>
<tr>
<td>Őszes foszfor</td>
<td>µg/l</td>
<td>70</td>
<td>47</td>
<td>0,07</td>
<td>0</td>
</tr>
<tr>
<td>Oxigén (oldott)</td>
<td>mg/l</td>
<td>9,6</td>
<td>73</td>
<td>9,6</td>
<td>73</td>
</tr>
<tr>
<td>Biokémiai oxigénigény (BOI5)</td>
<td>mg/l</td>
<td>4,25</td>
<td>142</td>
<td>3,83</td>
<td>128</td>
</tr>
<tr>
<td>Oxigénfogyasztás (KOltd)</td>
<td>mg/l</td>
<td>13,58</td>
<td>91</td>
<td>13,33</td>
<td>89</td>
</tr>
<tr>
<td>Oldott oxigén (oxigén teillettségi százalék)</td>
<td>%</td>
<td>93,3</td>
<td>78</td>
<td>94,2</td>
<td>79</td>
</tr>
<tr>
<td>Nitrit-nitrogén (NO₂-N)</td>
<td>mg/l</td>
<td>0,000</td>
<td>0</td>
<td>0,000</td>
<td>0</td>
</tr>
<tr>
<td>Nitrát-nitrogén (NO₃-N)</td>
<td>mg/l</td>
<td>1,00</td>
<td>50</td>
<td>1,08</td>
<td>54</td>
</tr>
<tr>
<td>Őszes nitrogén</td>
<td>mg/l</td>
<td>0,09</td>
<td>3</td>
<td>1,50</td>
<td>37</td>
</tr>
</tbody>
</table>

* határérték túllépés a határérték százalékában; n.a.: nincs adat
14. táblázat: Ráckevei (Soroksári)-Duna-ág vízminősége – Budapest, Kvassay-zsilip, 2018-2022

<table>
<thead>
<tr>
<th>Vízminőségi jellemző</th>
<th>Mérési időszak - Átlagértékek</th>
<th>Határérték</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2018</td>
<td>2019</td>
</tr>
<tr>
<td>Klorid (mg/l)</td>
<td>n.a</td>
<td>n.a</td>
</tr>
<tr>
<td>pH (helyszíni mérés)</td>
<td>n.a</td>
<td>n.a</td>
</tr>
<tr>
<td>pH (labor mérés)</td>
<td>n.a</td>
<td>n.a</td>
</tr>
<tr>
<td>Ammónia-ammonium-nitrogén (mg/l)</td>
<td>0,08</td>
<td>0,00</td>
</tr>
<tr>
<td>Foszfat foszfor (PO₄-P) (µg/l)</td>
<td>75,2</td>
<td>46</td>
</tr>
<tr>
<td>Összes foszfor (µg/l)</td>
<td>104</td>
<td>74</td>
</tr>
<tr>
<td>Oxigén (oldott) (mg/l)</td>
<td>7,7</td>
<td>8,5</td>
</tr>
<tr>
<td>Biokémiai oxigénigény (BOI5) (mg/l)</td>
<td>2,9</td>
<td>3,4</td>
</tr>
<tr>
<td>Oxigénfogyasztás (KOld) (mg/l)</td>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>Öldött oxigén (oxigén telítettségi százalék) (%)</td>
<td>75,9</td>
<td>85,4</td>
</tr>
<tr>
<td>Nitró-nitrogén (NO₂-N) (mg/l)</td>
<td>0,23</td>
<td>0,00</td>
</tr>
<tr>
<td>Nitrát-nitrogén (NO₃-N) (mg/l)</td>
<td>1,88</td>
<td>1,45</td>
</tr>
<tr>
<td>Összes nitrogén (mg/l)</td>
<td>1,68</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

*nkapott adatszolgáltatás alapján számítva; n.a.: nincs adat

15. táblázat: Szilas-patak vízminősége - Budapest IV. kerület HU16Rv0121, 2018-2022

<table>
<thead>
<tr>
<th>Vízminőségi jellemző</th>
<th>Mérési időszak - Átlagértékek</th>
<th>Határérték</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2018</td>
<td>2019</td>
</tr>
<tr>
<td>Klorid (mg/l)</td>
<td>n.a</td>
<td>n.a</td>
</tr>
<tr>
<td>pH (helyszíni mérés)</td>
<td>n.a</td>
<td>n.a</td>
</tr>
<tr>
<td>pH (labor mérés)</td>
<td>n.a</td>
<td>n.a</td>
</tr>
<tr>
<td>Ammónia-ammonium-nitrogén (mg/l)</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Foszfat foszfor (PO₄-P) (µg/l)</td>
<td>n.a.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Összes foszfor (µg/l)</td>
<td>n.a.</td>
<td>1128</td>
</tr>
<tr>
<td>Oxigén (oldott) (mg/l)</td>
<td>n.a.</td>
<td>8,3</td>
</tr>
<tr>
<td>Biokémiai oxigénigény (BOI5) (mg/l)</td>
<td>n.a.</td>
<td>8,0</td>
</tr>
<tr>
<td>Oxigénfogyasztás (KOld) (mg/l)</td>
<td>n.a.</td>
<td>25,1</td>
</tr>
<tr>
<td>Öldött oxigén (oxigén telítettségi százalék) (%)</td>
<td>n.a.</td>
<td>82</td>
</tr>
<tr>
<td>Nitró-nitrogén (NO₂-N) (mg/l)</td>
<td>n.a.</td>
<td>0,008</td>
</tr>
<tr>
<td>Nitrát-nitrogén (NO₃-N) (mg/l)</td>
<td>n.a.</td>
<td>10</td>
</tr>
<tr>
<td>Összes nitrogén (mg/l)</td>
<td>n.a.</td>
<td>12,2</td>
</tr>
</tbody>
</table>

*nkapott adatszolgáltatás alapján számítva; n.a.: nincs adat

<table>
<thead>
<tr>
<th>Vízminőségi jellemző</th>
<th>Mérési időszak - Átlagértékek</th>
<th>Határérték</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2018</td>
<td>2019</td>
</tr>
<tr>
<td>Klorid mg/l</td>
<td>n.a</td>
<td>122</td>
</tr>
<tr>
<td>pH (helyszíni mérés)</td>
<td>n.a</td>
<td>n.a</td>
</tr>
<tr>
<td>pH (labor mérés)</td>
<td>n.a</td>
<td>n.a</td>
</tr>
<tr>
<td>Ammoniia-ammónium-nitrogén mg/l</td>
<td>n.a</td>
<td>0,92</td>
</tr>
<tr>
<td>Foszfat foszfor (PO₄-P)* µg/l</td>
<td>n.a</td>
<td>921</td>
</tr>
<tr>
<td>Összes foszfor µg/l</td>
<td>n.a</td>
<td>1123</td>
</tr>
<tr>
<td>Oxigén (oldott) mg/l</td>
<td>n.a</td>
<td>8,8</td>
</tr>
<tr>
<td>Biokémiai oxigénigény (BOIS) mg/l</td>
<td>n.a</td>
<td>8,2</td>
</tr>
<tr>
<td>Oxigénfogyasztás (KOld) mg/l</td>
<td>n.a</td>
<td>31,4</td>
</tr>
<tr>
<td>Oldott oxigén (oxigén telítettségi százalék) %</td>
<td>n.a</td>
<td>84,4</td>
</tr>
<tr>
<td>Nitrát-nitrogén (NO₂-N) mg/l</td>
<td>n.a</td>
<td>0,00</td>
</tr>
<tr>
<td>Nitrát-nitrogén (NO₃-N) mg/l</td>
<td>n.a</td>
<td>3,5</td>
</tr>
<tr>
<td>Összes nitrogén mg/l</td>
<td>n.a</td>
<td>n.a</td>
</tr>
</tbody>
</table>

*kapott adatszolgáltatás alapján számítva; n.a.: nincs adat

17. táblázat: Rákos-patak (alsó) vízminősége – Budapest XIII. kerület, torkolat, 2018-2022

<table>
<thead>
<tr>
<th>Vízminőségi jellemző</th>
<th>Mérési időszak - Átlagértékek</th>
<th>Határérték</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2018</td>
<td>2019</td>
</tr>
<tr>
<td>Klorid mg/l</td>
<td>n.a</td>
<td>n.a</td>
</tr>
<tr>
<td>pH (helyszíni mérés)</td>
<td>n.a</td>
<td>n.a</td>
</tr>
<tr>
<td>pH (labor mérés)</td>
<td>n.a</td>
<td>n.a</td>
</tr>
<tr>
<td>Ammoniia-ammónium-nitrogén mg/l</td>
<td>n.a</td>
<td>0,33</td>
</tr>
<tr>
<td>Foszfat foszfor (PO₄-P)* µg/l</td>
<td>n.a</td>
<td>460</td>
</tr>
<tr>
<td>Összes foszfor µg/l</td>
<td>n.a</td>
<td>628</td>
</tr>
<tr>
<td>Oxigén (oldott) mg/l</td>
<td>n.a</td>
<td>8,5</td>
</tr>
<tr>
<td>Biokémiai oxigénigény (BOIS) mg/l</td>
<td>n.a</td>
<td>7,1</td>
</tr>
<tr>
<td>Oxigénfogyasztás (KOld) mg/l</td>
<td>n.a</td>
<td>23,5</td>
</tr>
<tr>
<td>Oldott oxigén (oxigén telítettségi százalék) %</td>
<td>n.a</td>
<td>86,7</td>
</tr>
<tr>
<td>Nitrát-nitrogén (NO₂-N) mg/l</td>
<td>n.a</td>
<td>0,000</td>
</tr>
<tr>
<td>Nitrát-nitrogén (NO₃-N) mg/l</td>
<td>n.a</td>
<td>5,7</td>
</tr>
<tr>
<td>Összes nitrogén mg/l</td>
<td>n.a</td>
<td>n.a</td>
</tr>
</tbody>
</table>

n.a.: nincs adat
18. táblázat: Hosszúréti patak vízminősége - Budapest XI. kerület HU16Rv6021, 2018-2022

<table>
<thead>
<tr>
<th>Vízminőségi jellemzők</th>
<th>Mérési időszak - Átlagértékek</th>
<th>Határérték</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2018</td>
<td>2019</td>
</tr>
<tr>
<td>Klorid mg/l</td>
<td>167,3</td>
<td>157,8</td>
</tr>
<tr>
<td>pH (helyszíni mérés)</td>
<td>n.a</td>
<td>n.a</td>
</tr>
<tr>
<td>pH (labor mérés)</td>
<td>n.a</td>
<td>n.a</td>
</tr>
<tr>
<td>Ammónia-ammónium-nitrogén mg/l</td>
<td>0,13</td>
<td>0,25</td>
</tr>
<tr>
<td>Foszfát foszfor (PO₄-P) μg/l</td>
<td>522</td>
<td>1032</td>
</tr>
<tr>
<td>Összes foszfor μg/l</td>
<td>700</td>
<td>1213</td>
</tr>
<tr>
<td>Oxigén (oldott) mg/l</td>
<td>8,2</td>
<td>8,2</td>
</tr>
<tr>
<td>Biokémiai oxigénigény (BOI5) mg/l</td>
<td>6,8</td>
<td>7</td>
</tr>
<tr>
<td>Oxigénfogyasztás (KOld) mg/l</td>
<td>24</td>
<td>28</td>
</tr>
<tr>
<td>Oldott oxigén (oxigén telítettségi százaléka) %</td>
<td>76</td>
<td>82,5</td>
</tr>
<tr>
<td>Nitró-nitrogén (NO₂-N) mg/l</td>
<td>0,058</td>
<td>0,000</td>
</tr>
<tr>
<td>Nitrát-nitrogén (NO₃-N) mg/l</td>
<td>4,9</td>
<td>8,2</td>
</tr>
<tr>
<td>Összes nitrogén mg/l</td>
<td>5,5</td>
<td>n.a</td>
</tr>
</tbody>
</table>

napt: adatszolgáltatás alapján számítva; n.a.: nincs adat
19. táblázat: Budapest vízfolyásainak környezeti állapota a 2022-ben elfogadott VGT3 alapján
(Adatforrás: www.vizeink.hu)

<table>
<thead>
<tr>
<th>Víztest neve</th>
<th>Ökológiai állapot</th>
<th>Kémiai állapot</th>
<th>Biológiai állapot</th>
<th>Fizikai-kémiai állapot/potenciál</th>
<th>Hidromorfológiai állapot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duna-Budapest</td>
<td>mérsékeltnél</td>
<td>nem jó</td>
<td>jó</td>
<td>mérsékelt</td>
<td>mérsékelt</td>
</tr>
<tr>
<td>Ráckevei-Soroksári-Dunaág</td>
<td>mérsékeltnél</td>
<td>nem jó</td>
<td>mérsékelt</td>
<td>mérsékelt</td>
<td>mérsékelt</td>
</tr>
<tr>
<td>Barát-patak</td>
<td>rossznél</td>
<td>jó</td>
<td>rossz</td>
<td>mérsékelt</td>
<td>mérsékelt</td>
</tr>
<tr>
<td>Aranyhegyi- és Határréti-patakok</td>
<td>mérsékeltnél</td>
<td>nem jó</td>
<td>mérsékelt</td>
<td>mérsékelt</td>
<td>jó</td>
</tr>
<tr>
<td>Nagy-Ördög-árok felső</td>
<td>gyenge</td>
<td>jó</td>
<td>gyenge</td>
<td>mérsékelt</td>
<td>jó</td>
</tr>
<tr>
<td>Nagy-Ördög-árok alsó</td>
<td>rossznél</td>
<td>jól</td>
<td>rossz</td>
<td>jól</td>
<td>mérsékelt</td>
</tr>
<tr>
<td>Hosszúréti-patak</td>
<td>gyenge</td>
<td>nem jó</td>
<td>gyenge</td>
<td>gyenge</td>
<td>jó</td>
</tr>
<tr>
<td>Szilassi-patak és vízgyűjtője</td>
<td>rossznél</td>
<td>nem jó</td>
<td>rossz</td>
<td>gyenge</td>
<td>mérsékelt</td>
</tr>
<tr>
<td>Rákos-patak</td>
<td>gyenge</td>
<td>nem jó</td>
<td>gyenge</td>
<td>mérsékelt</td>
<td>jó</td>
</tr>
<tr>
<td>Gyáli 1., 2. - főcsatorna és Szilassycsatorna</td>
<td>rossznél</td>
<td>nem jó</td>
<td>rossz</td>
<td>mérsékelt</td>
<td>jó</td>
</tr>
</tbody>
</table>

6. ábra:: Budapest állóvizeinek vízminőségi osztályba sorolása (2015-ben végzett vízmintavételek alapján)

- **Jó**
- **Tűrhető**
- **Szennyezett**
- **Ertéken szennyezett**
- **Adathány**

19. táblázat: Budapest vízfolyásainak környezeti állapota a 2022-ben elfogadott VGT3 alapján
(Adatforrás: www.vizeink.hu)

<table>
<thead>
<tr>
<th>Víztest neve</th>
<th>Ökológiai állapot</th>
<th>Kémiai állapot</th>
<th>Biológiai állapot</th>
<th>Fizikai-kémiai állapot/potenciál</th>
<th>Hidromorfológiai állapot</th>
</tr>
</thead>
<tbody>
<tr>
<td>Duna-Budapest</td>
<td>mérsékeltnél</td>
<td>nem jó</td>
<td>jó</td>
<td>mérsékelt</td>
<td>mérsékelt</td>
</tr>
<tr>
<td>Ráckevei-Soroksári-Dunaág</td>
<td>mérsékeltnél</td>
<td>nem jó</td>
<td>mérsékelt</td>
<td>mérsékelt</td>
<td>mérsékelt</td>
</tr>
<tr>
<td>Barát-patak</td>
<td>rossznél</td>
<td>jó</td>
<td>rossz</td>
<td>mérsékelt</td>
<td>mérsékelt</td>
</tr>
<tr>
<td>Aranyhegyi- és Határréti-patakok</td>
<td>mérsékeltnél</td>
<td>nem jó</td>
<td>mérsékelt</td>
<td>mérsékelt</td>
<td>jó</td>
</tr>
<tr>
<td>Nagy-Ördög-árok felső</td>
<td>gyenge</td>
<td>jó</td>
<td>gyenge</td>
<td>mérsékelt</td>
<td>jó</td>
</tr>
<tr>
<td>Nagy-Ördög-árok alsó</td>
<td>rossznél</td>
<td>jól</td>
<td>rossz</td>
<td>jól</td>
<td>mérsékelt</td>
</tr>
<tr>
<td>Hosszúréti-patak</td>
<td>gyenge</td>
<td>nem jó</td>
<td>gyenge</td>
<td>gyenge</td>
<td>jó</td>
</tr>
<tr>
<td>Szilassi-patak és vízgyűjtője</td>
<td>rossznél</td>
<td>nem jó</td>
<td>rossz</td>
<td>gyenge</td>
<td>mérsékelt</td>
</tr>
<tr>
<td>Rákos-patak</td>
<td>gyenge</td>
<td>nem jó</td>
<td>gyenge</td>
<td>mérsékelt</td>
<td>jó</td>
</tr>
<tr>
<td>Gyáli 1., 2. - főcsatorna és Szilassycsatorna</td>
<td>rossznél</td>
<td>nem jó</td>
<td>rossz</td>
<td>mérsékelt</td>
<td>jó</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nitrátion</th>
<th>Nitrition</th>
<th>Összes szerves szén</th>
<th>Kémiai oxigénigény</th>
<th>Biokémiai oxigénigény</th>
<th>Oxidált oxigén</th>
<th>Összes foszfor</th>
<th>Orthofoszfat ion</th>
<th>Ammonium - nitrogén</th>
<th>pH-érték</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

- kiváló
- jó
- szennyezett
- erősen szennyezett
- tűrhető
F.5. Felszín alatti vizek minősége

<table>
<thead>
<tr>
<th>Monitoring pont neve</th>
<th>Figyelő / termelő</th>
<th>Mennyiségi mérés</th>
<th>Kémiai mérés feltáró</th>
<th>Kémiai mérés operatív</th>
<th>Forrás / kút</th>
</tr>
</thead>
<tbody>
<tr>
<td>IX. kerület Budapest Hűsipar</td>
<td>figyelő</td>
<td>vízszint</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XXI. kerület Csepel 1. csáposkút</td>
<td>termelő</td>
<td>sérülékeny küterületi</td>
<td>operatív alapkémia vízmű</td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>XXI. kerület Csepel 11/66</td>
<td>figyelő</td>
<td>vízszint</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>XXI. kerület Csepel II. kút</td>
<td>termelő</td>
<td>termálvíz</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>XI. kerület Dél-Budai Keserűvíz telep, Önkormányzat BK-4. jelű figyelőkút</td>
<td>figyelő</td>
<td>sérülékeny küterületi</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>XI. kerület Dél-Budai Keserűvíz telep, Önkormányzat H-III. jelű figyelőkút</td>
<td>figyelő</td>
<td>sérülékeny küterületi</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>I. kerület Budapest Pávakert 8</td>
<td>figyelő</td>
<td>vízszint</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>I. kerület Budapest Tabán</td>
<td>figyelő</td>
<td>vízszint</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>II. kerület Lukács, Boltív f.</td>
<td>termelő</td>
<td>sérülékeny belterületi</td>
<td></td>
<td></td>
<td>forrás</td>
</tr>
<tr>
<td>III. kerület Békásmegyer Attila-forrás (Bründl)</td>
<td>figyelő</td>
<td>hozam</td>
<td>védett rétegvíz</td>
<td></td>
<td>forrás</td>
</tr>
<tr>
<td>III. kerület Budapesti-fővárosi akna</td>
<td>termelő</td>
<td>sérülékeny belterületi</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>III. kerület Csiharhegy Déli (Szivattyús)</td>
<td>termelő</td>
<td>védett rétegvíz</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>III. kerület Római VII. forrás</td>
<td>termelő</td>
<td>védett rétegvíz</td>
<td></td>
<td></td>
<td>forrás</td>
</tr>
<tr>
<td>IV. kerület Balparti I., 2 sz. Törpecsápos</td>
<td>termelő</td>
<td>sérülékeny küterületi</td>
<td>operatív alapkémia vízmű</td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>IV. kerület Balparti I., MO/10 figyelőkút</td>
<td>figyelő</td>
<td>sérülékeny küterületi</td>
<td>operatív alapkémia vízmű</td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>IV. kerület Tungsram-strand</td>
<td>figyelő</td>
<td>vízszint</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>V. kerület Budapest Erzsébet tér</td>
<td>figyelő</td>
<td>vízszint</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>XI. kerület Gellért tér I. kút</td>
<td>termelő</td>
<td>termálvíz</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>XI. kerület Gellért tér III. kút</td>
<td>termelő</td>
<td>termálvíz</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>XII. kerület Budapest Városmajor</td>
<td>figyelő</td>
<td>vízszint</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
</tbody>
</table>

21. táblázat: Budapest felszín alatti tervezett monitoringhelyek a VGT3-ban (forrás: www.vizeink.hu)
F.6. Intézkedések

<table>
<thead>
<tr>
<th>Monitoring pont neve</th>
<th>Figyelő / termelő</th>
<th>Mennyiségi mérés</th>
<th>Kémiai mérés feltáró</th>
<th>Kémiai mérés operatív</th>
<th>Forrás / kút</th>
</tr>
</thead>
<tbody>
<tr>
<td>XIII. kerület Dagály strandfürdő, Séke kút</td>
<td>termelő</td>
<td>termálvíz</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>XIII. kerület Margitsziget Magó-kút (II.)</td>
<td>termelő</td>
<td>termálvíz</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>XIII. kerület Margitsziget VIII. csapókút</td>
<td>termelő</td>
<td>sérülékeny belterületi</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>XIV. kerület Pascal kút</td>
<td>termelő</td>
<td>termálvíz</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>XIV. kerület Széchenyi II. kút</td>
<td>termelő</td>
<td>termálvíz</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>XV. kerület Budapest Újpalota Főtömű</td>
<td>figyelő</td>
<td>vízszint</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>XV. kerület Rákospalota 1073</td>
<td>figyelő</td>
<td>vízszint</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>XVI. kerület Budapest Matyásföld-1</td>
<td>figyelő</td>
<td>vízszint</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>XVI. kerület KS Forrásmajor I/a</td>
<td>termelő</td>
<td>védett rétegvíz</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
<tr>
<td>XVI. kerület KS Forrásmajor IV.</td>
<td>termelő</td>
<td>védett rétegvíz</td>
<td></td>
<td></td>
<td>kút</td>
</tr>
</tbody>
</table>

22. táblázat: Budapesti felszíni víztestekre vonatkozó intézkedési tervek a VGT3-ban (forrás: www.vizeink.hu)

<table>
<thead>
<tr>
<th>Víztest neve (víztest kódja)</th>
<th>Víztestekre vonatkozó ökológiai (ö) és kémiai (k) célkitűzések</th>
<th>Célkitűzés elérése</th>
<th>Mentességi indokok állapot elérésére</th>
<th>Alap és kiegészítő intézkedések</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dunakanyar - Dunakut (AOC752)</td>
<td>ö: a jó potenciál elérendő k: a jó állapot elérendő</td>
<td>2027+ 2027+</td>
<td>ö: T1 k: T4</td>
<td>1.5, 2.1, 10, 12, 14.2, 15.2, 26.1, 26.2, 29</td>
</tr>
<tr>
<td>Aranyhegyi- és Határréti-patakok (AEP279)</td>
<td>ö: a jó potenciál elérendő k: a jó állapot elérendő</td>
<td>2027+ 2027</td>
<td>ö: T1 k: T4</td>
<td>1.1, 1.5, 1.6, 2.1, 2.4, 6.1, 6.4, 7.1, 9, 10, 12, 14.2, 15.1, 15.2, 21, 21.4, 23.2</td>
</tr>
<tr>
<td>Nagy-Ördög-árok alsó (AEP825)</td>
<td>ö: a jó állapot elérendő k: a jó állapot elérendő</td>
<td>2027+ 2027</td>
<td>ö: T1</td>
<td>10, 12, 14.2, 15.1, 21.4, 26.1</td>
</tr>
<tr>
<td>Nagy-Ördög-árok felső (AEP826)</td>
<td>ö: a jó állapot elérendő k: a jó állapot elérendő</td>
<td>2027+</td>
<td>ö: T1</td>
<td>2.1, 10, 12, 14.2, 21.4, 29</td>
</tr>
</tbody>
</table>
Mentességi indokok:

Természeti feltételek miatt 4 (4) mentesség

T1: A felszíni víztest vízminőségének helyreállása hosszabb időt vesz igénybe

T4: Felszíni víz kémiai állapotának helyreállása hosszabb időt vesz igénybe

Az intézkedések rövidítési kódjai:

1. **Szennyvíztisztító telepek építése és korszerűsítése**
 1.1. **Új szennyvíztisztító telep létesítése, meglévő szennyvíztisztító telepek korszerűsítése** 2000 LE feletti agglomerációkban a hatályos szennyvíz irányelvnek való megfeleléssel
 1.3. **Szennyvíztisztítás kiegészítő intézkedései** környezeti szempontból összességében kedvezőbb megoldások megvalósítása a befogadó felszín alatti vagy felszín alatti víz szempontjából fokozottan érzékeny, valamint védett területeken
 1.4. **A szennyvíztisztító telep záportározó kapacitásának növelése, a kezelési technológia fejlesztése, zöld energia megoldások**
 1.5. **Csapadékvíz szennyvízcsatornára történő rákötéseinek csökkentése, egyéb külső vizek kizárása, különösen a felszín alatti, vagy felszín alatti víz, zöld energia megoldások**
 1.6. **Szennyvíziszap kezelés és újrahasznosításra-előkészítés fejlesztése**

2. **Mezőgazdasági eredetű tápanyagszennyezés csökkentése**

3. **Hidromorfológiai viszonyok javítása a hosszú távú átjárhatóság kivételével** (vízfolyások és állóvizek morfológiai szabályozottságának csökkentése)

Víztest indokozott (közvetlen célkitűzések)

<table>
<thead>
<tr>
<th>Víztest neve (víztest kódja)</th>
<th>Víztestekre vonatkozó ökológiai (ö) és kémiai (k) célkitűzések</th>
<th>Célki-tűzés elérése</th>
<th>Mentességi indokok állapot elérésére</th>
<th>Alap és kiegészítő intézkedések</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hosszúrétipatak (AEP602)</td>
<td>ö: a jó potenciál elérendő k: a jó állapot elérendő</td>
<td>2027+</td>
<td>ö: T1 k: T4</td>
<td>1.1, 1.3, 1.5, 1.6, 2.1, 2.4, 6.4, 9, 12, 14.2, 15.2, 21.4, 29</td>
</tr>
<tr>
<td>Szilas-patak és vízgyűjtője (AEQ012)</td>
<td>ö: a jó potenciál elérendő k: a jó állapot elérendő / kevésbé szigorú célkitűzés</td>
<td>2027+</td>
<td>ö: T1 k: T4</td>
<td>1.1, 1.3, 1.5, 1.6, 2.1, 2.4, 6.4, 6.5, 7.1, 9, 10, 12, 14.2, 15.1, 15.2, 21.4, 23.2, 26.1, 29</td>
</tr>
<tr>
<td>Hosszúréti-patak (AEP602)</td>
<td>ö: a jó potenciál elérendő k: a jó állapot elérendő</td>
<td>2027+</td>
<td>ö: T1 k: T4</td>
<td>1.5, 1.6, 2.1, 2.4, 6.3, 6.4, 7.1, 9, 10, 12, 14.2, 16.1, 21.4, 23.2</td>
</tr>
<tr>
<td>Rákos-patak (AOC845)</td>
<td>ö: a jó potenciál elérendő k: a jó állapot elérendő</td>
<td>2027+</td>
<td>ö: T1 k: T4</td>
<td>1.1, 1.4, 1.5, 1.6, 2.1, 2.4, 6.2, 6.4, 6.10, 7.1, 9.10, 12, 14.2, 15.1, 16.1, 21.4, 23.2, 23.4, 29</td>
</tr>
<tr>
<td>Gyáli 1,2.-főcsatorna és Szilassy-csatorna (AEP530)</td>
<td>ö: a jó potenciál elérendő k: a jó állapot fenntartandó</td>
<td>2027+</td>
<td>ö: T1 k: T4</td>
<td>1.1, 1.4, 1.5, 1.6, 2.1, 2.4, 6.2, 6.4, 6.10, 7.1, 9.10, 12, 14.2, 15.1, 16.1, 21.4, 23.2, 23.4, 29</td>
</tr>
</tbody>
</table>
6.3 Mederrehabilitáció kategóriától és típustól (nagy folyó, kis és közepes vízfolyások, állóvizek, mesterséges víztestek) függő módszerekkel a környezeti és emberi igények együtt érvényesítése mellett
6.4 Vízfolyásokon és állóvizekben felhalmozódott iszap és mederbeli növényzet egyszeri eltávolítása, hasznosítása
6.5 Vízfolyások és állóvizek parti zónájában a víztípusból függő zonáció rehabilitációja
6.7 Vízfolyások és állóvizek jó ökológiai állapotának, potenciáljának fokozatos elérése és megtartása fenntartási munkák keretében
6.10 Az ártér, illetve a hullámtér vízellátottságának javítása
7. A vízjárási viszonyok javítása, az ökológiai vízmennyiség biztosítása
7.1 A belvízelvezető rendszer kialakításának és üzemeltetésének módosítása, beleértve zöld energia alkalmazását
7.5 A vízmegosztás módosítása az ökológiai vízigény biztosítása érdekében
7.6 Ökológiai szempontok érvényesítése a fenntartható vízhasználatok megvalósításában
9. A költségmegtérülés elvének alkalmazása a megfizethetőség figyelembevételével a lakossági vízszolgáltatás területén
10. A költségmegtérülés elvének alkalmazása a megfizethetőség figyelembevételével az ipari vízszolgáltatás területén
12. Mezőgazdasági tanácsadás vízvédelmi szemponttal kiegészített rendszere
14. Kutatás, tudásbázis fejlesztés a bizonytalanság csökkentése érdekében
15. Elsőbbségi veszélyes anyagok kibocsátásának megszüntetése és elsőbbségi anyagok kibocsátásának csökkentése
15.1 Elsőbbségi anyagok kibocsátásának szabályozása az iparáganként meghatározható legjobb rendelkezésre álló technológia (BAT) alapján. A hazai üzemekre megállapított „BAT-ok” aktualizálása.
15.2 A kommunális szennyvíztisztító telepen keresztül befogadóba vezetett lakossági eredetű elsőbbségi anyagok kibocsátásának szabályozása
16. Ipari szennyvíztisztítók korszerűsítése, bővítése
16.1 Az ipari üzemekből felszíni befogadóba vezetett szennyvíz minőségére vonatkozó követelmények teljesítése
17. Talajerózióból és/vagy felszíni lefolyásból származó hordalék és szennyezőanyag terhelés csökkentése
17.1 Szennyezőanyag és hordalék lemosódás csökkentése növénytermesztési technológiák alkalmazásával
17.2 Talajerózió elleni védekezés növényzet telepítéssel
17.3 Talajerózió elleni műszaki létesítmények, terepalakulatok kialakítása (vízmásolások megkötése, hordalékfogó gátak stb.)
17.5 Szélerózió elleni védekezés a légköri kiülepedésből eredő terhelés csökkentése érdekében
20. A halászat és egyéb olyan tevékenységek káros hatásainak megelőzése és szabályozása, amelyek állatok és növények eltávolításával járnak
20.3 Halastavak létesítésének és működésének szabályozása
21. Településekről, épített infrastruktúrából és közlekedésből származó szennyezéseken megelőzése és szabályozása
21.4 Települési eredetű, belterületi növénytermesztésből, állattartásból, közterületekről származó terhelések csökkentése
23. A természetes vízvisszatartást elősegítő intézkedések
23.2 Területi vízvisszatartás mezőgazdasági területeken a beszivárgás növelése és a lefolyás csökkentése érdekében
23.4 Vízvisszatartás tározással szivárgéken belvízjárásokban, illetve medertározókban kialakított vízkeresztülhelyek és hordalékok csomagolása kiszélesített szakaszokon
26. Hőterhelések kezelése
26.1 Termálvizek kezelése a vízfolyásokba történő bevezetés előtt, beleértve a hatékonyabb energiakinyerést
26.2 Hőtővek felszíni vízbe történő bevezetésének szabályozása
29. Károsodott védett vízi, vizes és szárazföldi élőhelyek védelme vízminőségi hatásokkal szemben az egyéb intézkedéseken felül
23. táblázat: Budapest területét érintő felszín alatti víztestekre vonatkozó intézkedési tervek a VGT3 alapján (forrás: www.vizeink.hu)

<table>
<thead>
<tr>
<th>Víztest neve (víztest kódja)</th>
<th>Víztestekre vonatkozó mennyiségi (m) és kémiai (k) célkitűzések</th>
<th>Célkitűzés elérése</th>
<th>Meneteségi indok</th>
<th>Intézkedések</th>
</tr>
</thead>
</table>
| Dunántúli-középhegység – Budai-források vízgyűjtője (AIQ543) | m: jó állapot fenntartandó
k: jó állapot fenntartandó | 7.1, 7.3, 7.6, 7.7, 7.13 | | |
| Budapest környéki termálkarszt (AIQ503) | m: jó állapot fenntartandó
k: jó állapot fenntartandó | 7.1, 7.3, 7.5, 7.6, 7.7 | | |
| Nyugat-Alföld porózus és hasadékos termál (AIQ623) | m: jó állapot fenntartandó
k: jó állapot fenntartandó | | | |
| Duna jobb parti vízgyűjtő – Budapest-Paks (rétegvíz) (AIQ538) | m: jó állapot fenntartandó, kockázat csökkentendő
| Duna-Tisza közé hátság – Duna-vízgyűjtő északi rész (rétegvíz) (AIQ530) | m: jó állapot fenntartandó
k: jó állapot fenntartandó, kockázat csökkentendő | 2027 | | 1.1., 1.2., 1.3., 1.5., 2.13., 21.1., 21.12., |
| Duna-Tisza közé – Duna-völgy északi rész (rétegvíz) (AIQ524) | m: jó állapot fenntartandó
k: jó állapot fenntartandó, kockázat csökkentendő | 2027 | | 13., 24., 27. |
| Dunántúli-középhegység – Duna-vízgyűjtő Budapest alatt (AIQ547) | m: jó állapot fenntartandó
<table>
<thead>
<tr>
<th>Vizek</th>
<th>Függelék</th>
</tr>
</thead>
</table>
| Dunántúli-középhegység - Duna-vízgyűjtő Visegrád – Budapest (AIQ551) | m: jó állapot fenntartandó, kockázat csökkentendő
k: jó állapot fenntartandó
2027
7.1, 7.3, 7.5, 7.6, 7.7, 23, 24, 27. |
| Börzsöny, Gödöllő-dombvidék – Duna-vízgyűjtő (AIQ502) | m: jó állapot fenntartandó
k: jó állapot fenntartandó
23. |
| Duna jobb parti vízgyűjtő – Budapest-Paks (AIQ537) | m: jó állapot elérendő
k: jó állapot elérendő
2027+
2027+
T5
T6
1.1, 1.2, 1.3, 1.5, 2, 3, 4, 7.1, 7.3, 7.5, 7.6, 7.7, 8.1, 8.2, 8.3, 8.4, 9, 10, 11, 12, 13, 14, 17.1, 17.2, 17.4, 17.5, 17.6, 17.7, 19.1, 20.3, 21.1, 21.12, 23, 24, 27, 28, 29, 31.2. |
| Duna bal parti vízgyűjtő – Vác-Budapest (AIQ536) | m: jó állapot fenntartandó, kockázat csökkentendő
k: jó állapot elérendő
2027
2027+
T6
1.1, 1.2, 1.3, 1.5, 2, 3, 4, 7.1, 7.3, 7.5, 7.6, 7.7, 8.1, 8.2, 8.3, 8.4, 9, 10, 11, 12, 13, 14, 17.1, 17.2, 17.4, 17.5, 17.6, 17.7, 19.1, 20.3, 21.1, 21.12, 23, 24, 27, 28, 29, 31.2. |
| Szentendre-sziget és egyéb szigetek (AIQ652) | m: jó állapot elérendő
k: jó állapot elérendő
2027+
2027+
T5
T6
1.1, 1.2, 1.3, 1.5, 2, 3, 4, 7.1, 7.3, 7.5, 7.6, 7.7, 8.1, 8.2, 8.3, 8.4, 9, 10, 11, 12, 13, 14, 17.1, 17.2, 17.4, 17.5, 17.6, 17.7, 19.1, 20.3, 21.1, 21.12, 23, 24, 27, 28, 29, 31.2. |
| Dunántúli-középhegység - Duna-vízgyűjtő Budapest alatt (talajvíz) (AIQ546) | m: jó állapot fenntartandó
k: jó állapot fenntartandó
2027
| Dunántúli-középhegység - Duna-vízgyűjtő Visegrád – Budapest (talajvíz) (AIQ550) | m: jó állapot fenntartandó, kockázat csökkentendő
k: jó állapot fenntartandó, kockázat csökkentendő
2027
1.1, 1.2, 1.3, 1.5, 2, 4, 7.1, 7.3, 7.5, 7.6, 7.7, 8.1, 8.2, 8.3, 8.4, 9, 10, 11, 12, 13, 14, 17.1, 17.2, 17.4, 17.5, 17.6, 17.7, 19.1, 20.3, 21.1, 21.12, 23, 24, 27, 28, 29, 31.2. |
Mentességi indokok:

Természeti feltételek miatt 4 (4) mentesség

T5: A felszín alatti víztest vízszintjének helyreállása hosszabb időt vesz igénybe

T6: A felszín alatti víz kémiai állapotának helyreállása hosszabb időt vesz igénybe

Az intézkedések rövidítési kódjai:

1. Szennyvíztisztító telepek építése és korszerűsítése

1.1. Új szennyvíztisztító telep létesítése, meglévő szennyvíztisztító telepek korszerűsítése 2000 LE feletti agglomerációban a hatályos szennyvíz irányelvnek való megfeleléssel

1.2. Szennyvizek kezelése azonos céljára, mint 1.1, 2000 LE alatti településeken

1.3. Szennyvíztisztítás kiegészítő intézkedéseik környezeti szempontból összességében kedvezőbb megoldások megvalósítása a befogadó felszín alatti vagy felszíni víztől jó állapotának veszélyeztetése nélkül

1.5. Csapadékvíz szennyvízcsatornára történő rákötéseinek csökkentése, egyéb külső vizek kizárása, különösen a felszíni, vagy felszín alatti víz szempontjából fokozottan érzékeny, valamint védett területeken

2. Mezőgazdasági eredetű tápanyagszennyezés csökkentése

3. Mezőgazdasági eredetű peszticid csökkentése

4. Bekövetkezett szennyeződések csökkentése, felszámolása, beleértve a felhagyott szennyezett területek kárementesítését

6. Hidromorfológiai viszonyok javítása a hosszú időszakos átlaghullámával kívül (vízfolyások és állóvizek morfológiai szabályozottságának csökkentése)

8. Víz hatékonyság javítása, az ökológiai vízmennyiség biztosítása

9. A kőlenségmegtérülés elvén alkalmazása a megfizethetős figyelembevételével a lakossági vízszolgáltatás területén

10. A költségmegtérülés elvén alkalmazása a megfizethetős figyelembevételével az ipari vízszolgáltatás területén

11. A költségmegtérülés elvén alkalmazása a megfizethetős figyelembevételével a mezőgazdasági vízszolgáltatás területén

12. Mezőgazdasági tanácsadás vízvédelmi szemponttal kiegészített rendszere

13. Ivóvízbázisok védelmét szolgáló intézkedések (védőterületek, pufferzónák)

14. Kutatás, tudásbázis fejlesztés a bizonytalanság csökkentése érdekében

17. Talajzerózióból és/vagy felszíni lefolyásból származó hordalék és szennyezőanyag terhelés csökkentése

17.1. Szennyezőanyag és hordalék lemosódás csökkentése növénytermesztési technológiák alkalmazásával

17.2. Talajerózió elleni védekezés növényzet telepítéssel
17.4. Vízfolyások és tavak melletti vízvédelmi sávok, pufferzónák kialakítása
17.5. Szélerózió elleni védekezés a légköri kiülepedésből eredő terhelés csökkentése érdekében
17.6. A legeltetés és a takarmánygazdálkodás jó gyakorlata
17.7. Az erózió és a lefolyás csökkentése erdőterületeken a jó erdőgazdálkodási gyakorlat részeként
19. A rekreáció (beleértve a horgászatot is) káros hatásainak megelőzése és szabályozása
19.1. Tavak létesítése és működése az ökológiai szempontokra is figyelemmel
20. A halászat és egyéb olyan tevékenységek káros hatásainak megelőzése és szabályozása, amelyek állatok és növények eltávolításával járnak
20.3. Halastavak létesítésének és működésének szabályozása
21. Településekről, épített infrastruktúrából és közlekedésből származó szennyezések megelőzése és szabályozása
21.1. Kommunális hulladéklerakók megfelelő kialakítása, működtetése és ellenőrzése
21.12. Elválasztott rendszerrel összegyűjtött csapadékvíz kezelése a befogadóba történő bevezetés előtt
23. A természetes vízvisszatartást elősegítő intézkedések
24. Éghajlatváltozás elkerülése
27. Beszivárogtatás, visszasajtolás korszerűsítése, szabályozása
28. Károsodott védett vízi, vizes és szárazföldi élőhelyek védelme a vízjárást befolyásoló hatásokkal szemben az egyéb intézkedéseken felül
29. Károsodott védett vízi, vizes és szárazföldi élőhelyek védelme vízminőségi hatásokkal szemben az egyéb intézkedéseken felül
31. Balesetből származó szennyezések megelőzése
31.2. Balesetek megelőzésére és kezelésére vonatkozó tervek és a végrehajtásra való felkészülés
A fejezet hivatkozásai

1 A Duna-vízgyűjtő magyarországi része Vízgyűjtő-gazdálkodási Terv – 2015 (277. oldal; 6-1. ábra)
2 Fővárosi Csatornázási Művek Zrt. Ár- és Belvízvédelmi Osztály adatszolgáltatása, 2019
3 1242/2022. (IV. 28.) Korm. határozat Magyarország 2021. évi vízgyűjtő-gazdálkodási tervéről
4 1155/2016. (III. 31.) Korm. határozat Magyarország felülvizsgált, 1015. évi vízgyűjtő-gazdálkodási tervéről
5 1024/2017. (VI.21.) Főv. Kgy. határozat
6 Báthyorné Nagy Lí迭kó Réka: Kisvízfolyások rendezésének tájvédelmi szempontjai,
7: Hosszúréti-patak revitalizációs vizsgálat. Tanulmányterv. – G.Á.L. Mérnöki Tervező
8 A Főváros vízes élőhelyeinek felmérése – Fővárosi Csatornázási Művek Zrt., 2015.
10 Magyar Bányaüvészet és Közgazdasági Központ Térképe
11 (https://map.mdfs.gov.hu/hvz)
12 31/2004. (XII. 30.) KvVM rendelet a felszíni vizek megfigyelésének és
13 állapotértékelésének egyes szabályairól
14 10/2010. (VIII. 18.) VM rendelet a felszíni víz vízszennyezettségi határértékeiről és
15 azok alkalmazásának szabályairól
16 http://geoportal.vizugy.hu/vizgyujtogazd/Docs/HE_16_014_BMkozl_fuggelek.pdf
17 219/2004. (VII. 21.) Korm. rendelet a felszín alatti vizek védelméről
19 a természetes fürdővizek minőségi követelményeiről, valamint a természetes
20 fürdőhelyek kijelöléséről és üzemeltetéséről szóló 78/2008. (IV. 3.) Korm. rendelet 1. melléklete
21 https://www.nnk.gov.hu/attachments/article/732/termeszetes_furdovizek_2019-
22 2022.pdf
23 https://www.nnk.gov.hu/index.php/kozegeszessegugyi-laboratoriumi-
24 foosztaly/terkepes-informacio/furdovizminosegi-terkep
25 78/2008. (IV. 3.) Korm. rendelet a természetes fürdővizek minőségi
26 követelményeiről, valamint a természetes fürdőhelyek kijelöléséről és üzemeltetéséről
27 4. § (1) bekezdés
28 123/1997. (VII. 18.) Korm. rendelet a vízbázisok, a távlati vízbázisok, valamint az
29 ivóvízellátást szolgáló vízvitáltestmények védelméről
30 28/2004. (XII.25.) KvVM rendelet a vízszennyező anyagok kibocsátásaira vonatkozó
31 határértékekről és alkalmazásuk egyes szabályairól 34. fejezet (C)
32 27/2015. (VI. 17.) OGY határozat a 2015–2020 közötti időszakra szóló Nemzeti
33 Környezetvédelmi Programról
34 A vízgazdálkodásról szóló 1995. évi LVII. törvény 2. § a) pont
35 2011. évi CCIX. törvény a víziközmű-szolgáltatásról
36 http://rsd.ofv.hu
37 www.rsdpartisav.hu
38 201/2022. (VI. 7.) Korm. rendelet
39 1242/2022. (IV. 28.) Korm. határozat Magyarország 2021. évi vízgyűjtő-
40 gazdálkodási terv
42 1155/2016. (III. 31.) Korm. határozat Magyarország felülvizsgált, 2015. évi vízgyűjtő-
43 gazdálkodási tervéről
I.5. Klimatikus viszonyok

Budapest éghajlati viszonyainak alakulásában is egyértelműen megjelenik a globális klimaváltozás. 1901 és 2022 közötti időszakban mintegy 1,54 °C-os emelkedés mutatható ki Budapest évi középhőmérsékletének alakulásában. Ezzel párhuzamosan a napfénytartam évi összege az 1970-es évek kezdettétől nő.

Az átlagérték emelkedése mellett legalább annyira fontos a szélsőséges időjárású események gyakoriságának alakulása. Az Országos Meteorológiai Szolgálat éghajlati adatbázisában végzett elemzések szerint a nyári középhőmérséklet emelkedett a legnagyobb mértékben a múlt század eleje óta, ami a hőséghullámok sűrűbb előfordulásában is tükröződik; ezek gyakorisága az utóbbi 25 évben jelentősen nőtt.

A klimatikus jelenségek közül kiemelendő a nagymértékű városi hősziget-hatás. 2020-ban az évi átlagos felszínhőmérséklet-alapú hősziget-intenzitási érték, mely a városi és a városkörnyéki átlaghőmérséklet különbsége, délelőtt 1,13 °C, este 1,74 °C volt. A júniusi átlagos felszínhőmérséklet-alapú hősziget-intenzitási érték kiemelkedő: délelőtt 3,20 °C volt. A nyári időszakban a hősziget kiterjedése és intenzitása is jelentős: a főváros pesti oldalának meghatározó részén 3-7 °C-al magasabb az átlaghőmérséklet, mint a városkörnyéki területeken.

A 122 éves idősorban 2022 a történelmi aszály éve volt – országos szinten a 17. legszárazabb éve volt a 17. legszárazabb januárja, februárja 15., májusa a 7., júliusa a 10., október 12. legszárazabb volt. Ugyanakkor a rekord alacsony értékek mellett a főváros belterületén 2022 szeptemberében kiemelkedően nagy mennyiségű csapadék hullott, 103,9 mm-ével a 7. legendesekorosabb szeptemberre adódott.
A városklíma állapotának leírása, jellemzése

Budapest átmeneti éghajlatú, mivel az alföldi és a középhegységi területek határán fekszik, és ez a körülmény a város klimáját nagymértékben befolyásolja.

Csapadék

Budapest átlagos évi csapadékoszzege 526 mm – a legtöbb csapadék május és augusztus között hullik, míg a január és április közti időszak a legkevésbé csapadékos (lásd 1. ábra). A két szélsőérték között a különbség nagyjából kétszeres. Az alábbi ábrán látható, hogy a július-augusztus időszak nem tekinthető a legszárazabb, ugyanakkor ezek a hónapok – a magas átlaghőmérsékletből fakadó nagy párolgási veszteség miatt – aszályosak is lehetnek.

Hőmérséklet

A hőmérséklet napi menetét érdemes a legmagasabb nappali hőmérséklet és a legalacsonyabb éjszakai hőmérséklet alakulásával is jellemezni (lásd 2. ábra). A szélsőségtövek e mutatókban is a július-augusztusi, illetve a december-februári időszakra esnek. A két görbe eltérése, azaz a napi hőmérsékleti ingás májustól augusztusig a legnagyobb, november és január között pedig a legalacsonyabb. A legnagyobb ingás meghaladja a 10 °C-ot, míg a legkisebb ingás ennek körülbelül a fele.
Napsütés

A 3. ábra a napsütéses órák számának havi értékeit mutatja be, együtt ábrázolva az ún. relatív napfénytartammal, ami a műholdas mérésekből számított napos órák számának és a csillagászatilag lehetséges napsütéses órák számának (a nappalok hosszának összege) hányadosa. Ez az érték akkor lenne 100 %, ha soha nem takarná felhő a Napot. A nappalok közismert módon júniusban a leghosszabbak, és decemberben a legrövidebbek. A relatív napfénytartam maximuma júliusra (59%) és augusztusra (64%), a minimuma decemberre (28%) esik. A nappal hosszának és a felhőzetnek az összjátéka júliusban adja a legtöbb (285 óra), míg decemberben a legkevesebb (73 óra) napos órát. A napsütéses órák évi száma Budapest belterületén – az 1991-2020-es időszak átlagát tekintve – 2231 óra, míg a magyarországi átlag 2115 óra.

(Forrás: OMSZ)
Szélviszonyok

Budapesten két helyi szélrendszerrrel kell számolni. Az egyik a városi hőszigettel összefüggő városi cirkuláció, ami akkor figyelhető meg leginkább, amikor a belváros és a külterületek közötti hőmérséklet különbség számtalanul. A másik eleme a fővárosi cirkulációs rendszernek a Budai-hegységhez kapcsolódó hegy-völgyi szél. Ez nappal a völgy felől, éjszaka viszont a hegy felől fúj. Ez a helyi levegőáramlás is csak akkor érvényesül, mikor a fronthatás nem jellemző.

A nagytérségű cirkulációval is összefüggő, 8 szélirány szektorra számított szélirány-gyakoriságot a 4. ábra mutatja be.

![4. ábra: A fő szélirányok átlagos relatív gyakoriságát (%) tükröző szélrozsa Budapest belterületén homogenizált adatok alapján (2001-2020). (Forrás: OMSZ)](image)

A budapesti térség **uralkodó széliránya** az északnyugati (kb. 32%), a 2001-2020-as időszak alapján. Jelentőségben ezt követi a nyugati (kb. 14,5%) és az északkeleti (12%) szélirány. A déli és a keleties szelek részaránya alacsony (egyenként 7-9%). A **szélcsendes időszakok** aránya mintegy 2%. Az **északnyugati szélirány nem budapesti sajátosság** (nem a két fent említett helyi szélrendszer eredménye), annak túlsúlya máshol is igen gyakori a Kárpát-medencében.

Az átlagos **szélsebesség** éves menetét az 5. ábra tükrözi, melyen feltüntettük a legutóbbi, 2022-es évet annak érzékeltetésére, hogy egy-egy évben a szélsebesség alakulása a sokévi átlagotól nagyon is eltérhet. Általánosságban elmondható, hogy a tavaszi hónapok a legszelesebbek, míg októberre-novemberre várható a szélsebesség minimuma. Ezzel szemben 2022-ben, januárban és februárban az átlagoshoz képest magasabb a havi átlag, míg a márciusi szélsebesség havi értéke 36%-kal maradt el az ilyenkor megszokottól.

<table>
<thead>
<tr>
<th>Év</th>
<th>Átlag [m/s]</th>
<th>Medián [m/s]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2006</td>
<td>2,29</td>
<td>2,36</td>
</tr>
<tr>
<td>2007</td>
<td>2,60</td>
<td>2,64</td>
</tr>
<tr>
<td>2008</td>
<td>2,46</td>
<td>2,42</td>
</tr>
<tr>
<td>2009</td>
<td>2,47</td>
<td>2,29</td>
</tr>
<tr>
<td>2010</td>
<td>2,44</td>
<td>2,39</td>
</tr>
<tr>
<td>2011</td>
<td>2,36</td>
<td>2,35</td>
</tr>
<tr>
<td>2012</td>
<td>2,54</td>
<td>2,58</td>
</tr>
<tr>
<td>2013</td>
<td>2,40</td>
<td>2,34</td>
</tr>
<tr>
<td>2014</td>
<td>2,22</td>
<td>2,22</td>
</tr>
<tr>
<td>2015</td>
<td>2,35</td>
<td>2,45</td>
</tr>
<tr>
<td>2016</td>
<td>2,39</td>
<td>2,43</td>
</tr>
<tr>
<td>2017</td>
<td>2,60</td>
<td>2,59</td>
</tr>
<tr>
<td>2018</td>
<td>2,22</td>
<td>2,19</td>
</tr>
<tr>
<td>2019</td>
<td>2,49</td>
<td>2,61</td>
</tr>
<tr>
<td>2020</td>
<td>2,41</td>
<td>2,24</td>
</tr>
<tr>
<td>2021</td>
<td>2,46</td>
<td>2,54</td>
</tr>
<tr>
<td>2022</td>
<td>2,27</td>
<td>2,09</td>
</tr>
</tbody>
</table>

5. ábra: A szélsebesség változása Budapest belterületén – a példaként kiválasztott 2022-es évben a havi középértékek is erősen eltértek a sokévi átlagtól. (Forrás: OMSZ)

1. táblázat: Budapest belterület szélsebességének éves átlagai és mediánjai 2006 és 2022 között (Forrás: OMSZ)
Hősziget-hatás

A városklima szempontjából kitüntetett figyelmet érdemel a hősziget-jelenség és az ehhez kapcsolódó, az előző fejezetben említett sajatos légkörzési rendszer. Az előbbi a városi területek magasabb hőmérsékletét, az utóbbi pedig a melegebb területek fölött feláramlást, illetve a város hűvösebb pereme felől a központ felé mutató felszín-közeli légmozgást jelenti.

A hőmérsékletet a sugárzási viszonyok, a felszín tulajdonságai és a légkörzés folyamatai együttesen alakítják ki. A sűrűn beépített területek hőmérséklete több fokkal magasabb a jelentős zöldfelületekkel rendelkező külső területeken mérhető értéknél. A sötétebb, azaz több napfényt elnyelő burkolt és beépített felületek kisugárzó hatása a felület melegedési folyamatait elnyújtja, ezáltal nagymértékben befolyásolja a felszín hőmérsékletét (A különböző felületek felszínhőmérsékletének vizsgálatát a Függelék tartalmazza). Emellett a lehulló csapadék nagy része is elfolyik a csatornarendszerbe, vagyis a nagyvárosi mészzin párolgás útján nem tudnak hőt leadni. Ezt a nagyvárosokban kialakuló jelenséget nevezik városi hősziget-hatásnak.

6. ábra: A felszínhőmérséklet és a zöldfelületi intenzitás összefüggése Budapesten a felszínhőmérsékleti a zöldfelület intenzitási térképek egy adott metszetén felmérve

A 8. ábra az előző térképtől eltérően egy átlagos nyári nap felszínhőmérsékletét mutatja be. A térkép alapját képező Landsat 8 műholdfelvétel egy kiragadott időpontban, 2021. június 26-án zavartalan, napfényes időszakban készült. Ezen a térképen az látható, hogy a felszínhőmérséklet jellemzően alacsony. Az erdős területeken akár 20 -25 °C körül is lehet és jellemzően a belvárosban sem haladja meg a 35 °C-ot, de a legmagasabb felszínhőmérsékletű területek ekkor is elérnek a 40 °C-ot.
Budapest hősziget-intenzitásának vizsgálatához további, az ELTE Meteorológiai Tanszékének kutatási eredményeit is felhasználtuk, melynek keretében a Terra és az Aqua műholdak MODIS műszereivel mért felszínhőmérsékletre vonatkozó adatokat térképezték és elemzették (lásd 9. ábra). Az 1 km² körüli felbontásban is jól látható, hogy az év során hogyan alakult a nappali és éjszakai hősziget erőssége a fővárosban. Megjegyezzük, hogy ezek az értékek a vízszintes felületek kisugárzásából lehet meghatározni, de csak a felhőmentes időszakokban. Így ezek az értékek nem reprezentálják az összes időjárási helyzetet, továbbá nem azonosak a levegő szokásosan – a felszíntől 2 méterre – mért hőmérsékletével sem. A jelentős térbeli felbontás miatt mégis érdemesek a tanulmányozásra.

A nappali mezőket vizsgálva megállapítható, hogy a városi hősziget a főváros pesti oldalán a legjelentősebb; ives alakban helyezkedik el, lefedve a belvárost. A nyári időszakban a hősziget kiterjedése és intenzitása is jelentős; a városkörnyéki átlaghőmérsékletet 3-7 °C-kal meghaladó terület a főváros pesti oldalának nagy részére kiterjed, míg a budai oldalon a hősziget csak egy kisebb területet fed le. Itt a domborzat és a zöldfelületek nagyobb aránya mérsékli a városi hősziget erősségét. A tavaszi-nyári időszakban a Budai-hegység legmagasabb részeinek felszínhőmérséklete 4-7°C-kal alacsonyabb, mint a városkörnyéki átlaghőmérséklet, így ebben az időszakban a fővárosban a hegyvidék és a belváros között néhány kilométeres távolságon belül 10 °C-ot meghaladó hőmérséklet-különbség alakul ki.

A térképeken jól kirajzolódik a Duna vonala, a Népliget, valamint a X., XVII. és XVIII. kerületek közé beékelődő Városerdő, melyek felszínhőmérséklete alacsonyabb a beépített területekénél.

A környezetüknél melegebb felület például a Budapest Liszt Ferenc Nemzetközi Repülőtér, amelynek felszínhőmérséklete nyáron, derült idöben 6°C-kal meghaladja a városkörnyéki átlagot.

Az évi átlagos intenzitásértékek idősorában az intenzitásértékek nagy szórása miatt nem beszélhetünk egyértelmű csökkenésről vagy növekedésről.

A budapesti hősziget mértékének megítéléséhez megbízható adatokat nyújt a közép-európai nagyvárosokra készített hősziget-intenzitás vizsgálata (lásd 10. ábra). Jól látható, hogy a budapesti hősziget intenzitása a vizsgált európai nagyvárosok sorában közepesnek számít.

Éghajlatváltozás és az időjárási szélsőségek vizsgálata

Az éghajlatváltozás korunk egyik legjelentősebb kihívása, mely hatással van az emberi egészségre, a természeti és épített környezetre, a társadalomra és a gazdaságra is.

Budapest hőmérsékleti idősorát 1901-től nézve a lineáris trendegyenest jól szemlélhetünk az 1,54 °C-os melegedést (11. ábra) egyértelmű képet kapunk. Ma már egyértelműen bizonyossá vált, hogy ez az emelkedő hőmérséklet elsősorban a globális éghajlatváltozás Budapesten is tapasztalható eredménye.

Az napi abszolút hőmérsékleteket elemezve Budapesten a legmelegebb értéket 2007. július 20-án (40,7 °C), a leghidegebbet 1942. január 24-én (-27,1 °C) mérték az OMSZ állomásain.

Hőségeriódusok régebben is voltak, ugyanakkor az utóbbi 25 évben rendszeresen előfordultak. Az OMSZ éghajlati adatbázisában végzett elemzések szerint a nyár középhőmérséklet emelkedett leginkább a múlt század eleje óta, amely a hőséghullámok (legalább három napig legalább 27 fokot elérő napi középhőmérséklet) egyre gyakoribb előfordulásában is megmutatkozik (12. ábra).
Klimatikus viszonyok

A nappali magas hőmérsékletek mellett az emberi szervezet számára igen megertelhő, ha éjszaka sem csökken 20 °C alá a hőmérséklet. A legalább 20 °C-ot elérő napi minimumhőmérsékletű napok, azaz a trópusi éjszakák már a XX. század elején is előfordultak szinte minden évben, de napjainkra sokkal gyakoribbá váltak (13. ábra). 2022-ben 28 trópusi éjszaka fordult elő, amely 1991-2020-as átlaghoz (19 nap) képest 9 nappal több. A 122 éves változást tekintve mintegy 18,4 nappal nőtt a XX. század eleje óta a trópusi éjszakák száma, melyet az illesztett lineáris trendegyenes is szemléltet.

13. ábra: A legalább 20 °C-ot elérő napi minimumhőmérsékletű trópusi éjszakák évi száma Budapest belterületén 1901-2022 között, homogenizált adatok alapján (Forrás: OMSZ)

14. ábra: A legfeljebb 0 °C-ot elérő napi minimumhőmérsékletű fagyos napok évi száma Budapest belterületén 1901-2022 között, homogenizált adatok alapján (Forrás: OMSZ)
A Budapesten hullott csapadék évi összegében csökkenés mutatható ki 1901 és 2022 között (15. ábra), azonban az 1980-as évektől inkább a csapadék változékonysága a jellemző. A csökkenés ellenére nagy csapadékhozamú évek az időszak végén is előfordultak. Az aszályos évek a múlt század első felében is jellemzőek voltak, azonban a legszárazabb év Budapesten 2011 volt (290 mm), de az utóbbi 122 év három legszárazabb éve is az elmúlt 25 évre esett (2011, 1997 és 2003).

15. ábra: A csapadék évi összegének változása Budapest belterületén 1901 és 2022 között mm-ben (Forrás: OMSZ)

A 122 éves időszorban 2022 a történelmi aszály éve volt – országos szinten a 17. legcsapadékszegényebbnek, míg Budapest belterülete a 23. legszárazabb évenképp bizonyult. Budapesten 2022-ben volt az elmúlt 122 év 3. legszárazabb januárja (2,9 mm), februárja 15. (6,85 mm), májusa a 7. (16,7 mm), július a 10. (10,4 mm), míg októbere a 12. legszárazabb (6,0 mm) volt. **Ugyanakkor** a rekord alacsony értékek mellett a főváros belterületén 2022 szeptemberében kiemelkedően magas csapadékok is hullottak, 103,9 mm-ével a 7. legcsapadékosabb szeptembernek adódott.

Az évszakok közül a nyári csapadékösszeg a legváltozékonnyabb évről évre (15. ábra), az elmúlt években a nyári összeg a sokévi átlag közelében alakult. Csupán tavasszal figyelhető meg jelentősebb csökkenő tendencia Budapest belterület állomáson, a többi évszakban nincs egyértelmű változás.

A csapadék évi összegének változása mellett a Duna vízhozamában (és ezzel összefüggésben a jellemző vízállásokkal kapcsolatban) is megfigyelhető egy trend, a hosszú idősoros vízjárás adatok elemzése alapján. Lásd részletesebben az I.4 Vizek állapota c. fejezet.
Az időjárási szélsőségeket több mutatóval is jellemezhetjük: az egyik az éves átlagos napi csapadékontenzitás; a másik a 10 mm-t meghaladó csapadékú órák száma, illetve a 17 m/s-t (gyakorlatilag 61 km/h-t) meghaladó széllökésekkel jellemezhető napok gyakorisága.

Az éves átlagos napi csapadékontenzitás (egy év alatt lehullott csapadékösszeg és a csapadékos napok számának hányadosa) a hosszú idősoros elemzések szerint enyhén növekszik (lásd 17. ábra). A csapadék évi összegének csökkenő folyamatával összefüggésben megállapítható, hogy Budapesten egyre ritkábban, de egyre nagyobb intenzitású csapadékesemények jellemzőek.

16. ábra: A csapadék évszakonkénti összegének változása Budapest belterületen 1901 és 2022 között mm-ben (Forrás: OMSZ

17. ábra: Az éves átlagos napi csapadékontenzitás (napi csapadékosság) Budapest belterületén 1901 és 2022 között (Forrás: OMSZ)
A klimatikus viszonyok

1. ábra: A 10 mm-t meghaladó csapadékú órák gyakorisága Budapest belterületen 1998 és 2022 között (Forrás: OMSZ)

18. ábra: A tavaszi, nyári, őszi és téli átlagos napi csapadékintenzitás (napi csapadékosság) Budapest belterületen 1901 és 2022 között (Forrás: OMSZ)

19. ábra: A 10 mm-t meghaladó csapadékú órák gyakorisága Budapest belterület állomásra vonatkozóan 1998-2022 között éves bontásban (Forrás: OMSZ)
A szárazság nem csupán a mezőgazdasási területeken okoz nehézséget, de a városi környezet alakításában is komoly szerepe van. Nedvesség hián, száraz időszakban a szennifikáló hő felhalmozódik a városban, növelve ezzel a városi levegő hőmérsékletét, hozzájárulva akár a városi hősziget erősödéséhez.

A szárazságot jellemző indexek közül az egymást követő száraz napok maximális száma megmutatja, hogy az adott éven belül milyen hosszú volt az egymásszitó időszak, amikor a napi csapadékösszeg 1 mm alatt alakult. Ennek 122 éves idősorát szemlélteti a 20. ábra Budapest belterületen.

A viharos szélkések gyakorisága az 1970-es évekhez képest nagymértékben megnövekedett: évente 26 napon következik be ilyen esemény. Ez a szélsőség a leggyakoribb decembertől márciusig (együtt 11,1 nap, átlagosan 2,8 nap/hó, azaz kb. tíz naponként), s a legritkább augusztustól októberig (együtt 4,3 nap, átlagosan 1,4 nap/hó, azaz kb. húsz naponként). Az évi menet kétségesen megváltozik, az első hónapokban és augusztusban az idősoros változásokban jelentős változások megfigyelhetőek. A viharos napok számának hosszú idősoros változása egyértelműen növekszik az elmúlt 59 évben (lásd 21. ábra).

Azóta a napfénytartam évi összege folyamatosan nő, értéke immár meghaladja az első hullám maximumát. (A napfénytartam mérése 2013-ban sajnos beszüntette az Országos Meteorológiai Szolgálat, elsősorban a közvetlen globálsugárzás-mérés elterjedése miatt.)

Említést érdemel még a napsugárzás UV-B sugárzás tartománya, amely alapvetően jótékonyan hat az emberi szervezetre (D-vitamin képződés), de nagy dózisban káros hatású. Lehetséges negatív hatásai: bőrégés, bőrbetegségek. Az UV-B sugárzás Budapesten is emelkedett az elmúlt évtizedekben (22. ábra), hasonlóan más, nem nagyvárosi állomásokhoz. Ez a tendencia összhangban van a felhőzet csökkenésével (ill. a napfénytartam növekedésével).
Várható változások a főváros éghajlatában

A városklima állapotának okai, hatótényezői

A városklimát befolyásoló hatótényezők vizsgálatára – annak összetettsége és sokrétűsége miatt – az állapotértékelés nem terjed ki. Az alábbiakban csak a meghatározó hatótényezőket nevezzük meg.

A városklima függ az éghajlati, makroklimatikus környezettől, amelybe a város beágyazódik. A Föld éghajlata és így Budapesté is – bizonyíthatóan – mindig változott és változni is fog. Hidegebb, melegebb, szárazabb és nedvesebb időszakok váltogatták egymást. A globális klímaváltozás folyamatában azonban megbomlott ezen ingadozások egyensúlya, és világszerte minden évszakban eltolódott a melegedő szakaszok irányába. A csapadék ugyanakkor helytől és időtől függő előjelet és okot is teremt. Mindezen változások fő oka minden bizonytal az üvegházhatású gázok kibocsátása, amelynek mérskéletében a főváros is szerepet vállalt (lásd a Klimavédelmi intézkedések részben).
Klimatikus viszonyok

A globális éghajlati tényezők mellett meghatározóak a helyi klimát befolyásoló hatótényezők is. A természetestől eltérő városi felszíni formák (a zöldfelület alacsony aránya), a felhasznált építő- és burkolóanyagok a természetes felszínekeltérfüggő fizikai tulajdonságai, a városi légkör eltérő szerkezete és megváltozott összetétele, valamint a városokban fokozottan jelenlévő antropogén hőkibocsátás együttse felelősek a hősziget jelenség kialakulásáért.

A beépített területeken már nem lehet nagymértékben alakítani a hősziget-hatás mértékén, viszont a jövőben beépítésre, vagy jelentős átalakításra szánt területeken, illetve a barnamezős területeken lehet érvényesíteni azokat a városrendezési szempontokat, amelyek által mérsékelhető a hősziget-hatás erősödése.

A budapestiek véleménye a klimatikus viszonyokról

A felmérés szerint a budapestiek elsősorban az egyre melegebb nyarakat, a hirtelen, heves viharok károkozását, valamint a hirtelen lezúduló nagy esőket érzékelik a legfőbb problémaként a fővárosban.

A beállított kérdések szerint a fővárosban a leggyakrabban fordított vállalkozási munkák közül a következők foglaltak százaléka volt: 79% a nyári szűrőmunkákat, 76% a hirtelen viharokkal való külső felületelési munkákat, 67% a hirtelen viharokkal való külső felületelési munkákat, 62% a nagy esőkkel való külső felületelési munkákat, 61% az allergiák és betegségekkel való külső felületelési munkákat és 58% az időszakos visszhang és áramlethenység munkákat.

A resultátumok szerint az általános területen lévő hőmérnöki adatok alapján a fővárosban 2020-ban a leggyakrabban fordított vállalkozási munkák közül a következők voltak a leggyakrabban fordított vállalkozási munkák százaléka: 79% a nyári szűrőmunkákat, 76% a hirtelen viharokkal való külső felületelési munkákat, 67% a hirtelen viharokkal való külső felületelési munkákat, 62% a nagy esőkkel való külső felületelési munkákat, 61% az allergiák és betegségekkel való külső felületelési munkákat és 58% az időszakos visszhang és áramlethenység munkákat.
A klímaváltozás különféle következményeinek megítélése erősen összefügg egymással, vagyis aki valamelyiket jellemzőnek tartja, nagy valószínűséggel ugyanígy vélekedik a többiről is. A hatások megítélése összefügg a nemmel és az életkorral: a klímaügyekre érzékenyebbek a nők, mint a férfiak, valamint a fiatalabbak, mint az idősebbek.

Klímavédelmi intézkedések

Az 1992 júniusában aláírt ENSZ Éghajlatváltozási Keretegyezmény (United Nations Framework Convention on Climate Change, UNFCCC, röviden: FCCC, a továbbiakban: Egyezmény) célja „az üvegház-gázok légköri koncentrációinak stabilizálása olyan szinten, amely megakadályozná az éghajlati rendszerek gyakorolt veszélyes antropogén hatást. Ezt a szintet olyan időhatáron belül kell elérni, ami lehetővé teszi az ökológiai rendszerek természetes alkalmazkodását az éghajlatváltozáshoz, továbbá, ami biztosítja, hogy az élelmiszer-termelést az éghajlatváltozás ne fenyegeesse, valamint, ami módot nyújt a fenntartható gazdasági fejlődés folytatódására”.

Az Egyezmény legfelsőbb testülete a Részes Felek Konferenciája (Conference of the Parties, röviden: COP), amelyet évente tartanak meg.

A megállapodás főbb elemei, 2020 utáni hatállyal:

- hosszú távú terv szerint a globális éves átlaghőmérséklet emelkedését az iparosodást megelőző szinthez képest jóval 2 °C alatt tartják, és erőfeszítéseket tesznek annak érdekében, hogy a hőmérsékletemelkedés mindössze 1,5 °C legyen,
- a jelenlegi kötelező és nem kötelező vállalásokat egy új, átfogó rendszerben kell összefogni,
- a Kiotói Jegyzőkönyv második kötelezettségvállalási időszakát (2013-2020) váltja fel,
- az új egyezményben valamennyi Részes Fél kiveheti a részét a klímaváltozás elleni globális összefogásból (az is, aki nem tagja a Kiotói Jegyzőkönyvnak).

A megállapodást jelenleg 195 ország fogadta el, amelyből 153 ország, köztük Magyarország is ratifikálta. (Forrás: ENSZ.) E döntések lényege, hogy az illető ország további vállalásokat tegyen az üvegházhatású gázok kibocsátásának mérsékléseire, mert amit eddig vállaltak, az nem lenne elég a végső cél, az üvegházhatású gázok légköri mennyiségeinek állandó értéken tartásához.

A klímaváltozással kapcsolatos legmagasabb szintű hazai szakpolitikai dokumentum a Második Nemzeti Éghajlatváltozási Stratégia (NÉS-2), mely a klímapolitika, a zöldgazdaság-fejlesztés és az alkalmazkodás átfogó keretrendszere – meghatározza az éghajlatvédelem céljait és cselekvési irányait ágazati és területi dimenziókban.

A stratégia két fő célja: „Fennmaradás és tartamos fejlődés egy változó világban” és „Adottságaink, lehetőségeink és korlátaink megismerése”. E két átfogó célon belül négy tematikus alcélt határoz meg:
Klimatikus viszonyok

- dekarbonizáció (kis CO₂-kibocsátású gazdaság, ÜHG kibocsátás csökkentés, nyelők elősegítése);
- éghajlati sérülékenység vizsgálata (térinformatikai adatrendszer a döntéshozás, és a tervezés segítésére);
- alkalmazkodás és felkészülés (erőforrások megóvása, rugalmas válaszok a problémákra);
- éghajlati partnerség (széleskörű partnerség, tájékozottság, példamutatás).

A stratégia alapját a Láng István professzor vezetésével 2003 és 2006 között zajló VAHAVA (Változás-hatás-válaszadás) projekt\(^{16}\) jelentette, melyben több száz kutató, illetve az összes érintett szakterület tudományos képviselője részt vett. A projekt meghatározta a magyarországi klima változásának várható irányát, elemezte ennek az egyes ágazatokra és szakterületekre valószínűsíthető hatását.

A fenti globális és hazai célkitűzésekhez az utóbbi években Budapest az alábbiak szerint (az energiagazdálkodási fejezetben részletesen) járul hozzá:

- A 2017-ben jóváhagyott klímastratégia\(^{16}\) felülvizsgálatának keretében 2021-ben egy Fenntartható Energia- és Klímaakciótervre (SECAP)\(^{17}\) készült, amely a klímastratégiai célkitűzésekhez részletesen meghatározott intézkedéseket tartalmaz. A SECAP 2030-ra 40%-os CO₂ kibocsátás-csökkentési célt határozott meg a 2015-ös bázisévhez képest. A SECAP a Polgármesterek Klíma- és Energiaügyi Szövetségéhez történő benyújtásával a Fővárosi Önkormányzat vállalja a 2030-as célkitűzések teljesítését, valamint az együttműködést a 2050-re vonatkozó közös elképzelésekért:
 - a budapesti lakások egyharmadában jelentős energetikai felújítás történik,
 - 1500 MW-ra nő a Budapesten működő napenergiának összkapacitása,
 - a távhőellátás legalább 50%-ban megujuló energia, 50%-ban hulladékhoz, 75%-ban kapcsolódnak energiatermelésből származó hő vagy 50%-ban ilyen energiák és hők kombinációjának felhasználásával történik,
 - legalább 30%-ra lecsökken a személyautóval közlekedők aránya
 - fejenként 1 m²-rel nő a zöldterületek nagysága,
 - 350 hektárral nő a helyi jelentőségű védett természeti területek nagysága.

A Fenntartható Energia- és Klímaakciótervre (SECAP) való átaláíval egyidejűleg – a múltbeli és jelenlegi adatok előállításával, becslési korlátaira tekintettel – válhat biztosítatható Budapest további klímavédelmi kötelezettségeinek teljesítése is.

Klimatikus viszonyok | Függelék

Függelék

F.1. Homogenizálás

A meteorológiai mérések a különböző skálájú légköri folyamatok hatásának összességét regisztrálják. Az esetek többségében azonban bennünket a regionális és globális folyamatok eredelmeinek, a lokálisak kevésbé. Ennek jegyében a meteorológiai állomások elhelyezése és környezete a Meteorológiai Világszervezet ajánlásai szerint világszerte nagyjából egységes.

Ennek ellenére egy több évtizedes adatsorban fellelhetők olyan hatások is, melyek a mérés körülményeinek változását tükrözik. Az évek során megváltozhatott a mérőállomások helye és környezete, a mérések időpontja, a mérőeszközök fajtája és elhelyezése stb.

Ezek a tényezők mind zavaró hatások, és így az általuk okozott inhomogenitás összemérhető lehet az éghajlati adatsorokban rejlő tényleges változások nagyságával. Ezért ezeket valamilyen módon az adatsorokból ki kell szűrnünk.

A feladat tehát az adatsorokból – az éghajlatváltozás tetszőleges jelének megőrzése mellett – a mérésre ható, zavaró környezeti változások korrigálása. Ez a tevékenység az adatsorok klimatológiai homogenizálása.

A nemzeti meteorológiai szolgálatok többsége foglalkozik a homogén adatsorok létrehozásának problémájával. Hazánkban, az Országos Meteorológiai Szolgálatnál (OMSZ) is készült egy szigorú matematikai alapokon nyugvó homogenizáló eljárás és számítási programrendszer, a MASH (Multiple Analysis of Series for Homogenization), amelynek szerzője Szentimrey Tamás. Hosszabb időszakot átfogó éghajlati vizsgálatokat ma már csak olyan adatsorokon végzünk el, melyeket a MASH módszerrel előzetesen homogenizáltunk (Izsak és Szentimrey, 2020).

F.2. UTCI humán klímaindex

Az UTCI\(^{19}\) (Universal Thermal Climate Index) egy humán klímaindex, amely az emberi test fiziológiai komfortérzetét írja le meghatározott meteorológiai körülmények között. Nem csak a környezet hőmérsékletét veszi figyelembe, hanem a páratartalmat, a szélsebességet és a sugárzást, mindazokat a tényezőket, amelyek jelentősen befolyásolják a környezetre adott élettel reakcióinkat.

Az UTCI számításához 2 modellt kombinálnak. Ezek figyelembe veszik az emberi szervezet hőszabályzását és a ruházat által biztosított szigetelést, mely tényezőt a különböző környezeti feltételek befolyásolnak. Összességében tehát az UTCI becsülést ad arra a „látszólagos”, vagy „érzett” hőmérsékletre, amelyet testünk érezne adott hőmérséklet, szélsebesség, páratartalom és sugárzás mellett.

Az UTCI 11 stresszkategóriát különböztet meg, az extrém meleg hőstressztől (UTCI ≥ +46°C) az extrém hideghstresszig (UTCI ≤ -40°C). Az egyes kategóriák küszöbei alább olvashatók.

A sok lehetséges alkalmazás közül az UTCI hasznos lehet például az egészségre, az energiafogyasztásra gyakorolt hatások vizsgálatára.

Az UTCI 20 éves átlagának alakulását mutatja egy éven belüli 10 napos bontásban a 26. ábra. Budapest külterületén (26/a ábra) a legmelegebbnek augusztus első 10 napját érezhetjük, amikor legnagyobb a meleg stresszkategóriák aránya (enyhe és közepesen erős hőstresszes napok). Ezt, a külterületen számszerűsített hatást tovább fokozza a nagyváros hősziget hatása (26/b ábra). A belterületi állomás adataival
számított UTCI értékek közé a közepesen erős hőstresszen túl erős meleg stresszes napok is megjelennek július közepén.

26. ábra: UTCI humán klimaindex relatív gyakorisága tíznapos bontásban Budapest külterületén (a) és belterületén (b) (2001-2020)

<table>
<thead>
<tr>
<th>UTCI</th>
<th>Stresszint</th>
</tr>
</thead>
<tbody>
<tr>
<td>UTCI ≥ 46 °C</td>
<td>extrém meleg stressz</td>
</tr>
<tr>
<td>38 °C ≤ UTCI < 46 °C</td>
<td>nagyon erős meleg stressz</td>
</tr>
<tr>
<td>32 °C ≤ UTCI < 38 °C</td>
<td>erős meleg stressz</td>
</tr>
<tr>
<td>28 °C ≤ UTCI < 32 °C</td>
<td>közepesen erős meleg stressz</td>
</tr>
<tr>
<td>26 °C ≤ UTCI < 28 °C</td>
<td>enyhe meleg stressz</td>
</tr>
<tr>
<td>9 °C ≤ UTCI < 26 °C</td>
<td>nincs hőstressz</td>
</tr>
<tr>
<td>0 °C ≤ UTCI < 9 °C</td>
<td>enyhe hideg stressz</td>
</tr>
<tr>
<td>-13 °C ≤ UTCI < 0 °C</td>
<td>közepesen erős hideg stressz</td>
</tr>
<tr>
<td>-27 °C ≤ UTCI < -13 °C</td>
<td>erős hideg stressz</td>
</tr>
<tr>
<td>-40 °C ≤ UTCI < -27 °C</td>
<td>nagyon erős hideg stressz</td>
</tr>
<tr>
<td>UTCI ≤ -40 °C</td>
<td>extrém hideg stressz</td>
</tr>
</tbody>
</table>

Jól látható, hogy január, április és szeptember kivételével mindegyik hónapot melegebbnek érezhetünk, mint az átlag. A leginkább kimagašló anomália júniust és augusztust jellemzett, amikor 2,8 °C-kal érezhettünk melegebbnek az adott hónapokat, mint a 2001-2020-as időszak átlaga. Az egész évét 1,1 °C-kal érezhettük melegebbnek, mint a sokéves átlagot.

27. ábra: 2022 havi UTCI értékeinek eltérése a 2001-2020-as havi átlagoktól Budapest belterületén

F.3. A különböző felületek albedója és felszínhőmérséklete

Az újabb városklima-kutatások eredményei közvetlenül hasznosíthatóak a településvezetők, építészek és a döntéshozók számára. Az ELTE Meteorológiai Tanszéke és Újbuda Önkormányzatának Környezetvédelmi Osztálya közötti együttműködésében 2018 júliusában különböző anyagú városi felületek felszínhőmérsékletének mérésére került sor.20 A felmérés eredményei azt mutatták, hogy a nyári időszakban a direkt sugárzásnak kitett rekortán-, aszfalt- és betonfelületek melegszenek fel a legnagyobb mértékben, ezek felszínhőmérséklete az 50 °C-ot is meghaladhatja. Ezek az extrém meleg felületek nagy mértékben fokozni tudják a városi utcsasztintben megjelenő hősziget-hatást, és a közölnben tartózkodó emberek hőerzetét is kedvezőtlenül befolyásolják. A vizsgálatok rámutattak a színek megválasztásának és az árnyékolásnak a jelentőségére is.

A Bikás parki mérőhelyszínén a nappali felszínhőmérsékletek átlaga a napsütésnek kitett mérőpontokon a következőképpen alakult. A leghidegebb mérőpontok a tó víze, a gyepl és a nád, ezek átlagos hőmérséklete 19 °C és 25 °C között alakult. A legmagasabban felszínhőmérsékletű pontok a futballpálya kék rekortánja, a panelépület betonja, a sportpálya szürke rekortánja, az aszfaltút, valamint a futópálya piros rekortánja, ezek átlagos felszínhőmérséklete a vizsgált napokon 40 °C és 50 °C között alakult.
Várható változások a főváros éghajlatában

2022-ben az Országos Meteorológiai Szolgálat munkájaként létrejött a KlímAdat Adatbázis, mely a korábban elérhető regionális éghajlati modellekkel ellentétben kellő részletességű városi léptékű szimulációt is alkalmaz, így pontosabb előrejelzések állnak rendelkezésre a fővárosra vonatkozóan. A projekt az 1971 és 2100 között vizsgált időszakot 10 éves bontásban, az adott évszámotól kezdve 30 évre átlagolt adatot mutat be.

Az eredmények alapján 2071–2010-ban a magyarországi éves hőmérsékletváltozás 2-4°C lehet 1971–2000-hez képest, nyáron és télen azonban ennél fokozottabb mértékű melegkedésre számolhatunk. A fagyos napok (a 0°C alatti minimumhőmérsékletű napok) az ország nyugati felében akár el is tüntethetnek. Az éves csapadékmennyiség legfeljebb 24%-os növekedése várható a XXI. század végére, emellett a hosszabb nyári száraz időszakok és az őszi és téli intenzívabb csapadékos időszakok jelenthetnek kihívást.

A Budapestre végzett városi éghajlati modellkísérletek során az ALADIN-Climate regionális klímamodell eredményeit a SURFEX felszínmodell finomították 1 km-es felbontást alkalmazva, az emberi tevékenység hatását egy közepes és egy magas kibocsátást feltételező forgatókönyvek szerint vették figyelembe. A városi modellkísérletek elsősorban a hőmérsékleti- és szélviszonyokat képesek leírni, a csapadékos események jelenthetnek kihatást.

29. ábra: A napi átlaghőmérséklet változása Budapesten (°C) (Forrás: klimadat.met.hu)

30. ábra: Az átlaghőmérséklet változása Budapest környékén (°C) (Forrás: met.hu)

31. ábra: A fagyos napok számának változása Budapesten (nap) (Forrás: klimadat.met.hu)
A fejezet hivatkozásai

7. az ENSZ Éghajlatváltozási Keretegyezmény kihirdetéséről szóló 1995. évi LXXXII. törvény 2. § 2. cikkely
8. Az ember által kiváltott, az ember tevékenységéből eredő, ahhoz kapcsolódó.
16. 348/2018.(04.25.) Főv. KGy. határozattal elfogadta 638/2021. (III.31.) Főv. KGy. határozattal elfogadta
1.6. Levegőminőség

A budapesti levegőminőségről összességében megállapítható, hogy az utóbbi 16 évben a kezdeti gyors javulást stagnáló, illetve lassan javuló trend váltotta fel, a következők szerint:

- a PM$_{2.5}$ aeroszol (kisméretű szálló por) mérési eredmények eddig minden értékelhető mérőponton megfeleltek a vonatkozó EU-s irányelvnek, így a magyarországi jogszabályoknak is;
- a PM$_{10}$ aeroszol (szálló por) szintje 2019 óta folyamatosan javul, a vonatkozó összes EU-s követelmény 2020 óta minden mérőponton maradéktalanul teljesült, ugyanakkor annak benz(a)-pirén (BaP) tartalma rendszeresen meghaladta a vonatkozó határértékeket;
- a talajközeli ózon (O$_3$) szintje jellemzően a peremkerületi állomásonként leptén túl a határértéket a nyári időszakban, 2022-ben az eddigi legnagyobb eredmények mutatkoztak;
- a nitrogén-dioxid (NO$_2$) esetében – a lassan javuló tendencia mellett – csak 2020-ban és 2022-ben fordult elő, hogy valamennyi mérőponton teljesült az éves átlagconcentráción követelmény;
- a többi – vizsgált és a miniszter által értékel – légszennyező anyag esetében nincs, vagy kevésbé jelentős a probléma, többnyire teljesülnek a levegőterheltségi szintre vonatkozó határértékek.

Az eltérést mértékét jól szemlélteti, hogy míg a jelenlegi hatályos EU-s követelmények túllépése az EU városi lakosságát szennyezőanyagtól függően 0-10% közötti mértékben, addig a WHO 2021. évi ajánlásai fölötti expozíció az EU lakosságát már 76-97%-os tartományban érinti.

Budapesten a legnagyobb kihívás továbbra is a PM$_{2.5}$ aeroszolra vonatkozó határérték-ajánlás esetében mutatkozik, de jelentőszen szigorodtak a nitrogén-dioxid különböző időtartamokra meghatározott határérték-ajánlásai is.
Levegőminőség leírása, jellemzése

A környezeti levegőminőség-mérés és értékelés budapesti körülményei

A budapesti levegő1 szennyezettségét, azaz a levegőterheltségi szintet és a légszennyezettségi határértékek betartását 2001 óta az Országos Légszennyezettségi Mérőhálózat (OLM) vizsgálja2.

A levegőtisztaság-védelem hazai szabályrendszere (pl. a szennyezettségi határértékek, vagy a mérőpontok kijelölésének szabályai) európai uniós irányelveken alapulnak, ezért azokat a Kvt. vonatkozó szakaszaival tűl kormány- és további miniszteri, valamint önkormányzati rendeletek3 határozzák meg. EU szabályoktól eltérő hazai követelményeket egy miniszteri rendelet tartalmaz4.

Az OLM-vizsgálatok szakmai felügyeletét, a rendszeres elemzési és közzétételi feladatokat 2010-től a Levegőtisztaság-védelmi Referenciaközpont (LRK) működtetőjeként az Országos Meteorológiai Szolgálat (OMSZ) látja el. A kijelölt mérőpontok üzemeltetését (pl.: mintavételeket, helyszíni vizsgálatokat stb.) Budapesten az OLM részeként a Pest Megyei Kormányhivatal, Környezetvédelmi, Természettudományi, és Hulladékgyűjtési Főosztály5 (a továbbiakban: Kormányhivatal) Környezetvédelmi Mérőközpontja végzi.

A levegőtisztaság-védelmi feladatokban illetékes szervezetek hatásköreit, azon belül is az önkormányzati szervek által ellátottak a BKÁÉ 20216 tartalmazza.

A budapesti önkormányzati rendelet kijelölésének folytataiban illetékes szervezetek hatásköreit, azon belül is az önkormányzati szervek által ellátottak a BKÁÉ 20216 tartalmazza.

A Budapestre vonatkozó OMSZ-LRK-értékelés (l. Függelék 1. táblázat) alapján továbbra is a nitrogen-dioxid szintje tűnik a legkritikusabbnak, ugyanakkor az Európai Környezetvédelmi Ügynökség (EEA) értékelése szerint a fő problémát a magas aeroszol- (PM\textsubscript{10}, PM\textsubscript{2,5}) szennyezettség jelenti. Az eltérés oka alapvetően a szigorúbb hazai nitrogen-dioxid határérték-követelményből adódik.
Levegőminőség

A továbbiakban a budapesti levegőminőség szempontjából fontosabb szennyezőonyagok értékelését mutatjuk be, a 2007-től megbízhatóan rendelkezésre álló, ellenőrzött automata mérési adatok alapján. Az értékelés módszere, megjelenítési módja az EEA által alkalmazott „European Air Quality Index” megjelenítésén alapul, annak megfelelően az EU-s határértéket meghaladó értékeket vörös mezőbe írt fehér színű számjegyek, a követelményeknek még éppen megfelelő, vagy kis mértékben meghaladó értékek celláit narancssárga, míg az egyre kedvezőbb értékeket világos zöld, majd kék színrel jelölik (fekete számjegyekkel).

PM$_{10}$ aeroszol („szálló por”)

A PM$_{10}$ szennyezettségi szint évenkénti változását az egy éven belüli „tiszta napok” arányával szemléljük (2. ábra). A legutóbbi öt év évenkénti problémamentes időszakainak átlaga 84%, amely kb. 10 hónapnak felel meg. Az elmúlt három év – egyre javuló tendencia mellett – az eddig mértek „legtisztábbjai” voltak, az utóbbi 16 év legkedvezőbb eredményét tavaly, 2022-ben mérték – a 339 tiszta nap az év 93%-a, ami kb. 11 problémamentes hónapnak felel meg. (Meg kell jegyezni, hogy a „tiszta napok” módszere szigorúbb követelményt jelent, mint az EU-s szabályokban is rögzített számítási módszer, mivel az minden budapesti mérőpontot összesítve vesz figyelembe, míg az EU-s követelményeknek mérőpontonként külön-külön kell teljesülniük.)

![2. ábra: Az év tiszta napjainak aránya PM$_{10}$ esetében (Adatforrás: OMSZ-LRK, saját számítás)](image)

A hosszabb távon lassan, de egyértelműen javuló tendenciával összhangban a PM$_{10}$ éves határérték-tüllépés már csak elvétve, legfeljebb évente 1-1 mérőponton fordul elő. Ugyanakkor az ENSZ Egészségügyi Világszervezet (WHO) – az EU irányelvhez és ennek megfelelően a magyarországi jogszabályi követelményekhez (40 µg/m3) képest – 2021-ben szigorúbb ajánlást (15 µg/m3) tett közzé. Emléket érdemel ugyanakkor, hogy a WHO 2021-es új levegőminőségi ajánlása (45 µg/m3) óta ennél lényegesen szigorúbb (l. 7. táblázat), mivel évente mindössze csak háromszor engedné a javasolt napi határérték tüllépését, ami az értékelés során a 99,2 percéntisnek felel meg.

Összefoglalva a PM$_{10}$-re vonatkozó összes EU-s feltétel (az éves, az egynapi határértékek és az évenként megengedett túllépési esetszám) a PM$_{10}$ vizsgálatok rendszeres bevezetése óta Budapest összes mérőpontján először 2020-ban teljesült, majd 2021-ben és 2022-ben ismét.
Az 1. táblázat a PM₁₀ egynapi (a 24 db egyórás átlagok átlaga) adatai alapján a 90,4 percentilis eredményeket foglalja össze évente és mérőpontonként, ami ha nem haladja meg az 50 μg/m³-ot, akkor azon a mérőponton a napi határérték-túllépések éves esetszámának követelménye is teljesül. Az egynapi követelmény 2020 óta Budapest összes mérőpontján teljesült, az átlagértékek csökkenő tendenciája mellett.

<table>
<thead>
<tr>
<th>Mérőállomás</th>
<th>PM₁₀ (μg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pesthídeg kút</td>
<td>40 34 47 56 58 50 47 45 42 43 42 53 40 29 27 32</td>
</tr>
<tr>
<td>Telény / Budatétény</td>
<td>n.a. 73 n.a. 44 56 43 41 n.a. 48 43 38 42 35 30 32 35</td>
</tr>
<tr>
<td>Csepel</td>
<td>74 63 58 n.a. 71 n.a. 46 51 51 n.a. 59 50 30 35 33</td>
</tr>
<tr>
<td>Honvéd telep</td>
<td>78 58 51 60 61 54 n.a. n.a. 53 n.a. 49 40 41 40 35</td>
</tr>
<tr>
<td>Széna tér</td>
<td>37 62 59 67 67 53 53 46 67 57 59 67 57 49 44 40</td>
</tr>
<tr>
<td>Erzsébet tér</td>
<td>76 64 56 61 68 61 57 52 60 54 53 48 45 45 47 39</td>
</tr>
<tr>
<td>Kosztolányi tér</td>
<td>61 69 50 53 53 n.a. n.a. 52 54 n.a. 59 49 36 33 34 32</td>
</tr>
<tr>
<td>Baross tér / Teleki tér</td>
<td>n.a. 66 60 63 70 49 48 n.a. n.a. 47 47 59 48 43 43 39</td>
</tr>
<tr>
<td>Kőrakás park</td>
<td>75 70 50 65 63 58 52 47 43 46 50 54 39 37 43 42 41</td>
</tr>
<tr>
<td>Gergely u.</td>
<td>52 50 51 51 55 81 38 41 n.a. n.a. 52 45 39 40 40 35</td>
</tr>
<tr>
<td>Gillice tér</td>
<td>53 55 52 53 59 54 50 50 53 50 58 50 49 42 38</td>
</tr>
<tr>
<td>Káposztás-megyer</td>
<td>- - 51 58 47 45 n.a. n.a. 43 30 50 52 45 29 39</td>
</tr>
</tbody>
</table>

n.a.: a mérési adatok mennyisége kisebb, mint 75%; -: nincs mérés

A PM₁₀ napi átlagértékek alakulásának részletes elemzését a Függelék tartalmazza azok alapján is megerősíthető, hogy az elmúlt hétéves időszakon belül a tendencia lassan javulóvá vált, bár kétségtelen, hogy a 2021. évi WHO – új, lényegesen szigorúbb követelményeket tartalmazó – ajánlás újabb nagy kihívás elé állítja az EU jogalkotói, tagállamait és az intézkedések végrehajtót.

PM₂,₅ („kisméretű szálló por”)

Budapesten – a mintavételei pont többszöri áthelyezése után, majd az elmúlt években fokozatosan elvégzett bővítés eredményeként – 2019-től már 9 mérőállomás biztosít értékelhető mennyiségű PM₂,₅ adatot.

Az EU szinten egységes éves határértéket (25 μg/m³) 2015. január 1-jei hatállyal történő bevezetése óta, majd 2020. január 1-jei hatállyal szigorítás (20 μg/m³) mellett a budapesti PM₂,₅ mérési eredmények eddig minden évente értékelhető mérőponton megfeleltek a vonatkozó EU-s követelménynek, így a magyarországi jogszabályoknak is. Ugyanakkor jelentős jövőbeli kihívás, hogy a WHO 2021-es ajánlása jelentősen szigorúbb PM₂,₅-tel kapcsolatos követelményeket tartalmaz: éves határértékek 5 μg/m³-t, míg 24 órásnak 15 μg/m³-t javasol a jogalkotóknak (utóbbihoz az értékelés során legfeljebb a 3 legrosszabb eredményű nap elhanyagolását megengedve, ami az értékelésnél a 99,2 percentilis jelent – I. 7. táblázat).

Jövőbeli követelmények újabb szigorítása miatt a 2. táblázat a budapesti PM₂,₅ („kisméretű szálló por”) mérési adatokat foglalja össze. Megállapítható, hogy 2022-ben egy kivételével minden mérőponton kedvezőbb éves átlagértékek mutatkoztak (átlagosan 12 μg/m³).
Levegőminőség

2. táblázat: A budapesti mérdállomásokon mért éves átlagos PM$_{2.5}$ koncentráció (Adatforrás: OMSZ-LRK, saját számítás)

<table>
<thead>
<tr>
<th>Mérdállomás</th>
<th>PM$_{2.5}$ (μg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pesthídég-kút</td>
<td>n.a.</td>
</tr>
<tr>
<td>Tétyén / Budatétény</td>
<td>n.a.</td>
</tr>
<tr>
<td>Csepel</td>
<td>n.a.</td>
</tr>
<tr>
<td>Honvéd telep</td>
<td>n.a.</td>
</tr>
<tr>
<td>Széna tér</td>
<td>n.a.</td>
</tr>
<tr>
<td>Erzsébet tér</td>
<td>n.a.</td>
</tr>
<tr>
<td>Kosztolányi tér</td>
<td>n.a.</td>
</tr>
<tr>
<td>Baross tér / Teleki tér</td>
<td>n.a.</td>
</tr>
<tr>
<td>Kórház park</td>
<td>n.a.</td>
</tr>
<tr>
<td>Gergely u.</td>
<td>n.a.</td>
</tr>
<tr>
<td>Gilice tér</td>
<td>18</td>
</tr>
<tr>
<td>Káposzta megyär</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

A korábbi évek adatai alapján megvizsgáltuk a PM$_{2.5}$ frakció arányát a PM$_{10}$-en belül. Az elemzéshez alapja az európai értékelési módszert követve - a PM$_{10}$-től is eltérően három év-mintázat, az európai értékelési módszert követve - a LRK két mérőponthoz tartozóan rendszeres, de nem folyamatos mintavételi módon határozza meg, a PM$_{10}$ (szálló por) minták további laboratóriumi elemzése alapján. Az év során egyenletesen elosztva.

BaP – benz(a)pirén

A policiklusos aromás szénhidrogének (PAH vegyületek) közül az erősen rákkeltő hatású 3,4-benz(a)pirén (BaP) lélegzőkent koncentrációja Budapesten több esetben meghaladja a vonatkozó éves határértéket (0,0012 μg/m3) és célértéket (0,001 μg/m3). A BaP évek megegyedett határértéke lényegesen – a PM$_{10}$-től is eltérően három nagyságre renddel – szigorúbb: 1,2 nanogramm/m3 (ng/m3), míg a célértékek 1 nanogramm/m3 (ng/m3).

Az EEA értékelése alapján a magas BaP szint a közép- és kelet-európai régió jellemző problémája. Budapesten a közép-európai levegő BaP mennyisége az OMSZ-LRK két mérőponthoz tartozóan rendszeresen, de nem folyamatos mintavételi módon határozza meg, a PM$_{10}$ (szálló por) minták további laboratóriumi elemzése alapján. Az év során egyenletesen elosztva.

A mérési eredmények alapján a Gilice téren általában kedvezőtlenebb BaP szintek mértethetők a Széna tér ponthoz képest.

3. táblázat: A budapesti mérdállomásokon mért éves átlagos BaP koncentráció (ng/m3) (Adatforrás: OMSZ-LRK)
Ózon (O₃)

A levegő ózonszintje (koncentrációja) esetében az egészségügyi határértéket (120 μg/m³) az óránkénti átlagokból őránként kiszámított legutóbbi nyolcórás mozgatótlagok legmagasabb egynapi értékéhez rendelték – utóbbi meghatározása a többi légszennyező anyagtól eltérő, bonyolultabb számítást igényel. Az ózonna éves határértéke nincs.

2010-től a követelmények ennél a légszennyező anyagnál is jelentősen szigorodtak, a határérték évenként megengedett túllépési esetek száma csak 25 határérték feletti napév lehet (amely követelmény az értékelés során a 5. ábrán pontokkal jelölt 93,2 percentilisének felel meg).

Budapesten az ózon koncentrációja az elmúlt években többen tölty behatárérték alatti volt, a tendencia stagnáló, vagy kis mértékben romló trends, azt mutatja, hogy a követelmények komolyan hiányoznak. 2007 után 2015-ben fordult elő, hogy a határértéket jelentősen meghaladta az ózonzint, melynek következményeként a szmogádató tájékoztatás fokozatának elrendezése is megtörtént (180 μg/m³ feletti, 3 egymást követő egyórás érték; l.8. táblázat). Az elmúlt 10 év eredményeit szemlélőként megállapítható, hogy jellemzően a peremkerületi állomásokon fordul elő határérték-túllépés. 2007-től 2012-ig a mértékon kivül a Szabadhegyen és a Budatétényen, ahol az ózonzint az 120 μg/m³ értéktől al mint 150 μg/m³ értékig jelentősen meghaladott az ózonzint 93,2 percentilis értéktől. Az ózonzint az 5. ábrán a követelmények összefoglalja az ózonzint alatti, és az ózonzint túllépési esetek száma.

![5. ábra: Az év tiszta napjainak (amelyik napon minden budapesti mérőpontnál napi 8 órás mozgatótlagok maximuma alapján számított eredménye kisebb, mint 93,2 μg/m³) aránya ózon (O₃) esetében](image)

A hosszúdávú trendcát az 5. ábra mutatja be, ahol a levegőminőségi helyzetet az ügynevezett tisza napok aránya (%) szemlélteti – a tavalyi év 303 tisza napos problémamentes időszakával (ami 83,0%-os arányt jelent) az eddig vizsgáltak legrosszabb eredményét adta.

A 4. táblázat évenkénti és mérfövek néhány összefoglalja az ózonzint egynapi (nyolcórás mozgatótlagok maximuma alapján) adatait közt a 93,2 percentilis eredményt. Ha a követelmények itt maradéktalanul teljesülnek, akkor az ősnapi atadatok 93,2%-a már nem lépne túl az egészségügyi határértéket, a 120 μg/m³-t – másféle: ha az ózon évenkénti 93,2 percentilis értékének hároméves átlaga nem haladja meg a 120 μg/m³-t, akkor azon a mérfövek a napi határérték-tüllépés éves esetszámának követelménye is teljesült.
Levegőminőség

Az ózon esetében – az európai értékelési módszert követve – szintén elvégeztük a budapesti adatok részletes értékelését az órás átjároderedmények alapján (l. 19. ábra).

A WHO új ajánlása – változatlan egynapi számítási mód mellett – a 120 μg/m³ egészségügyi határérték és a hozzá tartozó 99,2 értékelési percentilissel vett napi maximumokból hat egymást követő hónapra, majd így havonta gördülően a naptári év legszennyezettebb hathavi átlagértéket megadja.

A peremkerületek ózon szintje a belvárosokhoz képest a korábbi években átlagosan 20-30%-kal szennyezettebb volt, de 2020-2022 közötti időszakban rendhagyó módon ez különbség gyakorlatilag megszűnt (az 5-10% közötti többlet kisebb, mint az alkalmazott vizsgálati módszer bizonytalansága, l. Függelék 20. ábra).

Nitrogén-dioxid (NO₂)

A budapesti nitrogén-dioxid szint tekintetében éves határérték-túllépés már csak elvétve, legfeljebb évente 1-2 belvárosi mérőponton fordul elő. Az utóbbi évtizedben, lassabban, de javuló tendencia megfigyelhető a 12. táblázat és a 6. ábra alapján is; utóbbin a levegőminőségi helyzetet az úgynevezett tiszta órák aránya szemlélteti. Fontos kiemelni, hogy előző és eddigi csak 2020-ban és 2022-ben fordult elő, hogy valamennyi mérőponton teljesült az éves átlagkoncentráció követelmény (az elégtelen mérési eredmény miatt a 2012-es év nem tekinthető mérvadónak). A WHO új ajánlása a nitrogén-dioxid éves határértékét (40 μg/m³) is jelentősen csökkentené: 10 μg/m³-re.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pesthideg-kút</td>
<td>122</td>
<td>122</td>
<td>122</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>123</td>
<td>123</td>
<td>123</td>
<td>121</td>
<td>121</td>
<td>121</td>
<td>121</td>
</tr>
<tr>
<td>Budatétény</td>
<td>114</td>
<td>114</td>
<td>114</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>115</td>
<td>115</td>
<td>115</td>
<td>125</td>
<td>125</td>
<td>125</td>
<td>127</td>
</tr>
<tr>
<td>Csepel</td>
<td>98</td>
<td>98</td>
<td>98</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>114</td>
<td>114</td>
<td>114</td>
<td>109</td>
<td>109</td>
<td>110</td>
<td>106</td>
</tr>
<tr>
<td>Horvád telep</td>
<td>-</td>
</tr>
<tr>
<td>Széna tér</td>
<td>83</td>
<td>83</td>
<td>83</td>
<td>86</td>
<td>86</td>
<td>86</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td>73</td>
<td>73</td>
<td>73</td>
<td>82</td>
</tr>
<tr>
<td>Erzsébet tár</td>
<td>-</td>
</tr>
<tr>
<td>Kosztolányi tár</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>85</td>
<td>74</td>
<td>74</td>
<td>74</td>
<td>103</td>
<td>103</td>
<td>103</td>
<td>108</td>
</tr>
<tr>
<td>Teleki tár</td>
<td>112</td>
<td>112</td>
<td>112</td>
<td>113</td>
<td>113</td>
<td>113</td>
<td>103</td>
<td>103</td>
<td>103</td>
<td>113</td>
<td>113</td>
<td>113</td>
<td>115</td>
</tr>
<tr>
<td>Kőrakás park</td>
<td>117</td>
<td>117</td>
<td>117</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>105</td>
<td>105</td>
<td>105</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>113</td>
</tr>
<tr>
<td>Gergely u.</td>
<td>106</td>
<td>106</td>
<td>106</td>
<td>n.a.</td>
<td>n.a.</td>
<td>n.a.</td>
<td>122</td>
<td>122</td>
<td>122</td>
<td>117</td>
<td>117</td>
<td>117</td>
<td>119</td>
</tr>
<tr>
<td>Gilicé tár</td>
<td>122</td>
<td>122</td>
<td>122</td>
<td>120</td>
<td>120</td>
<td>120</td>
<td>117</td>
<td>117</td>
<td>117</td>
<td>107</td>
<td>107</td>
<td>107</td>
<td>114</td>
</tr>
<tr>
<td>Köposztás megyer</td>
<td>108</td>
<td>108</td>
<td>108</td>
<td>118</td>
<td>118</td>
<td>118</td>
<td>102</td>
<td>102</td>
<td>102</td>
<td>118</td>
<td>118</td>
<td>118</td>
<td>120</td>
</tr>
</tbody>
</table>

n.a.: a mérési adatok mennyisége kisebb, mint 75%; : nincs mérés

4. táblázat: Az ózon (O₃) évenként 93,2 percentilliseinek hároméves átlaga, a napi nyolcórás mozgó átlagkoncentrációk maximuma alapján (Adatforrás: OMSZ-LRK, saját számítás)
Nitrogén-dioxid esetében további követelmény – az éves határértékeken túl – az egyórás egészségügyi határérték (100 µg/m³) és annak évenként megengedett túllépési esetszáma (csak 18 db határérték feletti óra/év, amely a 99,8 percentilisnek felel meg).

Az 5. táblázat a nitrogén-dioxid évenkénti adatok közül mérőpontonként a 99,8 percentilis eredményeket foglalja össze. Ha a követelmények itt maradéktalanul teljesülnek, akkor az éves adatok 99,8%-a már nem lépne túl az egészségügyi határérték, a 100 µg/m³-t (de az európai szinten 200 (!) µg/m³). Az egyre szigorodó határértékek módosítására vonatkozó WHO ajánlás az egyórás nitrogén-dioxid határértékek esetében nem javasolja a 200 µg/m³ európai követelmény csökkentését (l. 7. táblázat). Megjegyezzük, hogy a magyarországi határérték ennek a fele, a 18 óra/év megengedhető túllépési esetszámmal együtt – a WHO csak az itt megengedhető túllépési esetszámot javasolja megszüntetni.

Ugyanakkor a 2021-es WHO ajánlás már 24 órás határértéket is javasol NO₂ esetében, amely a 85 µg/m³ magyar határértékénél jelentősen szigorúbb 25 µg/m³ követelményt jelentene, 99,2 értékelési percentilis mellett.

6. ábra: Az év tiszta óráinak (amelyik órában minden budapesti mérőállomás egyórás eredménye kisebb, mint 100 µg/m³) aránya nitrogén-dioxid esetében (Adatforrás: OMSZ-LRK, saját számítás)

5. táblázat: Az órás átlagkoncentrációk évenként 99,8 percentilis nitrogén-dioxid magyarországi határértéke esetében (Adatforrás: OMSZ-LRK, saját számítás)

7. ábra: NO₂ órás átlagkoncentrációk 99,8 percentilise, 2022 (Adatforrás: OMSZ-LRK, saját számítás)

<table>
<thead>
<tr>
<th>Mérőállomás</th>
<th>NO₂ (µg/m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pesthidegkút</td>
<td>99</td>
</tr>
<tr>
<td>Tétény / Budatétény</td>
<td>n.a.</td>
</tr>
<tr>
<td>Csepel</td>
<td>104</td>
</tr>
<tr>
<td>Honvéd telep</td>
<td>184</td>
</tr>
<tr>
<td>Széna tér</td>
<td>171</td>
</tr>
<tr>
<td>Erzsébet tér</td>
<td>151</td>
</tr>
<tr>
<td>Kosztolányi tér</td>
<td>167</td>
</tr>
<tr>
<td>Baross tér / Teleki tér</td>
<td>146</td>
</tr>
<tr>
<td>Kőrakás park</td>
<td>122</td>
</tr>
<tr>
<td>Gergely u.</td>
<td>146</td>
</tr>
<tr>
<td>Gilice tér</td>
<td>114</td>
</tr>
<tr>
<td>Káposztás megyer</td>
<td>-</td>
</tr>
</tbody>
</table>

n.a.: a mérési adatok mennyisége kisebb, mint 75%; - : nincs mérés
Levegőminőség

Korábban értékelhetően elkülönült a belváros és peremkerületek nitrogén-dioxid szennyezettségi állapota, de az elmúlt években a különbség mértéke csökkent, a javuló tendencia mellett az kiegyenlítődni is látszik. (21. ábra)

A PM$_{10}$ esetében is elvégzett értékeléshez hasonlóan – az európai értékelési módszert követve – szintén elvégeztük a 2021. évi budapesti adatok értékelését az órás átlageredmények alapján, a Függelékben szereplő diagramon (22. ábra).

Már említésre került, hogy a magyar jogszabály szigorúbb az órás határértékek tekintetében az EU irányelvnél, ezért a 5. táblázat jelentősebbnek mutatja a problémát, mint az EEA értékelése.

Nemzetközi kitekintés

Budapest és más európai nagyvárosok légszennyezettségi adatait összevetve megállapítható, hogy a főváros a PM$_{2.5}$ és NO$_2$ tekintetében inkább az átlagos, közepesen szennyezett európai városok közé sorolható.

<table>
<thead>
<tr>
<th>HATÁRÉRTÉK</th>
<th>25</th>
<th>HATÁRÉRTÉK</th>
<th>40</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belgrád*</td>
<td>24,4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varsó</td>
<td>17,0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bukarest</td>
<td>35,2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budapest</td>
<td>14,1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prága</td>
<td>13,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barcelona, Párizs</td>
<td>12,2; 12,7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>München</td>
<td>27,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Belgrád*, Budapest</td>
<td>26,5; 26,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bécs</td>
<td>10,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stockholm</td>
<td>5,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Munich</td>
<td>8,9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Varsó*</td>
<td>24,8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prága; Barcelona</td>
<td>23,1; 23,3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bécs</td>
<td>18,5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stockholm</td>
<td>16,9</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. ábra: PM$_{2.5}$ és NO$_2$ átlagkoncentrációk összevetése néhány európai nagyvárosban, 2020-2021. (Adatforrás: EEA 13)

12 Függelék F.7.

13 EEA
A légszennyezettség környezet-egészségügyi hatásai, kockázatai

A budapesti környezeti levegőben – a határértéket meghaladó mértékben – előforduló légszennyező anyagok egészséghatása az alábbiakban foglalhatók össze14:

- A PM₁₀ „szálló por” szint rövid távú emelkedése izgatja a nyálkahártyákat, köhögést és nehézlégzést válthat ki. A tüdőben felszívódva gyulladásos folyamatot indíthat meg, aminek következtében növekszik a vér alvadékonysága, vörögösődés léphet fel. Gyakoribb az asztma és a krónikus alsó légúti betegségek fellángolása, illetve a szív-érintés megbetegedések előfordulása. **Hosszú távú hatása:** a várható élettartam jelentős csökkenése a szív- és érrendszeri, a légzőszervi betegségek, valamint (különösen a finom koromrészecskék tekintetében) a tüdőrák miatti halálzás növekedése következtében.

- A benz(a)pirént a WHO rákkutató ügynöksége (IARC) rákkeltő anyagnak (humán karcinogénnek) tekinti, akkor is, ha az kültéri eredetű (nem csak beltéri légszennyezés eredménye)15.

- Az ózon kellemetlen szagú gáz, izgatja a szemet és a légzőszervek nyálkahártyáját, súlyosbítja a krónikus betegségeket, elsősorban a hőrhurutot és az asztmát. Egészséges embereknél is a hosszabb ideig tartó fizikai munka jelentősen csökkenti a tüdőfunkciót, ami emelélyes, hányinger, köhögés, mellkasi fájdalmak kísérhetnek. Az ózon a légzőszervek gyulladását is kiválthatja.

A légszennyezettség egészségkockázata szempontból érzékeny lakosság-csoportok16

- gyermek (okok: fejlődésben lévő szervezet, gyors anyagcsere, stb.);
- várandós nők;
- krónikus légzőszervi betegségekben (pl. asztma, krónikus obstruktív tüdőbetegség – COPD), valamint krónikus szív- és érrendszeri betegségben szenvedők;
- legyengült immunrendszerrel rendelkező személyek (pl. kemoterápiás kezelés alatt álló betegek).

Magyarországon a lakosság egészségi állapotát leginkább a dohányzás, a magas vérnyomás, majd az étrendi és testtömeg index határozza meg – a fontosabb tényezők között a légszennyezettség egészséghatása 2019-ben a 8. helyen szerepelt17.

Csak a szennyezetté váló környezeti elemek hatásait tekintve a WHO európai régiójában18 – Grönlandtól Törökországig, az egykori Szovjetunió összes utódállamaival és Izraellel együtt – a légszennyezettség a legnagyobb környezetegészségügyi kockázat, illetve jelentős19 a levegőszennyezés okozta betegségteljesítés.

A légszennyezettség egészségére gyakorolt hatása nagyon változatos – számos tényező befolyásolja azt, hogy egy adott légszennyezettség esetén milyen mértékű egészségkárosodással lehet számolni. A településre jellemző légszennyezettség egészséghatását az az egyes légszennyező anyagok egyenkénti, de akár együttes egészséghatása is eredményezheti, miközben alapvető tényező azok különböző

1 Részleges vagy teljes elzáródás a légutakban.
időtartamú hatása (expoziciója) is. Ezért tartalmaznak az — egyes légszennyező anyagok különböző egészségügyi határértékeit meghatározó — jogszabályok, illetve az azok módosítására vonatkozó ajánlások különböző időtartamokra meghatározott követelményeket. Mivel ezek a követelmények, szintek – az adott anyag és az emberi szervezet kölcsönhatásán alapulnak – különböző időtartamokra vonatkoztattak, ezért alapvető hiba, ha pl. egy 24 órára vonatkozó egészségügyi határértékké hasonlíthatjuk össze a rövidebb ideig ható — pl. pillanatnyi, vagy párperces mintavétellel, vagy egyórás átlagként meghatározott — magasabb szennyezettségi szinteket.

A szennyezett levegőnek való hosszú távú kitettség csökkenti a várható élettartamot, továbbá az egészség alapján előre megállapítható, hogy ezt az idő előtt tapasztaljuk a főként a filmerek, a számozott és az anyagi kockázat.

A légszennyezettség rövid és hosszú távú egészségkockázatai is számos esetet jelentett. Az alábbiakban két — egyre jobban terjedő, de eltérő és meghatározott értelmezésű — módszertani megközelítést ismertetünk.

Az WHO ajánlása alapján az EEA által bevezetett mutatók közül a korai (idő előtti) halálesetek az olyan esetek becsült számát jelenti, amelyek egy adott évben, az országok értékelését és nemenként meghatározott várható élettartam előtt történnek, továbbá ezeket az eseteket megelőzhetőnek tekintik a korai halálesetek előkészítésére tervezett intézkedések mellett alkalmas, így különböző tartalmú — módszertani megközelítést ismertünk.

A WHO ajánlása alapján az EEA által bevezetett mutatók közül a korai (idő előtti) halálesetek az olyan esetek becsült számát jelenti, amelyek egy adott évben, az országok értékelését és nemenként meghatározott várható élettartam előtt történnek, továbbá ezeket az eseteket megelőzhetőnek tekintik a korai halálesetek előkészítésére tervezett intézkedések mellett alkalmas, így különböző tartalmú — módszertani megközelítést ismertünk.

A WHO ajánlása alapján az EEA által bevezetett mutatók közül a korai (idő előtti) halálesetek az olyan esetek becsült számát jelenti, amelyek egy adott évben, az országok értékelését és nemenként meghatározott várható élettartam előtt történnek, továbbá ezeket az eseteket megelőzhetőnek tekintik a korai halálesetek előkészítésére tervezett intézkedések mellett alkalmas, így különböző tartalmú — módszertani megközelítést ismertünk.

A WHO ajánlása alapján az EEA által bevezetett mutatók közül a korai (idő előtti) halálesetek az olyan esetek becsült számát jelenti, amelyek egy adott évben, az országok értékelését és nemenként meghatározott várható élettartam előtt történnek, továbbá ezeket az eseteket megelőzhetőnek tekintik a korai halálesetek előkészítésére tervezett intézkedések mellett alkalmas, így különböző tartalmú — módszertani megközelítést ismertünk.

A WHO ajánlása alapján az EEA által bevezetett mutatók közül a korai (idő előtti) halálesetek az olyan esetek becsült számát jelenti, amelyek egy adott évben, az országok értékelését és nemenként meghatározott várható élettartam előtt történnek, továbbá ezeket az eseteket megelőzhetőnek tekintik a korai halálesetek előkészítésére tervezett intézkedések mellett alkalmas, így különböző tartalmú — módszertani megközelítést ismertünk.

A WHO ajánlása alapján az EEA által bevezetett mutatók közül a korai (idő előtti) halálesetek az olyan esetek becsült számát jelenti, amelyek egy adott évben, az országok értékelését és nemenként meghatározott várható élettartam előtt történnek, továbbá ezeket az eseteket megelőzhetőnek tekintik a korai halálesetek előkészítésére tervezett intézkedések mellett alkalmas, így különböző tartalmú — módszertani megközelítést ismertünk.

A WHO ajánlása alapján az EEA által bevezetett mutatók közül a korai (idő előtti) halálesetek az olyan esetek becsült számát jelenti, amelyek egy adott évben, az országok értékelését és nemenként meghatározott várható élettartam előtt történnek, továbbá ezeket az eseteket megelőzhetőnek tekintik a korai halálesetek előkészítésére tervezett intézkedések mellett alkalmas, így különböző tartalmú — módszertani megközelítést ismertünk.

A WHO ajánlása alapján az EEA által bevezetett mutatók közül a korai (idő előtti) halálesetek az olyan esetek becsült számát jelenti, amelyek egy adott évben, az országok értékelését és nemenként meghatározott várható élettartam előtt történnek, továbbá ezeket az eseteket megelőzhetőnek tekintik a korai halálesetek előkészítésére tervezett intézkedések mellett alkalmas, így különböző tartalmú — módszertani megközelítést ismertünk.

A WHO ajánlása alapján az EEA által bevezetett mutatók közül a korai (idő előtti) halálesetek az olyan esetek becsült számát jelenti, amelyek egy adott évben, az országok értékelését és nemenként meghatározott várható élettartam előtt történnek, továbbá ezeket az eseteket megelőzhetőnek tekintik a korai halálesetek előkészítésére tervezett intézkedések mellett alkalmas, így különböző tartalmú — módszertani megközelítést ismertünk.
Levegőminőség

Látni érdemes, hogy:

- jelentős javulásnak értékelhető a budapesti 2022. évi, jellemzően 12 µg/m³-es PM2.5 szint (a 2016. és '17-es 21 µg/m³-es szinthez képest), mivel ebben az esetben nem elméleti, hanem valós – mintegy 8,5 µg/m³-es mértékű – csökkenésről volt szó (az azt megelőző három évben is valós csökkenést tapasztaltunk, amelynek mértéke 6,4-7,0 µg/m³ között volt); különösen azért, mivel
- 2015-ben Budapest elméleti mozgástérről, csökkentési lehetősége – ha feltételezzük a főváros akkori mért PM2.5 szintjéhez való saját hozzájárulásának elméleti teljes megszüntetését – legfeljebb mintegy 7 µg/m³ volt (vö.: az akkori budapesti eredményt az országos háttérzennyezettségi sarródi értékek).

Tájékoztatásképp a WHO európai régiójában28 2014-ben a PM2,5 átlagos éves koncentrációja 9,3 µg/m³ volt. Bár ez jelentősen alacsonyabb volt, mint a 31,7 µg/m³ globális átlag, a koncentrációk jelentősen eltértek a WHO európai régió tagállamai között – azokban a városokban és településeken, ahol mérések álltak rendelkezésre, a koncentráció 5,5 és 53,7 µg/m³ között mozgott. A 2019-es adatok alapján becsült becsleséseket a WHO európai régió lakosságának mintegy 97%-a volt kitéve a WHO levegőminőségi iránymutatásai betegségekben meghaladó PM2,5 szintnek (a 2021-es WHO ajánlás szerinti évi 5 µg/m³-nek).

A levegőszennyező anyagok egészségügyi hatásaival foglalkozó egyesült királyságbeli bizottság 2010-es jelentésének szerzői kifejezetten hangsúlyozzák, hogy:

- „ez a számítás nem azon emberek számának becsülése, akiknek korai halálát teljes egészében a levegőszennyezés okozta, hanem egy modja annak, hogy a levegőszennyezés hatását a teljes lakosságra kiterjedően reprezentálja, ha azt sokkal több egyéni halálesethez hozzájáruló tényezőnek tekintük“; továbbá:
- „mindezek mérőszámokat – […] mivel a népesség egészére jellemző – nem egyéni szinten alkalmazzák. Ennek az az oka, hogy a levegőszennyezés sok más okkal együtt hat a halálozásra, így nem tudjuk, hogy a túlélésben bekövetkezett változások hogyan oszlanak meg az egyének között. Ebből adódóan irreálisnak tartjuk, hogy a lakossági halálhatást számával megegyező számú esetben a levegőszennyezést tekintsük egyedüli halálainknak“.
- „Összességében úgy gondoljuk, hogy a légszennyezettségi terhek legfontosabb leírása a jelenlegi lakosság által elveszített összes túlélési idő éveiben van. A halálesetek számának pusztja feltüntetése nem teszi lehetővé, hogy ezek a halálesetek milyen életkorban fordulnak elő, vagy azt a tényt, hogy a hozzájuk kapcsolódó életvesztesésg az életkor függvényében változik“. Utóbbi szakmai álláspontot is alkalmazva az EEA éves jelentésében rendszeresen vizsgálja a légszennyezéssel kapcsolatos potenciálisan elveszett életévek mértékét is, ami a korai (idő előtti) halálesetekhez képest már árnyaltabb információi szolgáltat. Az elveszett életévek fajlagos mutató a fiatalabb korban bekövetkezett várható élettartam előtti halálesetek esetében magasabb részértéket ad, az idősebb korú haláleseteknél alacsonyabb, majd ezeket az adott évre összeadva azt 100.000 lakosra vonatkoztatják.

Utóbbit két mutatóval kapcsolatos európai és hazai számítások eredményeit a Függelék részleti, de azokat összefoglalva megállapítható, hogy a budapesti 30 év feletti idő előtti halálesetek mintegy 3-7 százalékáért felelős a fővárosi PM2,5 szint, amit indokolt minél hamarabb a tervezett hatáértékek alá csökkenteni esetben, hogy a bevezetett intézkedések környezetvédelmi szempontból is hatékonyak legyenek. Ehhez indokolt figyelembe venni, hogy a légszennyezettség szintje a meteorológiai tényezőkön – azon belül az országát átúválki források hozzájárulásán – túl elsősorban az energiapolitikai intézkedések következményeképp alakul ki, továbbá a tervezett intézkedések tervezését, illetve azok hatását Budapesten kívül

Függelék F.8.
Levegőminőség

mindig további 74 agglomerációs településsel együtt kell, egy egységként értékelni.

A leghatékonyabb intézkedések garanciája az lehet, ha azok a legjelentősebb hatótényezőkkel kapcsolatban kerülnek bevezetésre.

Levegőminőség okai, hatótényezői

A budapesti levegőminőségi helyzet fő tényezői:

- a helyi légszennyező források, amelyek lehetnek helyhez kötött (például a lakossági, vagy ipari kémények), vagy mozgó források (gépjárművek kibocsátása).

A földgáz, benzin, gázolaj, fűtőolaj (szénhidrogének) tüzelési folyamatával történő energiátalakítása tökéletes égési folyamat esetén elméletileg (kizárólag oxigén jelenlétében) szén-dioxidot és vízgőzt eredményez a kinyert hő-, mozgási energia mellett (a szén-dioxid nem mérgező, ilyen módon nem légszennyező anyag, ugyanakkor a légkörbe kerülve annak globális léptékű felmelegedését okozza). Az égési folyamatba, az égéstérbe a környezeti levegő oxigéne mellett, ill. azzal együtt a környezeti levegő nitrogéne is bekerül (a tüzelő anyagok további anyagtartalmával együtt); ezért és a nem tökéletes égés eredményeként légszennyező anyagok keletkeznek, mint a kén-dioxid, szén-monoxid, nitrogén-oxidok, kisméretű aeroszol részecskék, melyek számos, egészséghez hasznos szempontjából káros szerves és szervetlen anyagot tartalmaznak.

- különleges légköri hőmérsékletviszonyok, kémiai (fotokémiai) folyamatok, további, távolabbi kibocsátások, amelyeknek egy része – akár országhatárokon át terjedő meteorológiai szállítási (transzport-) folyamatok eredményeképp – itt fejtik ki hatásukat (természetesen a budapesti kibocsátások egy része máshol is kifejezett hatását).

Ha az általános meteorológiai viszonyoktól (miszerint egyre feljebb haladva a környezeti levegő hőmérsékletei egyre hidegebbek) eltérően nem a legalább, illetve lejjebb lévő, hanem egy a fölébbi levegőréteg válik melegebbé, továbbá ha az ilyen különleges állapot átmenetileg napközben is fennmarad (ez az ún. hőmérsékleti inverzió, ami lezárja a függőleges irányú légmozgást, így gátolva az átkeveredést, hígulást), akkor az különösen kedvező körülményt fog biztosítani még a köldrepedéshez és a légszennyező anyagok felüldúsödéséhez is.

A főváros és környékének területén a jelentős környezeti terhelést okozó ipari létesítmények száma az évtizedekkel korábbi állapotba kerest számodrannak csökkent (a jelentősebb, azaz IPPC és E-PRTR jelentésköteles üzemek listáját lásd II.3. fejezet), továbbá a jelenleg működő létesítmények már egyre korszerűbb technológiáit alkalmaznak, részben a fejlesztések, részben a mindenkor környezetvédelmi hatóság intézkedéseinek következtében.

Azonban elsősorban a kertvárosias – peremkerületi és további agglomerációs – területeken ismét elterjedt a vegyes lakossági fűtés, amely fokozottabb szennyezőanyag-kibocsátását jelent. Ezt a kedvezőtlen folyamatot tovább súlyosbíthatja a tiltott lakossági hulladékgyűjtés terjedése.

A Budapesten nyilvántartott 31 lakossági kémények legfeljebb kb. 10-11%-a tartozik olyan tüzelő berendezéshez, amely vegyes tüzelőanyag – szilárd (tőzeg, szén, fa), vagy tüzelőolajol – előállítására alkalmas.

A levegőminőségi helyzetet jelentősen befolyásoló Budapest környéki személygépjármű-állomány fiatalodása az elmúlt években megalatt, az átlagéletkor

Fontos kiemelni a dizelüzemű járművek nagyságrendekkel nagyobb szennyező hatását, amelyet tovább súlyosbít az a közelmúltban közismertté vált tény, hogy a járművek tényleges kibocsátása több esetben jelentősen meghaladta a vonatkozó követelményeket. Minderre az EEA 2016-ban publikált tanulmánya32 is felhívta a figyelmet.

A közlekedéssel kapcsolatos, a levegőminőség javítását célzó akciók fentiek alapján elsősorban a nitrogén-oxidok koncentrációját csökkentik. Fontos, hogy a tervezett intézkedések hatását becsülni tudjuk a tervezés során segítve a döntéshozatot. Az egyes intézkedések mellett a lakossági attitűd megváltozása is szükséges a közlekedési eredetű légszennyezettség csökkentéséhez.

Az elmúlt évtized jellemzően javuló PM_{10} eredményein túl – az egyértelmű, hatékony és arányos intézkedések tervezése érdekében – további vizsgálatot igényel az, hogy mi eredményezte ezt a jelentősnek minősíthető javulást. A közismert tényezők – pl. időjárási körülmények, nem a fővárosból származó, de hatásukat itt is kifejtő légszennyezők, helyi közlekedési, lakossági, a szolgáltatásokhoz köthető, az ipari és helyihez nem köthető, diffúz források – milyen mértékben járulhatnak hozzá a kedvezőtlen levegőminőség kialakulásához.

A levegőminőség alakulásának ismert okait, hatótényezőit részletesebben a BKÁÉ 2021.34 ismerti.

A világméretű vált koronavírus-járvány alatt 2020-ban hozott kormányzati korlátozó intézkedések eredményeképp – a budapesti gépjárműforgalom akkori csökkénése alatt – csak az NO_2 szint esetében volt egyértelmű javulás, az aeroszolszennyezettség (PM_{10} és PM_{2,5}) esetében a csökkénés mértéke elhanyagolható volt (kisebb volt, mint az alkalmazott mérési eljárás bizonytalansága). A járványügyi intézkedések levegőminőségre gyakorolt hatásának részletes elemzését a BKÁÉ 2019-202035 és a BKÁÉ 202136 tartalmazza.

9. ábra: A közúti közlekedés átlagos hozzájárulása a budapesti PM_{10} szennyezettséghez. (Adatforrás: Salma32)
Kiegészítő légszennyezettségi mérések

Az elmúlt évek során számos megkeresés és javaslat, kérdés érkezett a lakosság, társadalmi szervezetek és kerületi önkormányzatok részéről is azzal kapcsolatban, hogy vajon elegendő-e a fővárosi környezeti levegőt vizsgáló automata mérőállomások száma, azok megfelelő sűrűségben vannak-e elhelyezve, hiszen például vannak olyan kerületek, jellemző városrészek, ahol nincsenek ilyen mintavételi, illetve helyszíni vizsgálati pontok. Illetve feltételezések szerint az ilyen, mérőpontok nélküli kerületekben, városrészekben a legközelebbi mérőponthoz képest akár lényegesen magasabb terhelés is érheti az ott élő lakosságot. Ezért a Fővárosi Önkormányzat kiegészítő mérések megrendeléséről döntött, amit a 2021-2022-es időszakban, nyolc hónapon át négy budapesti helyszínen (Ferencváros, Erzsébetváros, Újbuda és a Margitsziget) az Országos Meteorológiai Szolgálat végzett el37.

A mobil mérőállomás ugyanúgy automatikusan mért e a nitrogén-oxidokat, az ózont és a levegő PM10 és PM2,5 tartalmát, továbbá a szakaszos mintavétellel a minták benz(a)pirén, összes szén, szerves széntartalmát, mint a viszonyítási, állandó mérőpontok. Helyszínenként 30 napon át volt folyamatos mérés a fűtési időszakon kívül, és még egyszer ugyanitt 30 napon át a fűtési időszakban is. A mérések módszere is azonos volt a folyamatosan működő 12 mérőpontéval, így az eredmények azokkal összehasonlíthatók voltak.

Az alábbi táblázat összefoglalóan tartalmazza a négy mérési helyszín átlaggeredményeinek összehasonlítását a referencia állomásként kijelölt, azaz a hozzá földrajzi megközelítés eső, illetve hasonló városi könyzetben üzemelő automata mérőállomások azonos mérési időszakra, azonos módszertan szerint számtolt eredményeivel.

<table>
<thead>
<tr>
<th>eseti / automata mérőpont</th>
<th>PM2,5</th>
<th>PM10</th>
<th>NO2</th>
<th>O3</th>
</tr>
</thead>
<tbody>
<tr>
<td>IX. Haller utca / VIII. Teleki tér</td>
<td>0,79</td>
<td>1,29</td>
<td>1,21</td>
<td>0,94</td>
</tr>
<tr>
<td>Margitsziget / XIII. Horvéd telep (O3: II. Széna tér)</td>
<td>0,76</td>
<td>0,76</td>
<td>1,15</td>
<td>1,18</td>
</tr>
<tr>
<td>XI. Kondorosi út / XXII. Budatétény</td>
<td>0,95</td>
<td>0,92</td>
<td>1,01</td>
<td>0,95</td>
</tr>
<tr>
<td>VIII. Rózsák tere / VIII. Teleki tér</td>
<td>1,11</td>
<td>1,34</td>
<td>1,07</td>
<td>0,93</td>
</tr>
</tbody>
</table>

Az adatokat kiértékelve megállapítható, hogy a kísérleti, kiegészítő mérőpontokon mért eredmények az adott időszak tekintetében nagymértékben hasonlóak a referenciaihez, így a kísérleti mérőpontokon megállapítható eredmények, mint az átlagos erőforrások közvetítésében egyaránt. A szennyező anyagok szempontjából a legnagyobb hasonlóság/legkisebb eltérést a PM10 és NO2 mérési adatok esetében látható. A helyszínek szempontjából az újbudai helyszín különbsége volt a legkisebb, míg a margitszigeti eredmények a legnagyobb eltérést eredményezték. Az eltérések megítéléséhez kapcsolódik az alkalmazott vizsgálati módszerek vonatkozó jogszabályban38 szennyező anyagok körében rögzített elfogadható bizonytalanság, ami a PM10 és PM2,5 esetében ±25%, míg a NO2 és O3 esetében ±15%. A relatív mérési bizonytalansági értékek:

- az aeroszolok (PM10 és PM2,5) esetében a mért értékekhez,
- a nitrogén-dioxid és ózon esetében a vonatkozó határértékekhez (NO2: 85 µg/m³, O3: 120 µg/m³ viszonyítva értendők).
Egy akkreditált vizsgálólaboratórium konkrétan is meghatározhatja egy konkrét mérési eljárás tényleges bizonytalanságát. Az eredményeket részletesen a BKÁÉ 2022 tartalmazza.39

A budapestiekvéleményelavegőminőségről

A lakóhely, illetve a gyakran látogatott városrészekben tapasztalatok alapján, 2020., 2021. és 2022-ben megkérdezett környezeti problémák közül a rossz levegő a felmérésben szereplő tíz tényező közül a közepes megítélést kifejező 51 ponttal a középső, ötödik helyre került. 2023-ban a levégőminőség megítélése számottevően javult: 41 ponttal, már „csak” a hatodik helyet foglalja el a környezeti problémák negatív rangsorában. A megítélés minden városrészben javult, kedvezőtlen véleménnyel továbbra is különösen a történelmi belvárosban lakók értékelik egyet, és a legkevésbé a kertvárosokban élők érzékelik rossznak a levégőminőséget.

A budapestieklevégőminőséggel kapcsolatos véleménye nem tükrözi az állapotértékelés keretében, az objektív mérési adatok alapján feltárt helyzetet. Bár valóságban a város levegőszennyezettsége európai szinten átlagosnak mondható, a 2020-as felmérés szerint minden tizedik budapesti véli úgy, hogy a város levegője jobb, mint más hasonló városoké, és csaknem két és félszer többen gondolják ennek az ellenkezőjét. A tágabb belvárosban élők az átlagosnál nagyobb arányban osztják a kedvezőtlen véleményt.

A városban legfőbb levégőminőségi problémát jelentő magas PM szinteket a kutatási eredmények alapján elsősorban a lakossági fűtés okozta, és a rendkívüli szmoghelyzetek kialakulásában legmeghatározóbb a meteorológiai viszonyok szerepe. Ennek ellenére a budapestiek többsége a szmoghelyzetek legfőbb okaként a közlekedést nevezte meg, csak minden negyedik-ötödik válaszadó gondol a szilárd tüzelésre a legfőbb okként. Különösen a belvárosban és a belváros közeli területeken vélik a közlekedést a legnagyobb problémának. A fűtésből származó szmog a kertvárosi részekben jelent az átlagosnál valamelyest nagyobb problémát.

11. ábra: A levegőt rossznak, az egészségre károsnak ítélt véleménnyel egyetértés a lakóhely, illetve a sűrűn látogatott városrészekben tapasztaltak alapján (százfokú skála) (2020, 2023)

12. ábra: Budapest levégőminősége európai összevetésben a budapestiek szerint (százalék) (2020)
Levegőminőség

13. ábra: A budapesti téli szmogproblémák feltételezett okai a budapestiek szerint (százalék) (2021, 2022)

A város levegőjének változása tekintetében ennél is rosszabb az arány, illetve a megítélés: 2020-ban három és félszer annyian vélték úgy, hogy az elmúlt 10 évben romlott a város levegője, mint amennyien javulást érzékeltek, míg a 2022-ben megkérdezetteknél ez az arány már tízszeres volt. Miközben általában stagnáló állapot mellett enyhe – több tekintetben meg egyértelműen igazolt – javulás is megfigyelhető. Az átlagosnál valamivel magasabban arányban érzékelik a kedvezőtlen változásokat a nők és a fiatalabbak, valamint a lakótelepeken és a budai kertvárosban élők.

A budapesti légszennyezettség szintjére vonatkozó tájékozottságát a 2020-as felmérés szerint a lakosság 43 százaléka elégedett, miközben ez az a szakterület is, ahol legnagyobb arányban jelezték, hogy nem érdektelen őket. Az egyéni felfogás és a valós adatok közötti eltérések közül kiemelkedik a mezőgazdasági szektor kibocsátásának szerepe, amelyet folyamatosan alábécuőnek. Ez az alábbiakban részben – annak a sztereotípiának tulajdonítható, amely szerint a vidék jó lakóhely, illetve az értékek tárháza.

A lakosság levegőminőséggel kapcsolatos hiányos ismeretek nem csak Magyarországon jellemzők. Egy nemzetközi tanulmány alapján a légszennyezés okaival kapcsolatos információk és ismeretek hiánya széles körben elterjedt a különböző társadalmi-gazdasági csoportokban és országokban. Az észlelt szennyező szektorok elemzése azt mutatta, hogy az emberek az iparban és a járműforgalomban látják a legfontosabb szennyező forrásokat. Az egyéni felfogás és a valós adatok közötti eltérések közül kiemelkedik a mezőgazdasági szektor kibocsátásának szerepe, amelyet folyamatosan alábécuőnek. Ez az alábbiakban részben – annak a sztereotípiának tulajdonítható, amely szerint a vidék jó lakóhely, illetve az értékek tárháza.

A lakosság levegőminőséggel kapcsolatos hiányos ismeretek nem csak Magyarországon jellemzők. Egy nemzetközi tanulmány alapján a légszennyezés okaival kapcsolatos információk és ismeretek hiánya széles körben elterjedt a különböző társadalmi-gazdasági csoportokban és országokban. Az észlelt szennyező szektorok elemzése azt mutatta, hogy az emberek az iparban és a járműforgalomban látják a legfontosabb szennyező forrásokat. Az egyéni felfogás és a valós adatok közötti eltérések közül kiemelkedik a mezőgazdasági szektor kibocsátásának szerepe, amelyet folyamatosan alábécuőnek. Ez az alábbiakban részben – annak a sztereotípiának tulajdonítható, amely szerint a vidék jó lakóhely, illetve az értékek tárháza.

A lakosság levegőminőséggel kapcsolatos hiányos ismeretek nem csak Magyarországon jellemzők. Egy nemzetközi tanulmány alapján a légszennyezés okaival kapcsolatos információk és ismeretek hiánya széles körben elterjedt a különböző társadalmi-gazdasági csoportokban és országokban. Az észlelt szennyező szektorok elemzése azt mutatta, hogy az emberek az iparban és a járműforgalomban látják a legfontosabb szennyező forrásokat. Az egyéni felfogás és a valós adatok közötti eltérések közül kiemelkedik a mezőgazdasági szektor kibocsátásának szerepe, amelyet folyamatosan alábécuőnek. Ez az alábbiakban részben – annak a sztereotípiának tulajdonítható, amely szerint a vidék jó lakóhely, illetve az értékek tárháza.

A lakosság levegőminőséggel kapcsolatos hiányos ismeretek nem csak Magyarországon jellemzők. Egy nemzetközi tanulmány alapján a légszennyezés okaival kapcsolatos információk és ismeretek hiánya széles körben elterjedt a különböző társadalmi-gazdasági csoportokban és országokban. Az észlelt szennyező szektorok elemzése azt mutatta, hogy az emberek az iparban és a járműforgalomban látják a legfontosabb szennyező forrásokat. Az egyéni felfogás és a valós adatok közötti eltérések közül kiemelkedik a mezőgazdasági szektor kibocsátásának szerepe, amelyet folyamatosan alábécuőnek. Ez az alábbiakban részben – annak a sztereotípiának tulajdonítható, amely szerint a vidék jó lakóhely, illetve az értékek tárháza.

A lakosság levegőminőséggel kapcsolatos hiányos ismeretek nem csak Magyarországon jellemzők. Egy nemzetközi tanulmány alapján a légszennyezés okaival kapcsolatos információk és ismeretek hiánya széles körben elterjedt a különböző társadalmi-gazdasági csoportokban és országokban. Az észlelt szennyező szektorok elemzése azt mutatta, hogy az emberek az iparban és a járműforgalomban látják a legfontosabb szennyező forrásokat. Az egyéni felfogás és a valós adatok közötti eltérések közül kiemelkedik a mezőgazdasági szektor kibocsátásának szerepe, amelyet folyamatosan alábécuőnek. Ez az alábbiakban részben – annak a sztereotípiának tulajdonítható, amely szerint a vidék jó lakóhely, illetve az értékek tárháza.

A lakosság levegőminőséggel kapcsolatos hiányos ismeretek nem csak Magyarországon jellemzők. Egy nemzetközi tanulmány alapján a légszennyezés okaival kapcsolatos információk és ismeretek hiánya széles körben elterjedt a különböző társadalmi-gazdasági csoportokban és országokban. Az észlelt szennyező szektorok elemzése azt mutatta, hogy az emberek az iparban és a járműforgalomban látják a legfontosabb szennyező forrásokat. Az egyéni felfogás és a valós adatok közötti eltérések közül kiemelkedik a mezőgazdasági szektor kibocsátásának szerepe, amelyet folyamatosan alábécuőnek. Ez az alábbiakban részben – annak a sztereotípiának tulajdonítható, amely szerint a vidék jó lakóhely, illetve az értékek tárháza.

A lakosság levegőminőséggel kapcsolatos hiányos ismeretek nem csak Magyarországon jellemzők. Egy nemzetközi tanulmány alapján a légszennyezés okaival kapcsolatos információk és ismeretek hiánya széles körben elterjedt a különböző társadalmi-gazdasági csoportokban és országokban. Az észlelt szennyező szektorok elemzése azt mutatta, hogy az emberek az iparban és a járműforgalomban látják a legfontosabb szennyező forrásokat. Az egyéni felfogás és a valós adatok közötti eltérések közül kiemelkedik a mezőgazdasági szektor kibocsátásának szerepe, amelyet folyamatosan alábécuőnek. Ez az alábbiakban részben – annak a sztereotípiának tulajdonítható, amely szerint a vidék jó lakóhely, illetve az értékek tárháza.
válaszadók nagy többsége (67%) – a megkérdezett magyarok 77%-a (!) – úgy véli, hogy a követelményeket szigorúírni kell;

● az európaiak többsége szerint (65%) a légszennyezést nemzetközi szinten kellene kezelni, ezt követi az európai és a nemzeti szintű kezelést támogatók (mindkettő 42%);

● az európaiak többsége úgy véli, hogy a nagy ipari létesítmények, a fosszilis tüzelőanyagokat hasznosító energiatermelők, a közigazgatási szervek és a munkáltatók nem tesznek eleget a jó levegőminőség előmozdítása érdekében, a többség úgy véli, hogy a lakosság ezzel szemben kellő erőfeszítést tesz.

Intézkedések

Az ENSZ Egészségügyi Világszervezete (WHO) – a lakosság légszennyezettségi terhelésének és az abból eredő kedvezőtlen hatások csökkentése érdekében – 1987 óta kiadja és rendszeres időközönként felülvizsgálja levegőminőségi ajánlásait, ezzel nemzetközi szinten ellenőrzőtten segítve a döntéshozókat (jogalkotókat, kormányzati szerveket) és a civil közösségeket. A WHO korábbi ajánlását 2006-ban publikálta, ami a legkárosabb légszennyező anyagokra vonatkozó ajánlásokat tartalmazta. Az útmutató világszerte jelentős hatással volt a légszennyezettségével kapcsolatos szakpolitikákra, továbbá nagyban növelte a helyi hatóságok és civil társadalom aktivitását a légszennyezettség fokozott ellenőrzése és további tanulmányozása terén.

Az időközben eltelt, több mint 15 év során számtotta fel a leegészségügyi gyakorolt káros hatásaira vonatkozó kutatási eredmények, bizonyítékok, a légszennyezettség mérésére és az adott légszennyező anyagok szennyezettségével kapcsolatos időbeli hatásának (expozíció és káros hatások) értékelésére került sor eredmények, valamint a légszennyezettség-mérés módjaimmáron globálisan egyidejűleg publikált eredményeinek, adatbázisainak értékelésére. Új epidemiológiai tanulmányok alapján dokumentálták az alacsony és közepes jövedelmű országokban azabból eredő káros hatásait, míg a magas jövedelmű, tiszta levegőjű országokban végzett tanulmányok a korábban vizsgálati eredményektől sokkal alacsonyabb szintű káros hatásokról számoltak be. Tekintettel a fentieken vázolt számos tudományos eredményre a WHO 2016-ban kezdte meg a kutatást, amelynek eredményeképp a 2021-ben publikált, aktualizált útmutatóban a PM10, PM2,5, NO2 és O3 légszennyező anyagok esetében a korábbinál szigorúabb határokat fogalmaztak meg, amelyek így még nagyobb mértékben eltérnek az EU-s irányelvekhez képest. Az eltérés mértékét jól szemlélteti, hogy míg a fenti szennyezőanyagokhoz kötődő EU-s hatályos követelmények túllépése az EU városi lakosságát szennyezőanyagtól függően 1-10%-os mértékben, a WHO 2021. évi ajánlásai alapján az EU lakosságot már 76-97%-os intervallumban érintette 2021-ben.
Levegőminőség

7. táblázat: Az európai irányelvben meghatározott és a WHO által ajánlott határértékek összehasonlítása (Forrás: WHO)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>PM$_{2.5}$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 nap</td>
<td>-</td>
<td>25 µg/m3**</td>
<td>15 µg/m3**</td>
</tr>
<tr>
<td>naptári év</td>
<td>20 µg/m3</td>
<td>10 µg/m3</td>
<td>5 µg/m3</td>
</tr>
<tr>
<td>PM$_{10}$</td>
<td>50 µg/m3 évente 35-nél több alkalommal nem léphető tűl</td>
<td>50 µg/m3**</td>
<td>45 µg/m3**</td>
</tr>
<tr>
<td>naptári év</td>
<td>40 µg/m3</td>
<td>20 µg/m3</td>
<td>15 µg/m3</td>
</tr>
<tr>
<td>O$_3$</td>
<td>120 µg/m3 nagyobb maximumok átlaga</td>
<td>100 µg/m3*</td>
<td>100 µg/m3*</td>
</tr>
<tr>
<td></td>
<td>3 évente 75-nél több alkalommal nem léphető tűl</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>félév átlaga**</td>
<td>-</td>
<td>60 µg/m3</td>
</tr>
<tr>
<td>NO$_2$</td>
<td>200 µg/m3 évente 18-nél több alkalommal nem léphető tűl</td>
<td>200 µg/m3</td>
<td>200 µg/m3</td>
</tr>
<tr>
<td>1 nap</td>
<td>85 µg/m3 (csak Mo.)</td>
<td>-</td>
<td>25 µg/m3**</td>
</tr>
<tr>
<td>naptári év</td>
<td>40 µg/m3</td>
<td>40 µg/m3</td>
<td>10 µg/m3</td>
</tr>
</tbody>
</table>

* 99. percentilis, azaz évente 3-nél több alkalommal nem léphető túl
** napi 8 órás maximumok átlaga hat évente kötő hónapban, évente a legszennyezettebb hat hónap mozgátlagértéke mellett

Az Európai Parlament Környezetvédelmi, Közegészségügyi és Élelmiszerbiztonsági Bizottsága (ENVI) a levegőminőséggel kapcsolatos irányelvek felülvizsgálata és a nulla szennyezéssel kapcsolatos cselekvési terv felülvizsgálata előtt nem kötelező erejű jelentést fogadott el, abban felszólítva az Európai Bizottságot és a tagállamokat a levegőminőséggel kapcsolatos kérdések megfelelőbb kezelésére.

A jelentés hangsúlyozza többek között az alábbiakat:

- a szennyezőanyagokhoz rendelt normák és a WHO ajánlások összehangolását a jelenleg határértékként nem szabályozott komponensek tekintetében is (pl. ultrafinom részecskék, korom);
- a szennyezett területeken további levegőminőség-mérő pontok kijelölését;
- olyan rendelkezések meghozatalát, amelyek megakadályozzák, hogy a helyi környezetpolitikák kedvezőtlen irányba változzanak;
- a járművekre vonatkozó kibocsátási normák megközelítésének megkötelésént mentén;
- a városok szerepét hangsúlyozva kampanyok és ösztöntő programok lefolytatását a fűtési rendszerek megújítása érdekében;
- a helyi önkormányzatok bevonását a levegőminőségi tervek végrehajtásába.

Az elmúlt időszakban a közlekedési eredetű légszennyezettség csökkentését célzó legmarkánsabb döntésként az Európai Parlament Környezetvédelmi Bizottsága megszavazta az EU Bizottságának azt a javaslatát, hogy a „Fit for 55” klimasomag részeként 2035-től az új belsőégésű (benzin- és dízelüzemű) autók értékesítését ténylegesen tiltsák be az autók és könnyű haszongépjárművek esetében.

Magyarországon a levegőterheltségi szint vizsgálati eredményeinek OMSZ-LRK értékelése alapján – az ország levegőminőségének vizsgálatára és kezelése céljából – minisztéri rendeletben kijelölt, lehatárolt területegységeket (zóna, agglomeráció) határoznak meg, így minősítve ezeket a területeket. E minisztéri rendelet tartalmazza zónánként a levegőminőség besorolását, amely nem csak a feltüntetett légszennyező anyagok adott zónára jellemző koncentrációtinzijét mutatja meg, hanem az ellenőrzés módját és megkívánt pontosságát is kijelölő.

Azon – zónákhoz (agglomerációhoz) tartozó – településekre vonatkozóan, ahol a vizsgált légszennyező anyagok szintje meghaladja a határértékét, a Kormányhivatal levegőminőségi tervek – az egészségügyi államigazgatási szerv,
az érintett útkezelő, a közlekedési hatóság és a települési önkormányzatok véleményének figyelembevételével, a nagyobb légszennyezők bevonásával, valamint az érintett nyilvánosság véleményének figyelembevételével – készít, amelyet a szaktársa a honlapján tesz közzé53.

A Fővárosi Önkormányzat – a „LIFE IP HungAIRy” projekt54 ökonomedzsereinek – közreműködésével elősegíti a levegőminőségi terv évenkénti megújítását azzal, hogy a fővárosi műszaki közszolgáltatásokat végző gazdasági társaságok, valamint a fővárosi fenntartású humán intézmények levegőminőség javítására vonatkozó törekvéseit összegzik, továbbá a lakossági tüzeléssel, a gépjárműhasználat és a városi logisztikával kapcsolatos légszennyezési problémákra és kihívásokra is válaszokat kerestek.

A Kormányhivatal által készített levegőminőségi tervet a Fővárosi Önkormányzat a környezetvédelmi programjának kidolgozása során veszi figyelembe. A környezeti program legfőbb célja, hogy megalapozott, arányos és hatékony intézkedésekre tegyen javaslatot. Megjegyezzük, hogy törvényi előírás szerint 55 a környezetvédelmi programokban foglaltakat az adott területi szint fejlesztési koncepciójának és rendezési, valamint fejlesztési politikai terveinek kidolgozása, a döntéshozatal és a végrehajtás, továbbá az adott területre vonatkozó ágazati tervezés során kell érvényre juttatni.

Szmogriadó

A szmogriadó elrendelését megalapozó adatok folyamatos gyűjtését a Kormányhivatal és az OMSZ, a főpolgármester felé történő továbbítását a Fővárosi Önkormányzati Rendészeti Igazgatóság Ügyeleti Információs Központja látja el 56. A mért adatok alapján a szmogriadó, annak fokozatait és a szükséges intézkedéseket – a Kvt. rendelkezései alapján – Budapesten a főpolgármester rendeli el és szünteti meg. Megjegyzendő, hogy a szmogriadó riasztási fokozat, mint veszélyhelyzetről elrendelésének jelenleg két címzettje van, mivel a Kvt. mellett a katasztrófavédelemről szóló törvény is tartalmaz erre vonatkozó rendelkezést57; ez alapján az eljárásra 2012. január 1-jétől hatáskörrel rendelkezik a katasztrófavédelmi szerv is.

A 8. táblázat a levegőtisztaság-védelmi rendkívüli események58, a hatósági intézkedések évi gyakoriságának összefoglalását tartalmazza – a főpolgármesternek a legutóbbi öt évben nem kellett a fővárosi szmogriadó riasztási fokozatát elrendelnie59, ami közúti forgalom korlátozását is jelentette volna.

| 8. táblázat: Rendkívüli budapesti légszennyezetségi helyzetben hozott főpolgármesteri intézkedések 2007-2022 között |
|---|---|---|---|---|---|---|---|---|---|---|
| tájékoztatási fokozat | 6/1 | - | - | - | - | - | 9/1 | - | - | - |
| riasztási fokozat | - | - | - | - | - | - | - | - | - | - |
| tájékoztatási fokozat | 6/1 | - | - | - | - | - | 9/1 | - | - | - |
| riasztási fokozat | - | - | - | - | - | - | - | - | - | - |

*: A vonatkozó európai irányelv előterén az együttes miniszteri rendeletben 2008. október 25-i hatállyal megállapított magyarországi új tájékoztatási és riasztási küszöbértékkel alapján, amit a jelenleg hatályos együttes miniszteri rendelet is átvett. - : nincs rendkívüli légszennyezetségi állapot (tájékoztatási vagy riasztási fokozat)
Fővárosi Önkormányzat korábbi támogatása kezdeményezte, illetve tette lehetővé, továbbá az a Budapest Portálról is elérhető.

A budapesti szmogriadó terv végrehajtása során a főpolgármester feladata a légszennyezést okozó, szolgáltató, illetve közvetlenül közlekedési eszközök üzemeltetésének időleges korlátozása, vagy felfüggesztése. A külön jogszabályban meghatározott szmoghelyzet bekövetkezése esetén feladata az érintett lakosság tájékoztatása a meglévő és várható túllépés helyéről, mértékéről és időtartamáról, a lehetséges egészségügyi hatásokról és a javasolt teendőkről, valamint az üzemeltető tevékenységének, illetve közúti közlekedési eszközök üzemeltetésének időleges korlátozása, vagy felfüggesztése. Ezeket a feladatokat Budapest Főváros szmogriadó-tervéről szóló rendeletre szabályozza. E rendelet többszöri módosítása – a lépcsőzetesen hatályba lépő forgalmi korlátozások – eredményeképp 2019. október 1-jétől az eddigi szabályozási logikát koncepcionálisan megfordítva a környezetszennyező kategóriák újabb és újabb kiegészítése helyett generális szabályként a szmogriadó riasztási fokozatában a gépjárművek általános forgalomkorlátozását rögzíti (ideértve a belső égésű motorral hajtott, rendszámot nélküli segédmotoros kerékpárok forgalmának tilalmát is), és ahhoz képest a 10. §-ban eddig is meghatározott funkcionális kivételekhez inkább a forgalomkorlátozással korábban eddig sem érintett pedálzó tulajdonosú környezetvédelmi osztályokba sorolt gépjárműveket sorolja fel. A 29/2022. (VII. 14.) Főkgy. rendelet módosításával további szigorúként a szmogriadó esetén korlátozás alá eső gépjárművek köre, az EURO-3-as benzines, valamint a hibrid-dízel vegyes üzemű gépjárművekkel.

A szmoghelyzeti forgalomkorlátozás 2022-es szigorúját követően jelenleg nem érinti a következő környezetvédelmi osztályú (V.9 kódú) gépjárműveket:

- 5-ös (benzines hibrid, csak gázüzemű, csak elektromos meghajtásúak, ide értve a betűjellel kiegészített újabb 5-ös kódokat is);
- 9-es (az Euro 4 benzines);
- 14-es benzines (az Euro 5 benzines – ebben az osztályban az Euro 5 dizelüzeműek korlátozottá váltak);
- 15-ös és 16-os (az Euro 6-osak, üzemanyaguktól függetlenül).

Mivel Budapest légszennyezettségi helyzete további 74 agglomerációs településsel együtt egy lebegőtisztaság-védelmi agglomerációként kezelendő, ezért az intézkedések tervezése során a zónához tartozó településeken üzemben tartott gépjárművek adatait együttesen kell figyelembe venni. A 2023. áprilisi adatok alapján, riasztási fokozat esetén a légszennyezési agglomerációban regisztrált gépjárművek 46,5%-a sikor regulációs intézkedés alá kerül. A korlátozás a dizelüzemű gépjárművek szennyezőbb 70%-át érinti, ami az összes állományhoz képest 28%-ot jelent.

A 2017-es fővárosi közgyűlési előterjesztés 2. mellékletének javaslata szerint „indokolt a feladatok telepítését módosítani a következők szerint, figyelemmel az eddigi fővárosi tapasztalatokra, a forgalomkorlátozással járó intézkedés végrehajtása során felmerülő problémákra, a tárgykörrel kapcsolatos legújabb kutatási eredményekre:

- az államiigazgatási hatósági (fő)polgármesteri hatáskört állami hatósághoz (az akkori környezetvédelmi felügyelőséghez, amelynek mai jogutódai a kormányhivatalok) indokolt telepíteni, továbbá
- a füstköd-riadó terv elkészítését a környezetügyért felelős miniszter feladataként indokolt meghatározni.

Később – mivel a tájékozatási fokozatban a vonatkozó jogszabályok szerint, illetve az alkalmazandó és meghozott eddigi hatósági intézkedések tartalma a hatósági feladatellátást nem igényli – indokolt a minél hamarabb (PM₁₀ légszennyező esetében nem kétnapi késleltetéssel történő), megfelelő, hiteles
szakmai tájékoztatási feladatokat az Országos Meteorológiai Szolgálathoz állami, de nem hatósági feladatként telepíteni.”

További javasolt feladatok

• Az energiahatékonysági intézkedések folytatása, mivel a levegőminőség változása alapvetően az energiapolitikai döntések eredményeképp jön létre.
• A fővárosi közlekedési rendszer környezetbarát továbbfejlesztésének folytatása, a BKV gépjárműparkjának korszerűsítése, a fővárosi kerékpáros és kötötttárs közlekedési fejlesztések folytatása.
• A szmogriadó esetére nem indokolt a polgármester (Budapest esetében a főpolgármester) környezetvédelmi törvényben történő államigazgatási hatósági hatáskörrel történő felruházása, tekintettel a katasztrófavédelmi jogszabályok által kialakított rendszerre, továbbá az egészségügyi államigazgatási szerv, a közlekedési hatóság törvényben és az Országos Meteorológiai Szolgálat kormányrendeletben meghatározott feladataira.
• A levegőtisztaság-védelmi feladatok központi, állami hatáskörben történő ellátása a leghatékonyabb. Ha Budapest kitiltaná – nem csak rendkívüli (szmogriadós) intézkedésként – a legszennyezőbb gépjárműveket, a dízeleket, akkor indokolt lenne az egy egységként meghatározott légszennyezettésgi agglomeráció többi 74 településén is egyidejűleg ugyanilyen tartalmú önkormányzati rendelkezést hozni.
• A legszennyezőbb gépjárművek, különösen dízelüzeműek általános visszaszorítása a leghatékonyabban indirekt, állami hatáskörben bevezetett, illetve alkalmazott gazdasági szabályozókkal látható el (központi adóigazgatási eszközökkel, például: regisztrációs adó, illetve vállalkozások költségelőként megváltoztatása, vagy a saját tömeg és a környezetvédelmi osztály szerinti gépjárműadóztatás).
• Indokolt megújítani az állami (kormányhivatali) hatáskörben készítendő Budapest és környéke légszennyezettségi agglomeráció településeinek levegőminőségi tervét.
• Különösen a szíveszteri magán, illetve az állami, önkormányzati megrendelésű további tűzijátékok korlátozásának megfontolása, tekintettel azok légszennyező, zajterhelési és köztisztasági hatására.
Függelék

F.1.

9. táblázat: A budapesti automata mérőhálózat állomásainak címe, jellege (Forrás: OMSZ-LRK)

<table>
<thead>
<tr>
<th>Mérőállomás</th>
<th>Címe</th>
<th>Jellege</th>
</tr>
</thead>
<tbody>
<tr>
<td>BP4</td>
<td>Pesthidegkút</td>
<td>II. Községház u. 10.</td>
</tr>
<tr>
<td>BP10</td>
<td>Budatétény</td>
<td>XXII. Tűzliliom u.</td>
</tr>
<tr>
<td>BP11</td>
<td>Csepel</td>
<td>XXI. Szent István út 217-219.</td>
</tr>
<tr>
<td>BP7</td>
<td>Honvéd telep</td>
<td>XIII. ker., Dózsa Gy. út 53.</td>
</tr>
<tr>
<td>BP2</td>
<td>Széna tér</td>
<td>I. Széna tér</td>
</tr>
<tr>
<td>BP8</td>
<td>Erzsébet tér</td>
<td>V. Erzsébet tér</td>
</tr>
<tr>
<td>BP6</td>
<td>Kosztolányi tér</td>
<td>XI. Kosztolányi D. tér</td>
</tr>
<tr>
<td>BP14</td>
<td>Teleki tér</td>
<td>VIII. Teleki tér</td>
</tr>
<tr>
<td>BP5</td>
<td>Körakás park</td>
<td>XV. Körakás park</td>
</tr>
<tr>
<td>BP9</td>
<td>Gergely u.</td>
<td>X. Gergely u. 85.</td>
</tr>
<tr>
<td>BP1</td>
<td>Gilice tér</td>
<td>XVIII. Gilice tér</td>
</tr>
<tr>
<td>BP12</td>
<td>Káposztásmegyer</td>
<td>IV. Lakkozó u.</td>
</tr>
</tbody>
</table>

10. táblázat: A budapesti levegő 2021. évi minőségének OMSZ-LRK-értékelése

<table>
<thead>
<tr>
<th>Kén-dioxid</th>
<th>Nitrogén-dioxid</th>
<th>Szén-monoxid</th>
<th>Ózon</th>
<th>PM<sub>10</sub></th>
<th>PM<sub>2.5</sub></th>
<th>Benzol</th>
<th>Összesíttet index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pesthidegkút</td>
<td>Kiváló</td>
<td>Jó</td>
<td>Kiváló</td>
<td>Jó</td>
<td>Jó</td>
<td>Kiváló</td>
<td>Jó</td>
</tr>
<tr>
<td>Budatétény</td>
<td>-</td>
<td>Jó</td>
<td>Kiváló</td>
<td>Jó</td>
<td>Jó</td>
<td>Jó</td>
<td>Kiváló</td>
</tr>
<tr>
<td>Csepel</td>
<td>Kiváló</td>
<td>Jó</td>
<td>Kiváló</td>
<td>Jó</td>
<td>Jó</td>
<td>-</td>
<td>n.a.</td>
</tr>
<tr>
<td>Honvéd telep</td>
<td>-</td>
<td>Jó</td>
<td>Kiváló</td>
<td>Jó</td>
<td>Jó</td>
<td>-</td>
<td>Jó</td>
</tr>
<tr>
<td>Erzsébet tér</td>
<td>-</td>
<td>Jó</td>
<td>Kiváló</td>
<td>-</td>
<td>Jó</td>
<td>Jó</td>
<td>Kiváló</td>
</tr>
<tr>
<td>Kosztolányi tér</td>
<td>-</td>
<td>Jó</td>
<td>Kiváló</td>
<td>Jó</td>
<td>Jó</td>
<td>-</td>
<td>Jó</td>
</tr>
<tr>
<td>Teleki tér</td>
<td>Kiváló</td>
<td>Megfelelő</td>
<td>Kiváló</td>
<td>Jó</td>
<td>Jó</td>
<td>Jó</td>
<td>Kiváló</td>
</tr>
<tr>
<td>Körakás park</td>
<td>Kiváló</td>
<td>Jó</td>
<td>Kiváló</td>
<td>Jó</td>
<td>Jó</td>
<td>Jó</td>
<td>Jó</td>
</tr>
<tr>
<td>Gergely u.</td>
<td>Kiváló</td>
<td>Jó</td>
<td>Kiváló</td>
<td>Jó</td>
<td>Jó</td>
<td>Jó</td>
<td>Jó</td>
</tr>
<tr>
<td>Gilice tér</td>
<td>Kiváló</td>
<td>Jó</td>
<td>Kiváló</td>
<td>Jó</td>
<td>Jó</td>
<td>-</td>
<td>Kiváló</td>
</tr>
<tr>
<td>Káposztásmegyer</td>
<td>Kiváló</td>
<td>Jó</td>
<td>Kiváló</td>
<td>Jó</td>
<td>Jó</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

n.a.: nincs elég adat az értékeléshez; - : nincs mérés
F.2. Levegőminőség-értékelési módszerek

A magyar állami szervek értékelési módszere mind egymástól, mind az EEA-módszertől is eltér. Az OMSZ-LRK-értékelés például nem hagyja figyelmen kívül annak az időszaknak az eredményét, amelyre nézve az adott (rézs)időszak adatainak 75%-a nem áll rendelkezésre, míg az EEA esetében ezen időszakoknak nincs megállapítható eredménye68. Az OMSZ-LRK éves eredményeket, míg az EEA és az egészségügyi ágazatban a 2018. októbere 1-jétől létrehozott Nemzeti Népegészségügyi és Gyógygazdasági Központ (NNNyK; a korábbi Országos Közegészségügyi Központ, majd az NNN jogutódja) 24 órára vonatkozott eredményeket értékel, továbbá az alkalmazott „lépésmagasságok” különbözők, és azok közül még az azonos tartománya eső részek elnevezése és színoskálája is eltérő (l. PM10 esetére a 15. ábra).

15. ábra: Az OMSZ-LRK-, az NNNyK- és az EEA-skála értékelési módszere, minősítései PM10 (szálló por) esetében.

Az NNNyK a kiválasztott települések levegő-egészségügyi helyzetét naponta értékel69 a vonatkozó jogszabályokban foglalt70 célok megvalósítása érdekében. Az NNNyK hivatalos szakmai értékelését és tájékoztatását rendszeresen tévesen közlik különböző sajtóorganumok, miszerint „az önkormányzatok az egészségtelen és a veszélyes kategóriák alapján rendelhetik el a szmogriadó tájékoztatási vagy riasztási fokozatát”. Ezzel szemben a szmogriadó tájékoztatási vagy riasztási fokozatát:

- a kormányhivatalok által mért, ellenőrzött és továbbított adatok, valamint az OMSZ egyidejű időjárási-előrejelzése alapján lehet, illetve kell elrendelni, és
- azt az önkormányzati szervek nem önkormányzati feladatként, hanem államigazgatási, hatósági tevékenységként azon polgármesterek (Budapest esetében a főpolgármester) rendelik el, ahol adottak a mérések jogszabályi feltételei (Budapesten például egymást követő két nap alatt és három mérőponton kell az adott küszöbértéket meghaladni; ehhez szükséges még az OMSZ-előrejelzés tartalma is).

Tehát a hírekben hivatkozott NNNyK tájékoztatás a levegőminőség egészséghatásán alapul és célja a lakosság ilyen jellegű tájékoztatása. Az NNNyK értékelésének bizonyos határai egyediak a hatósági intézkedés egyes követelményeivel, azonban a szmogriadó tájékoztatási és riasztási szintjeinek elrendeléséhez további követelmények teljesülése is szükséges.
F.3. PM$_{10}$ („szálló por”) – éves átlagok

<table>
<thead>
<tr>
<th>Mérő-állomás</th>
<th>PM$_{10}$ (μg/m3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pesthídég-kút</td>
<td>24</td>
</tr>
<tr>
<td>Tétény / Budatétény</td>
<td>n.a.</td>
</tr>
<tr>
<td>Csepel</td>
<td>42</td>
</tr>
<tr>
<td>Honvéd telep</td>
<td>44</td>
</tr>
<tr>
<td>Széna tér</td>
<td>24</td>
</tr>
<tr>
<td>Erzsébet tér</td>
<td>46</td>
</tr>
<tr>
<td>Kosztolányi tér</td>
<td>37</td>
</tr>
<tr>
<td>Baross tér / Teleki tér</td>
<td>n.a.</td>
</tr>
<tr>
<td>Körakás park</td>
<td>43</td>
</tr>
<tr>
<td>Gergely u.</td>
<td>31</td>
</tr>
<tr>
<td>Gilice tér</td>
<td>30</td>
</tr>
<tr>
<td>Káposztás megyer</td>
<td>-</td>
</tr>
</tbody>
</table>

n.a.: a mérési adatok mennyisége kisebb, mint 75%; -: nincs mérés

F.4. PM$_{10}$ („szálló por”) – napi átlagok

A belvárosi és peremkerületi területek PM$_{10}$ szennyezettsegé állapotát összehasonlítva (l.16. ábra) – a nitrogén-dioxidtal ellentében – egyre kevésbé állapítható meg egyértelműen, hogy a két rész jellemzően különbözik-e.

A korábbi évek mérési eredményei alapján a belváros a peremkerületi szinthe képest jellemzően 5-25%-kal szennyezzettebb volt, de 2018-ban már az is előfordult, hogy a külső kerületben összességében magasabb koncentrációk mutatkoztak. Továbbá fontos megemlíteni, hogy a PM$_{10}$ vizsgálati módszerének jogszabályban rögzített elfogadható bizonytalansága csak 25% (ugyanaz az adat a nitrogén-dioxid és az ózon esetében 15%).

16. ábra: A belvárosi és peremkerületi mérőpontok 90,4 percentileinek mediánjai PM$_{10}$ esetében, a 24 órás átlagkoncentrációk alapján (Adatforrás: OMSZ-LRK, saját ábra)

- belvárosi mérőpontok
- peremkerületi mérőpontok
Az EEA a mindenkiaktúal jelenláteben összehasonlította az egyes tagállamok által az EU-nak adatszolgáltatásra bejelentett mérőállomások egynapi PM\textsubscript{10} átlageredményeit; mint a fentiekben már jeleztük (l. 9. táblázat), az érintett budapesti állomások és adatok itt is kiemelten jelöltek. A részletes módszertant a BKÁÉ 2021 tartalmazza.72

A 17. ábra a mérőpontonkénti egynapi átlageredményeket – értékük szerint növekvő adatnegyedekbe rendezetten – szemlélteti, melyek alapján is megerősíthető, hogy az elmúlt hétéves időszakon belül a trendnél lassan javuló váló.

A tendenciák elemzése érdekében a 17. ábra tartalmazza az EEA által legutóbb értékelt 2020. évi és az aktuális, 2022. évi adatokat, valamint az elmúlt időszak jellemzésére alkalmas legutóbb hétéves (2016-2022) időszak átlagértékeinek elemzését, külön kiemelve annak az 5 db mérőállomásnak az átlagértékeit is, amelyek a nemzetközi adatszolgáltatás során rendszeresen megküldésre kerülnek az EEA-nak. Az ábrán feltüntetésre került a WHO 2021. évi ajánlása (45 \textmu g/m3) és azon javasolt – legrosszabb eredményű – napok száma (3 nap), amelyeket az értékelés során figyelen kívül lehet hagyni (ami 99,2 percentilsnek felel meg). Az ábrán az „European Air Quality Index” színkálája került alkalmazásra.
17. ábra: Budapesti egynapi PM$_{10}$ átlageredmények összehasonlítása (Adatforrás: OMSZ-LRK, EEA módszer szerinti saját számítás)

- 2-3. kvartilis értéke
- Átlag
- 99,2 percentilis (WHO ajánlás alapján)

Magyarországi és EU egyenlőség határérték 50 µg/m3

WHO ajánlás 45 μg/m3
F.5. PM$_{2.5}$ aeroszol („kisméretű szálló por”)

Az EEA a mindenkori aktuális éves jelentéseiiben összehasonlítja a – tagállamok által az EU-nak adatszolgáltatásra bejelentett – mérőállomások PM$_{2.5}$ éves átlageredményeit, majd a PM$_{10}$ esetén már ismertetett (l. 17. ábra és magyarázat) módszerhez hasonlóan elemezték, az alábbi diagramot eredményezve.

Mivel PM$_{2.5}$ esetében korábban nem állt rendelkezésre kellő mennyiségű mérési eredmény, ezért a diagram a 2020., 2021. és 2022. évi adatokat tartalmazza külön-külön ábrázolva. Mivel a PM$_{2.5}$-re 24 órázat határérték jelenleg nincs, a diagramon a WHO 24 órázat határérték-ajánlásához kapcsolódó érték – 2021 óta 15 μg/m3 (!) – került feltüntetésre.

A diagram jól láthatóvá teszi, hogy az adatok fele (a 2. és a 3. kvartilis összesen) jellemzően a 10-20 μg/m3 közötti sávban mozog, míg a felső adatnagyedben szereplő egyéni átlagértékek nagy szórást mutatnak. Az egyéni eredmények döntő hányada nagyobb része a 24 órázat WHO-ajánlás (15 μg/m3) alatt, de valamennyi mérőpont, valamennyi éves adataiban előfordulnak az ajánlást jelentősen meghaladó értékek, a megengedett esetszámon is túl.
18. ábra: Budapesti egynapi PM$_{2.5}$ átlageredmények összehasonlítása (Adatforrás: OMSZ-LRK, EEA módszer szerinti saját számítás)

- átlag
- 2-3. kvartilis értéke
- 99,2 percentilis (WHO ajánlás alapján)
F.6. Ózon (O₃)

19. ábra: Budapesti egynapi O₃ átlageredmények összehasonlítása (Adatforrás: OMSZ-LRK, EEA módszer szerinti saját számítás)

![Diagram showing ozone concentration levels from 2016 to 2022](image-url)

- WHO ajánlás: 100 μg/m³
- Magyarországi egyórás egészségügyi határtérték (EU irányelvben 120 μg/m³)

2-3. kvartilis, átlag, 8. órás mozgó átlagkoncentráció maximum 93,2 percentilise
20. ábra: A belvárosi és peremkerületi mérőpontok 93,2 percentiliseinek mediánjai ózon (O₃) esetében, napi 8 órás mozgó átlagkoncentrációk maximuma alapján (Adatforrás: OMSZ-LRK, saját ábra)

F.7. Nitrogén-dioxid (NO₂)

A 2007-2022 közötti időszakban az éves átlagos nitrogén-dioxid koncentrációkat a 12. táblázat mutatja, kiemelve az éves határértéket (40 μg/m³) meghaladó értékeket.

12. táblázat: Nitrogén-dioxid éves átlagos koncentrációk (Adatforrás: OMSZ-LRK, saját számítás)

A fenti táblázat eredményei kapcsán meg kell jegyezni, hogy a 2012-2018-as időszakra vonatkozó adatok alkalmatlanok tendenciák megállapítására, illetve a tendenciák felvázolását nagymértékben bizonytalanná teszi az a körülmény, hogy a budapesti mérőállomások működésére, továbbá a szolgáltatott adatokra vonatkozóan sem teljesült az EEA értékelési módszer szerint, valamennyi vizsgált szennyezőanyag tekintetében alkalmaszott 75%-os rendelkezésre állási követelmény.

A WHO új ajánlásának jogszabályi bevezetése jelentős kihívást jelentene a nitrogén-dioxid éves határértékének (jelenlegi 40 helyett 10 μg/m³) teljesítése.
Az elmúlt évek mérései alapján értékelhetően elkülönült a belváros és peremkerületek nitrogén-dioxid szennyezettségi állapota, a belváros egyes években másfélszer szennyezettebb voltak, mint a peremkerületek (lásd BKÁÉ 2017.74). Az elmúlt években a különbség mértéke csökkent: 2018 óta a belvárosi mérőpontok 14-31% közötti, többlete a külvárosi mérőpontokhoz képest gyakorlatilag azonos szennyezettségi szintnek tekinthető (mert az eltérés mértéke jellemzően kisebb, mint az alkalmazott vizsgálati módszer bizonytalansága).

21. ábra: A belvárosi és peremkerületi mérőpontok 99,8 percentiliseinek mediánjai nitrogén-dioxid (NO₂) esetében, órás átlagkoncentrációk alapján (Adatforrás: OMSZ-LRK, saját ábra)

A PM₁₀ esetében is elvégzett értékeléshez hasonlóan – az európai értékelési módszert követve – szintén elvégeztük a 2022. évi budapesti adatok értékelését az órás átlagereedmények alapján, az alábbi diagramon (22. ábra).

Az elemzés alapján jól látható a stagnáló tendencia az átlagértékekben. A diagram jól láthatóvá teszi, hogy az adatok fele (a 2. és a 3. kvartilis együtt) jellemzően a 20-40 μg/m³ közötti sávban mozog, míg a felső adatnagyedben lévő átlagértékek nagy szórást mutatnak. Külön említtést érdemel, hogy 2020- óta az Erzsébet téri mérőállomáson jelentős javulás mérhető, amelynek okai még tisztázatlanok.

Már említésre került, hogy a magyar jogszabály szigorúbb az órás határértékek tekintetében az EU irányelvénél75, ezért a 20. táblázat jelentősebbnek mutatja a problémát, mint az EEA értékelése. Nemzetközi összehasonlítás alapján (I.8. ábrát) Budapest NO₂ szempontjából a kevésbé szennyezett európai nagyvárosok közé tartozik.
22. ábra: Budapesti egyórás NO₂ átlageredmények összehasonlítása (Adatforrás: OMSZ-LRK, EEA módszer szerinti saját számítás)

(mg/m³)
F.8. A légzsennyezettség környezet-egészségügyi hatásai, kockázatai – nemzetközi és hazai összehasonlítás

Az EU-27 2020. évi PM$_{2.5}$, NO$_2$ és O$_3$ eredményei alapján az EEA a teljes városi lakosságra tagállamonként meghatározza a WHO naptári éves (O$_3$ esetében féléves) időtartamra vonatkozó 2021-es ajánlása feletti (l.: 7. táblázat) expozícióhoz tartozó **korai (idő előtti) halálesetek** mértékét, amelyek sorrendben: 238.000, 47.000 és 24.000 életév

Ugyanitt a WHO 2021-es ajánlása fölötti magyarországi PM$_{2.5}$ szennyezettségi szint naptári évre vonatkozó expozíciójához 9.500 korai halálesetet becsült. Tehát, ha a magyarországi levegőben az **antropogén eredetű PM$_{2.5}$ szennyezettség** legalább a WHO egy évre ajánlott szintjére (5 µg/m3-re) csökkenne, akkor a 2020-as adatok alapján végzett becslések szerint **Magyarországon 9.500 idő előtti halálesetet lehetett volna megelőzni**, ami a 2018-as adatokhoz képest 27,5%-os javulásnak felel meg.

Előbbi fő légzsennyező anyagokra az EEA jelentés vizsgálta a légzsennyezéssel kapcsolatos potenciálisan **elveszett életévek** mértékét is. Mivel a közép- és kelet európai régióban (Bosznia-Hercegovina, Szerbia, Koszovó, Észak-Macedónia, Bulgária, Albánia, Románia, Lengyelország és Magyarország) figyelhetők meg, illetve ide becsülték a legmagasabb PM$_{2.5}$ koncentrációkat, ezért a legnagyobb becsült hatások, a **100.000 lakosra jutó elveszett életévek** is az érintett lakosság esetében keletkeznek legnagyobb mértékben (l. 23. ábra). Ez például a 2020 évi magyarországi PM$_{2.5}$ szintre – a PM$_{10}$ mérőpontok 2 eredményeiből 0,8 szorzófaktorral becsülve, majd azokat átlagolva – számított becslés szerint 1.049 év/100.000 lakos

Az **NN GyK és a Semmelweis Egyetem kutatói legújabb közleményükben** a 2017-2019-es időszak mérési eredményei alapján értékeltek a magyar települések, köztük Budapest esetében a kisméretű aeroszolok (PM$_{10}$ és PM kisméretű aeroszol) egészséghatását, halálozási kockázatát. A számítási eredmények alapján a vizsgált városok között Budapesten a halálozások 5,5%-a irható a PM$_{2.5}$ szennyezettség terhére, ami ebben az időszakban évente 1.041 fő elvesztését jelentette. A becsült járulékos halálozás a korábban, hasonló módszertan szerint vizsgált időszakokhoz (2008-2016) képest jelentősen (Budapest esetében ~2%-kal) javult.
A fenti közleményben szereplo rövid távú egészséghatás-becslés eredményé alapján Budapesten a napi PM$_{2.5}$ átlagkoncentrációk 25 µg/m3-re csökkenkésével 52 halálesetet lehetett volna megelőzni, míg a WHO új irányértékének, a 15 µg/m3 koncentrációkn való megfelelés esetén 2017-ben 105, 2018-ban 130, míg 2019-ben 81 halálesetet lehetett volna megelőzni. Utóbbiak abban az időszakban a budapesti 30 évnél idősebbek körében számított halálesetek mintegy 0,5 / 0,6 / 0,4 %-át jelentették.

Fontos megemlíteni a korai halálesetek és az elveszített életévbecsüléseinek bizonytalanságát: ± 35% (PM$_{2.5}$), ± 45% (NO$_2$) és ± 50% (O$_3$). (Megjegyezzük, hogy a PM$_{2.5}$ és az NO$_2$ koncentrációja (néha érős) korrelál, az ezekre külön-külön becslött hatásokat nem lehet egyszerűen összeadni, mert így például az NO$_2$ hatásának akár 30%-a duplán lenne figyelembe véve. Ezen légszennyező anyagok mérési bizonytalansága; NO$_2$ és O$_3$ esetében 15%, PM$_{10}$/PM$_{2.5}$ esetében 25%.)

13. táblázat: A légszennyezéssel összefüggő éves kiadások

<table>
<thead>
<tr>
<th>Összes éves veszteség</th>
<th>Fajlagos veszteség (fő/év)</th>
<th>Veszteség a GDP arányában</th>
<th>PM$_{2.5}$</th>
<th>PM$_{10}$</th>
<th>O$_3$</th>
<th>NO$_2$</th>
<th>Halálozás</th>
<th>Betegség</th>
</tr>
</thead>
<tbody>
<tr>
<td>€ 3.272.079.833</td>
<td>€ 1.860</td>
<td>6,20%</td>
<td>87,4%</td>
<td>2,6%</td>
<td>10,0%</td>
<td>79,3%</td>
<td>20,7%</td>
<td></td>
</tr>
</tbody>
</table>

A fejezet hivatkozásai

1. A levegő védelméről szóló 306/2010. (XII. 23.) Korm. rendelet 1. § (2) bekezdése szerint a szabályozás hatálya nem terjed ki a természetes és mesterséges eredetű ionizáló és nem ionizáló sugárzással keletkező levegőterhelésre, a levegő munkaegészségügyi védelmére, a zárt terek levegőminőségének szabályozására.
Levegőminőség | Függelék

Az EU-28 városi lakosságának 17-25% -át a 2008-2015-ös időszakban a 1,0 ng/m3 feletti koncentrációban lévő polyciklopenta-dizinfenol (BaP)-koncentráció érintettség jellemezte. A levegőminőségi szint határértékéről és a helyhez kötött légszennyező pontforrások kibocsátási határértékeiről szóló 4/2011. (I. 14.) VM rendelet, 1. melléklet 1.1.3.2. pontja

"Az EU-28 városi lakosságának 17-25% -át a 2008-2015-ös időszakban a 1,0 ng/m3 feletti koncentrációjú BaP-koncentráció érintettség jellemzette.

A levegőminőségi szint határértékéről és a helyhez kötött légszennyező pontforrások kibocsátási határértékeiről szóló 4/2011. (I. 14.) VM rendelet, 1. melléklet 1.1.3.2. pontja

6 Budapest Környezeti Állapotértékelése 2021. Függelék F.1. 8. táblázat

7 https://airindex.eea.europa.eu/Map/AQI/Viewer/

8 egy év során problémamentes, ún. tiszta napnak nevezzük azokat a napokat, amelyeken az egynyi átlagértéke 50 µg/m3-t jelent.

9 Budapest Környezeti Állapotértékelése 2021. Függelék F.5. 27. o

"Az EU-28 városi lakosságának 17-25% -át a 2008-2015-ös időszakban a 1,0 ng/m3 feletti koncentrációjú BaP-koncentráció érintettség jellemzette.

A levegőminőségi szint határértékéről és a helyhez kötött légszennyező pontforrások kibocsátási határértékeiről szóló 4/2011. (I. 14.) VM rendelet, 1. melléklet 1.1.3.2. pontja

15 L. Dr. Szigeti Tamás (NNGyK): Légszennyezettség és egészségkárosítás című előadása „A városi logisztika jelene és kihívásai Budapesten” című 2022.06.09-i konferencián

16 http://www.healthdata.org/hungary

17 https://www.who.int/environmental-health-outdoor-air-pollution-a-leading-environmental-cause-of-cancer-deaths/

19 L. Dr. Szigeti Tamás (NNGyK): Légszennyezettség és egészségkárosítás című előadása „A városi logisztika jelene és kihívásai Budapesten” című 2022.06.09-i konferencián

Levegőminőség | Függelék

24 Az OLM 2015. évi szálló por PM10 és PM2,5 mintavételi programjának összesített értékelése (4. táblázat, 13. oldal) https://legszennyezettsseg.met.hu/levegominoseg/ertekelesek/olm-ertekelesek

28 https://www.who.int/europe/news-room/fact-sheets/item/air-quality

29 https://www.who.int/europe/news-room/fact-sheets/item/air-quality

30 A légszennyezettségi agglomerációk és zónák kijelöléséről szóló 4/2002. (X. 7.) KvVM rendelet 2. mellékletében az 1. zónához meghatározott települések

33 Salma I. (2010): Tendenciák a városi levegőminőség alakulásában (Magyar Tudomány 2010/3, 296. oldal)

34 Budapest Környezeti Állapotértékelése 2021. Függelék F.9

37 https://budapest.hu/Lapok/2021/a-fovarosi-onkormanyzat-kiegeszito-meresekekkel-vizsgalja-a-budapesti-legszennyezettsseget.aspx

39 Budapest Környezeti Állapotértékelése 2022. Függelék F.9

41 L.: WHO global air quality guidelines, Particulate matter (PM$_{2.5}$ and PM$_{10}$), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. 2021. Table 3.26., 136. oldal https://www.who.int/publications/i/item/9789240034228

42 https://ec.europa.eu/environment/presscorner/detail/hu/fp_22_6307

43 https://europa.eu/eurobarometer/apil/deliverable/download/file?deliverableId=84316

44 WHO global air quality guidelines, Particulate matter (PM$_{2.5}$ and PM$_{10}$), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. 2021. Table 3.26., 136. oldal https://www.who.int/publications/i/item/9789240034228

45 https://www.who.int/europe/publications/europes-air-quality-status-2023 Figure 1.
WHO global air quality guidelines, Particulate matter (PM$_{2.5}$ and PM$_{10}$), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. 2021. Table 3.26., 136. oldal https://www.who.int/publications/i/item/9789240034228

https://ec.europa.eu/hungary/news/20210512_eu_action_plan_zero_pollution_hu

4/2002. (X. 7.) KvVM rendelet a légszennyezettségi agglomerációk és zónák kijelöléséről

a levegőterheltségi szint határértékeiről és a helyhez kötött légszennyező pontforrások kibocsátási határértékeiről szóló 4/2011. (I. 14.) VM rendelet, 1. melléklet 1.1 pontja

a levegő védelméről szóló 306/2010. (XII. 23.) Korm. rendelet 14. § (4) bekezdés

http://www.hungary.hu/

L.: a katasztrófavigéltermelőről és a hozzá kapcsolódó egyes törvények módosításáról szóló 2011. évi CXXVIII. törvény 44. § (cc) pont

http://budapest.hu/Lapok/szmog.aspx

a levegő védelméről 306/2010. (XII. 23.) Korm. rendelet 20. §-a alapján meghatározott, a szmogriadóval kapcsolatos államigazgatási feladatok, hatósági intézkedések szerint

https://legszennyezetteseg.met.hu/modellezes/terkepes

https://legszennyezetteseg.met.hu/levegominoseg/meresi-adatok/automata-merohalozat

https://budapest.hu/Lapok/szmog.aspx

http://einfoszab.budapest.hu/list/fovarosi-kozgyules-nyilvanos-ulesei:id=100787:type=5;parentid=11032;parenttype=2

Az Országos Meteorológiai Szolgálatról szóló 277/2005. (XII. 20.) Korm. rendelet 2. §

2021. évi összesítő értékelés hazánk levegőminőségéről az automata mérőhálózat adatai alapján (OMSZ, 2022.):

https://legszennyezetteseg.met.hu/storage/media/ertekelesek/2021_automata%20ertekeles.pdf

http://oki.antsz.hu/

Az egészségügyi hatósági és igazgatási tevékenységről szóló 1991. évi XI. törvény 4. § (1) bekezdése, valamint az egészségügyről szóló 1997. évi CLIV. törvény 45. § (1) és (3) bekezdése;

WHO global air quality guidelines, Particulate matter (PM$_{2.5}$ and PM$_{10}$), ozone, nitrogen dioxide, sulfur dioxide and carbon monoxide. 2021. Table 0.1 https://www.who.int/publications/i/item/9789240034228

Budapest Környezeti Állapotértékelése 2017. 83. oldal 57. ábra

CE Delft: Health costs of air pollution in European cities and the linkage with transport, October 2020. 69. o.
I.7. Zajterhelés

A hang intenzitásának mértékegysége, a decibel (dB) olyan – gyakorlatilag a hangnyomás 6-7 nagyságrendjét átfogó – fizikai mennyiség, amely hallásunk jellemzőihez igazodva a hallásküszöb (0 dB) és a fájdalomküszöb (120–130 dB) között alakul. A mindennapi életünkben a 30–90 dB közötti zajok a leggyakoribbak. A dB-skála logaritmikus jellege miatt az alkalmazott számítási (és statisztikai) műveletek a többi szakterülettel összehasonlíthatók különlegesek. A jelentős zajproblémák megoldását keresve képzeljük el, hogy például egy nagy (75 dB) zajterhelésű út forgalmának felezése (egy négysávos út kétsávossá történő alakítása) 3 dB csökkentésével jár (72 dB).

Budapest környezeti problémái közül – hasonlóan a világ nagyvárosaihoz – az egyik legjelentősebb a magas zajterhelés, amelynek elsődleges forrása a közlekedés.

Az éjszakai zajszintek közötti különbség csupán 4–7 dB, azaz jelentősen a közterületi szabadidős rendezvények zajhatása. A rendezés jogi lehetőség ezenfelül az, hogy ezt a jogát haladéktalanul felhasználják, például rendezvényhelyszínek zajvédelmi felmérésekor, vagy a meglévő, zajjal kevésbé szennyezett területek jogi eszközökkel történő megvédésével, csendes, illetve zajtól fokozottan védett szabadidőterületek kijelölésével.

Az eddig elkészült stratégiai zajtérképek adatai azt mutatják, hogy az EU által a közterületi szabadidős rezonáns régiónak a zajterhelésének értékelésére és kezelésére 2002-ben elindított folyamat úgy alkalmazható, ahogy azt akkor a vonatkozó irányelvben megfogalmazták.

Zaj- és rezgésterhelési viszonyok leírása, jellemzése

A zajpanaszok egész Európában, így Budapesten is azt mutatják, hogy a városi lakosság jelentős részénél a zaj károsan befolyásolja az emberek közéretét és életminőségét, ezáltal az alvásban, a pihenésben és a munkavégzésben is jelentős a zavaró hatása.

A városi zajok felmérésére a ’60-as évektől egyre több vizsgálatot végeztek. Ezek a vizsgálatok, illetve – a kor technikai fejlettségének megfelelő – műszeres felmérések, csak a kiválasztott észlelési pontban rögzített adatok alapján, azok környezetéről szolgáltatták információt. Ezek a pontok túlnyomó részét a legzajosabb útszakaszok mellett voltak, így a felmérés nem volt reprezentatív, valamint ezek az adatok sem a lakosság általános zajterhelésére, sem a csendesebb területek jellemzésére nem voltak alkalmasak.

A helyzet a ’90-es évek vége felé változott meg, amikor a zajtérképezés gyakorlatára vált, így a zajforrásokból kiindulva, számítással meg lehetett határozni nagyobb területek zajterhelését. Ez az eszköz (amely zajvédelmi szempontokat ad a várostervezéshez) tette lehetővé, hogy a lakosság egy tervezett változtatás előtti (ill. a jelenlegi) és utáni érintettségét számtani, statisztikai módszerekkel még a beruházás előtt meg lehessen vizsgálni, továbbá, hogy a város csendesebb területeit körbe lehessen határolni. Ennek feltétele az, hogy a zajforrásokat lehetőleg minél szélesebb körben figyelembe vegyük.

A zajtérképezéssel érintett területek adataival kapcsolatban a Kvt. 2004 óta tartalmaz olyan előírás, miszerint a környezetállapot-értékelést a környezeti zajra vonatkozóan Budapesten a Fővárosi Önkormányzatnak – a külön jogszabályban meghatározott területekre, létesítményekre, és az ott előírtak szerint a stratégiai zajtérkép alapján kell elkészíteni. A 2017 májusában hatályba lépett módosítás eredményeképp a települések stratégiai zajtérképeit a környezetügyért felelős minisztérium készítteti el, majd közé teszi, illetve az adatokhoz az érintett települési önkormányzatok számára hozzáférést biztosít. Az intézkedési terv készítésére kötelezett önkormányzatok – Budapesten a Fővárosi Önkormányzat – a megújított zajtérképek alapján zajcsökkentési intézkedési tervet készítenek.

A városi zajhelyzet feltárására további hasznos segítség a zajmonitorozás terjedése – ilyen eszköz használnak a Budapest Liszt Ferenc Nemzetközi Repülőtér környezetében a repülési zaj vizsgálata során.

Az adott mérési pontokra telepített megfelelő mérőeszközökkel, monitorokkal lehetővé válik a telepítés környezetében a zajterhelés változásainak folyamatos figyelése, rögzítése, amely hasznos a különböző zajcsökkentési intézkedések tervezéséhez, a területen található zajforrások kontrolljára, valamint különösen hasznos eszköz a szabadidős (pl. Sziget Fesztivál) és építési zajterhelések szabályozásában.

A főváros környezeti zajjal leginkább terhelt területeinek meghatározása, leírása

alapján készített lakossági zajterhelést: azt a feladatra kijelölt szervezet (Herman Ottó Intézet/Közlekedéstudományi Intézet) végzi.

Szabavidős zajterhelés

Habár a főváros stratégiai zajtérképe nem tartalmazza – mert a vonatkozó jogszabályok alapján nem kell tartalmaznia, illetve más (hatósági) követelmények vonatkoznak a megítélésére –, fontos kitérni a nagyobb szabadidős rendezvények, rendezvényhelyszínek zajhatásaira is.

Az Öbudai-szigeten megrendezett Sziget Fesztivál már 27 éve Budapest legnagyobb szabadtéri rendezvénye, amelynek zajterhelése korábban nagy kihívás volt különösen a III., IV., XIII. kerületek lakosságának, de a mélyfrekvenciás hangok miatt távolabbról (pl.: XIV., VIII. és XI. kerületből, illetve egyes agglomerációs települések régió) is panaszkoztak.

A Fővárosi Önkormányzat és Sziget Fesztivál között 2021 szeptemberében kötött hatósági szerződés – a zaj kezelésére vonatkozó új előírásainak és azok betartásának – eredményeképp 2022-ben a rendezvényre vonatkozó zajpanaszok gyakorlatilag megszűntek.

Lakossági érintettség – időszakokkal súlyozott érintettségi mutatók

Budapest stratégiai zajtérképe, valamint a Budapest Liszt Ferenc Nemzetközi Repülőtér stratégiai zajtérképe – hasonlóan az EU 100 ezer lakosnál nagyobb városaihoz az egyes zajforrás-csoportokból (közút, vasút, légi forgalom és üzemek zaja) származó zajszintekkel való jellemzésen túl, tartalmazza a különböző zajszintekkel terhelt, érintett lakosság számanak meghatározását is6.

A különböző környezetvédelmi programok (pl. az NKP is) zajszintekkel jellemeznek környezeti állapotokat. Ez műszaki-informatikai (térinformatikai) megjelenítés nélkül nehezen értelmezhető, kezelhető. Ugyanakkor a lakossági érintettség olyan mutató, amely valóban alkalmas arra, hogy egy-egy terület (város/városrész) jellemezőként összehasonlítható, számszorú adatokat adja a terheltségéről. Ez a mutató a zajterheléssel érintett lakosság statisztikai eloszlását adja meg 5 dB-es sávok szerint.

Az érintettség változásával egy-egy zajvédelmi intézkedés-sorozat eredményessége is nyomon követhető, ezért indokolt, hogy átfogó stratégiai programok, intézkedési tervek esetén környezeti zajjellemzőként ezt a mutatót használják a jövőben.

A mellékelt diagramokon (1. ábra és 2. ábra) a lakossági érintettség látható százalékos megoszlásban.

<table>
<thead>
<tr>
<th>Érintettség (%)</th>
<th>Közút</th>
<th>Vasút</th>
<th>Légiközlekedés</th>
</tr>
</thead>
<tbody>
<tr>
<td>>55 dB</td>
<td>51,7</td>
<td>0,26</td>
<td>0,0</td>
</tr>
<tr>
<td>>60 dB</td>
<td>41,4</td>
<td>0,04</td>
<td>0,0</td>
</tr>
<tr>
<td>>65 dB</td>
<td>26,9</td>
<td>0,5</td>
<td>0,0</td>
</tr>
<tr>
<td>>70 dB</td>
<td>13,5</td>
<td>0,1</td>
<td>0,0</td>
</tr>
<tr>
<td>>75 dB</td>
<td>3,5</td>
<td>0,0</td>
<td>0,0</td>
</tr>
</tbody>
</table>
Budapest lakossági zajterhelésének megítélééséhez további információt adnak a vizsgált európai városok érintettségi mutatói. Ezek közül a legjelentősebb a közúti forgalom zajterhelése, amelyet az 3. ábra mutat be. A vizsgált európai városokkal való összehasonlításban Budapest lakossága átlagon felüli zajterheléssel érintett.

Az érintettség számszerű adatán túl javaslat született olyan indikátormutató (ÉM – érintettségi mutató) alkalmazására is, amely az érintettség és a túllépés alapján feltáringja a valódi konfliktusos helyzeteket, a kritikus területek térképes kimutatására is használható.

Az ÉM-t nagyvárosi környezetben 100 x 100 m raszter-nagyságú területre indokolt meghatározni, és ezen - hasonlóan a stratégiai zajtérképekhez - környezetvédelmi szempontú, kedvezőkedvezőtlen adottságokat tükröző színezéssel megjeleníteni.

A 4. ábra egy ilyen „érintettségi mutatóval” jellemzett területet mutat (a Szabadság híd – Rákóczi híd közi térség). Jól követhető, hogy bár a zajterhelés igen jelentős a Rákóczi híd pesti hídfej közéleben, az érintettségi mutató gyakorlatilag nulla, mivel nincs érintett lakos a terület adott részén. Ezzel szemben pl. a Nagykörút és a Haller utca környezetében – ahol a zajterhelés egyébként a híd közéleben észlelhetőnél alacsonyabb szintű – az érintettségi mutató jellemzően jóval nagyobb.
Zaj- és rezgésterhelési viszonyok okai, hatótényezői

A kedvezőtlen környezeti zajállapotot – nem tekintve a szabadidős zajforrásokat, közterületi rendezvényeket – leginkább a következő forrásos forráscsoportok határozzák meg (ezekre külön-külön kell stratégiai zajtérképet készíteni, illetve a lakossági érintettséget meghatározni):

- a közlekedés (II.3. Közlekedés- és szállításszervezés c. fejezet), ill. ezen belül
 - a közúti közlekedés,
 - a vasúti forgalom,
 - a légi közlekedés,
- az üzemi zaj (lásd II.4. Gazdasági tevékenység fejezet).

Budapesten a környezeti zajforrások közül a legjelentősebb a közúti közlekedés lakossági zajterhelése.

A fővárosi lakosság magas környezeti zajterhelési szintjét nem csak a zajforrások okozzák, hanem továbbá, ma már nehezen (aránytalanul magas költséggel és érdeksérelemmel járó) kezelhető tényezők: pl. a sürű beépítettesség (ezért is fontos, hogy a várostervezési, közlekedésfejlesztési benyújtások tervezési szakaszában előzetesen, a zajtérkép adatbázisának használatával kis lépésekkel javítsunk elsősorban a legmagasabb szintű lakossági zajérintettségen).

4. ábra: Az l_{den} alapján meghatározott, hektáronkénti „Érintettségi mutató” (EM/ha) – a Szabadság híd – Rákóczi híd közti térség

5. ábra: A zajterhelés túllépése az Andrássy út Hősök tere felé eső szakaszán (élőszakai időszak)
A „bépítési sűrűségtől” való konfliktus-függést mutatja be az 5. ábra. Az Andrássy út Hősök tere felé eső szakaszán (éjszakai időszak) látható, hogy ott ahol tágasabb a bépítés, a védendő homlokzatok zajterhelése már közélt a még elfogadható szintekhez, míg a szűk bépítés esetén a túllépés meghaladja a 10 dB-t is.

A budapestiek véleménye a zajterhelésekről

A teljes népességet tekintve elmondható, hogy a budapestiek relatív többségét a közúti közlekedésből származó zajok érintik és zavarják a leginkább (6. ábra).

A lakókönyzetben, illetve a gyakran látogatott városi helyszíneken tapasztoltak alapján is ez a legtöbbet említett zajforrás, de a történeti belvárosból kifelé „haladva” egyre kisebb arányban van panasz a közúti közlekedésre. Ahogy azt a 7. ábra jól mutatja, a közúti közlekedésből származó zajok lényegesen nagyobb problémát jelentenek a belvárosban, mint például a kertvárosokban lakóknak.

A repülési zaj által okozott kellemetlenség tekintetében nincs jelentős területi különbség, azonban elmondható, hogy a repülőgépek zajta a középkorúakat, valamint a családi házból élők a leginkább leginkább. A vasúti zaj esetében területi, lakóhely vagy korosztály szerinti szignifikáns különbség nem jellemző, azonban összességében kevésbé érintettek a történeti belvárosban élők, illetve az idősebbek. A szabadidős zajok főként a legidősebbeket, a történeti belvárosban és a budai kertvárosokban élők körében jelentik az átlagosnál több embernek a legnagyobb problémát. Az ipari zaj főként a fővárosi részekben jelentős, valamint a lakótelepi panelházakban élők körében zavaró. A válaszadók egyötöde nem tudta eldönteni, melyik az őt leginkább zavaró zaj.
Zajvédelmi intézkedések

A zajterhelési helyzet a város több területén annak ellenére kedvezőtlen, hogy az utóbbi időben a zajcsökkentésre irányuló intézkedéseknek igyekeztek érvényt szerezni. Útkorszerűsítés és/vagy a területfelhasználás megváltoztatása során már minden esetben készül zajterhelési vizsgálat, zajvédelmi munkarész. A különböző zajárnyékoló létesítmények (falak, töltések, bevágások) új utak építésénél széles körben elterjedtek. Az ütvezetés, zajárnyékoló falak építése következtében a zajterhelés egyre ritkábban lépi túl a rendeletben előírt értéket. További lehetőségek rejlnek még a korszerű útburkolatok (csendes aszfalt) alkalmazásában, a járművek meghajtási módjának változtatásán és a forgalom sebességének csökkentésében.

Egy nagyváros környezeti zajállapotában értékelhető változások csak hosszabb távon következnek be, ugyanakkor a különálló, kisebb változtatások is hozzájárulhatnak a környezeti zajállapot általános javulásához.

A közelímtől beruházásai közül kimutatható zajcsökkentést eredményeztek pl. az M3, M5-ös autópályák bevezető szakaszain, a Rákóczi híd és nemcsak csak a közút egy szakaszán (Budafoki út és Szerémi út között), hanem a vasút mellé is épült zajárnyékoló fal, készült rezgésszigetelés, megoldva (vagy legalábbis enyhítve) a már régén fennálló súlyos zajhelyzetet.

A Fővárosi Önkormányzat a kerületi önkormányzatokkal együttműködve 2020-ban 15 budapesti helyszín mintaprojekteket hajtott végre a közlekedésbiztonság növelése, valamint a forgalomcsillapítás csökkentése érdekében.

Az Üllői úti forgalomcsillapítási projekt a IX. és X. kerület határán – a Határ út és az Ecseri út közötti szakaszon – található (8. ábra). A nagyvárosi beépítettségű sűrűn lakott területen mintegy 22 ezer lakos él, 10 százaléku 60 - 65 dB feletti, folyamatos nappali közlekedési zajterhelésnek van kitéve. A megengedett legnagyobb sebesség 60 km/h-ról 50 km/h-ra csökkentését a lakóházak útpálya-közelsége indokolta, az intézkedés eredményét a 9. ábra foglalja össze.
A 9. ábra szaggatott vonallal jelölt része mutatja, hogy ezzel az elhanyagolható forrásigényű intézkedéssel milyen mértékű zajérintettség-csökkentést lehetett elérni.

Az egyes mintaprojekteket, a helyszíneket és a bevezetett intézkedéseket részletesebben a II.3. Közlekedés c. fejezet mutatja be.
További jó zajcsökkentési módszer a lakó- és munkahely közötti utazási távolságok csökkentése vegyes területhasználattal, illetve az elérhetőség javítása.

Budapesten a közösségi közlekedés fejlesztése szintén fontos szerepe kap a közlekedési zajterhelés csökkentésében (új, alacsony padlós CAF Urbos 3 típusú villamosok, illetve alacsony padlós, önjáró üzemmodra is képes trollbuszok). A kerékpáros hálózat nagyarányú kiterjesztése, továbbá a megélvő, autóközlekedésre szolgáló forgalmi sávok számának csökkentése az érintett útvonalakon a gépjármű forgalom, és így a zajterhelés csökkentését eredményezték. A fővárosban tovább bővült a közösségi autóhasználat-szolgáltatás (car-sharing), a közautó, és az elektromosautókhoz szükséges töltőhálózat-fejlesztés további lehetőségeket tartogat a városi környezet csendesebbé tételéhez is.

A zajvédelemben is fontos a kerékpárutak bővítése, a lakosság gépjárművekről kerékpárra történő átállásának elősegítése.

Az elővárosokból érkező autóforgalom csökkentése érdekében a P+R hálózat és a városi közösségi közlekedés használata, de leginkább az elővárosi vasúthálózat fejlesztése eredményezhette jelentős javulást a belső kerületek közötti zajterhelések csökkentésében.

Ugyancsak jelentős beruházások történtek zajvédő falak építése terén – az M0 déli szektor 3+200 – 11+650 km szelvénnyei közötti szakaszán történt rekonstrukció során korszerű biztonsági elemekek, közütk zajvédelmi falak létesültek. A Nagykörúti út mentén a 3-as autópálya bevezető szakaszban mentén szinte összefüggő védelmi rendszer épült ki. A XI. kerületben, a Szerémi út mentén, az 1-es villamos meghosszabbított vonalán közvetlen környezetében található lakóházak védelmében 3-4,5 m magas zajtakaró, illetve felújított falat telepítettek. A villamospályák felújítása (pl. 1-es, 3-as) lazadó, közszempontok figyelembevételével – rezgesszsigetelt, zajcsökkentett ágyazatba kerülnek a pályatestelek – történt. Az újfajta falak során zajkibocsátás szempontjából kedvezőbb burkolati kialakítás valósult meg, legutóbb a Thököly úton. Olyan forgalmi rend kialakítására is van példa, amely az érzékeny területre a kevésbé érzékeny terüleitre helyezte át a forgalmat, pl. a Haller utca 2x2 sávról 2x1 sávra alakítása, illetve forgalommáterelés a – lakossági érintettség szempontjából nem olyan érzékeny – Vágóhíd utcára.

Összességében megállapítható, hogy a zajvédelmi intézkedések ma még jellemzően lokálisak, egyes esetekben javulást jelentenek, de az egész városi zajhelyzetet csak kismértékben befolyásolják. A tervezés fázisában alkalmazott zajcsökkentő megoldások elterjedése, illetve azok következetes alkalmazása esetében is hosszabb idő kell ahhoz, hogy érzékelhetően javuljon a fővárosi közautó közlekedési állapotra is fókuszáló rendelkezésére áll.

Az új USA earth-szürke alapozások kibontakozásánál a korábbi módszerekhez képest jelentős javulást ért el a zajkibocsátás csökkentése, és így a zajterhelés is csökkent. Ugyanakkor a területen az autóavatók és a villamosok kibocsátástól származó zajhoz képest az otthoni és ipari lakóházakban lévő kiszmegoldások jelentős javulást ért el. Az új technológiák alkalmazása a zajkibocsátás csökkentésének lehetőségeit nyújtja a városi környezet csendesebbé tételéhez is.

A területen az új kövek és kerítések építése alapján a zajkibocsátás csökkentése megtörtént, és így a zajterhelés is csökkent. A területen az autóavatók és a villamosok kibocsátástól származó zajhoz képest az otthoni és ipari lakóházakban lévő kiszmegoldások jelentős javulást ért el. Az új technológiák alkalmazása a zajkibocsátás csökkentésének lehetőségeit nyújtja a városi környezet csendesebbé tételéhez is.

Az új USA earth-szürke alapozások kibontakozásánál a korábbi módszerekhez képest jelentős javulást ért el a zajkibocsátás csökkentése, és így a zajterhelés is csökkent. Ugyanakkor a területen az autóavatók és a villamosok kibocsátástól származó zajhoz képest az otthoni és ipari lakóházakban lévő kiszmegoldások jelentős javulást ért el. Az új technológiák alkalmazása a zajkibocsátás csökkentésének lehetőségeit nyújtja a városi környezet csendesebbé tételéhez is.
Az abban szereplő intézkedések eredményeképp az érintettségi mutatók becsült csökkenését a 10. ábra és 11. ábra: A zajcsökkentési intézkedési tervben szereplő intézkedések hatása az érintettségi mutatókra vasúti zajterhelés (dB) esetében.

(További javasolt feladatok)

- A megfelelő környezeti zajállapot kialakításában, a jó állapotok megőrzésében nem csupán forrás-oldalról kell megoldásokat keresni/találni, hanem egyéb meghatározó összetevőket is figyelembe kell venni. A várostervezés során a környezeti zaj csökkentésének szempontjait a jelenleginél nagyobb súlytal indokolt vizsgálni.
A Fővárosi Önkormányzat – mint a Kvt. szerinti és a Kvt. szerinti az utóbbi évtizedekben tájékoztatásnál csak kivételes esetekben (pl.: a zuglói önkormányzattól) kapta meg a kerületi hatáskörben előkészített helyi zajvédelmi szabályokat tartalmazó rendelet-tervezeteket.

A kerületi zajvédelemmel kapcsolatos – pl.: közösségi együttételek szabályaiba foglalt – rendeletek atténtése után indokoltak tűnik azok felülvizsgálata, tekintettel a nagyon eltérő tartalmú rendelkezésekre, illetve pl. a csendes üzemek és a zajvédelmi szempontból fokozottan véдет területek megőrzését célzó intézkedések teljes hiányára.

A zajcsökkentési intézkedéseket mellett a védendő területek kijelölési folyamatát (a csendes üzemek és a zajvédelmi szempontból fokozottan védet területek megőrzését célzó intézkedéseket) szintén időszerű kerületi hatáskörben elkezdéni, még mielőtt a zaj ezeket a területeket is elérne.

Zajcsökkentési intézkedési terüven tervezett intézkedéseket fokozatosan végre kell hajtani a 2017. évi stratégiai zajtérkép – a vonatkozó jogszabály szerint – 2023-ban időszerű felülvizsgálatáig.

A közterület-használati szabályok felülvizsgálatával a zajarhelési, zajvédelmi szempontot a kérelmek elbírálása szempontjából, a közterület-használatokkal közösen kell kialakítani az eredményes és hatékony zajvédelmi intézkedéseket a polgári jogi garanciák keretében.

Indokolt a fővárosi rendezvényhelyszínek kijelölését zajvédelmi szempontból is előzetesen felmérni, megvizsgálni a jelentősebb legitimálási rendszerképpen beindult bevezetni, a közterület-használatokkal közösen kell kialakítani az eredményes és hatékony zajvédelmi intézkedéseket a polgári jogi garanciák keretében.

A főváros területén kialakult ún. „bull-helyszínek", a „vigalmi negyedekben", illetve a mozgó-szórakoztató járműveken (például rendezvény- és bulihajók a Dunán) jelenleg az egyes kerületi önkormányzatok zajrendeletei határozzák, ill. határozhatják meg a lakosságot nagymértékben zavaró szórakozó helyekre vonatkozóan a hangsúlyt jelenlegen az adott helyi jogszabályokat való tekintettel.

A főváros területén kialakult ún. „bull-helyszínek", a „vigalmi negyedekben", illetve a mozgó-szórakoztató járműveken (például rendezvény- és bulihajók a Dunán) jelenleg az egyes kerületi önkormányzatok zajrendeletei határozzák, ill. határozhatják meg, hogy a lakosságot nagymértékben zavaró szórakozó helyekre vonatkozóan a hangsúlyt jelenlegen az adott helyi jogszabályokat való tekintettel.

A főváros területén kialakult ún. „bull-helyszínek", a „vigalmi negyedekben", illetve a mozgó-szórakoztató járműveken (például rendezvény- és bulihajók a Dunán) jelenleg az egyes kerületi önkormányzatok zajrendeletei határozzák, ill. határozhatják meg, hogy a lakosságot nagymértékben zavaró szórakozó helyekre vonatkozóan a hangsúlyt jelenlegen az adott helyi jogszabályokat való tekintettel.

A szabadidős tevékenységek esetében indokolt lenne egy egységes fővárosi stratégia kialakítása, amelyben az idegenforgalom kedvező (de lehet, hogy a városi lakosság adóforrásai mellett a lehető legnagyobb mértékben védi a lakosságot a zajterhelésétől. (A túlzott globális turizmus helyi környezeti hatásáról l.: a I.10. Társadalom c. fejezetben.)

A lőterek működésével kapcsolatos egyre több lakossági zajpanasz miatt indokoltak tűnik az impulzusos (rövid idejű, de akár sokszor ismétlődő, ami nem folytonos és nem is eseményes) zajemissziót vonatkozóan a helyi – tevékenységeknek felülvizsgálata, mivel a hatályos zajhatósági rendszerben az ilyen jellegű zajterhelések elvárhatóak műszaki hatékonysággal gyakorlatilag nem, illetve alig korlátozhatók.

A fejezet hivatkozásai

1 a környezeti zaj értékeléséről és kezeléséről szóló 280/2004. (X. 20.) Korm. rendelet
9. § (3)-(4) bekezdés
3 l.: Kvt. 46. § (4) bekezdés és ez alapján a környezeti zaj értékeléséről és kezeléséről
szóló 280/2004. (X. 20.) Korm. rendelet 1. § (3) bekezdés a) pontját.
4 A környezeti zaj értékeléséről és kezeléséről szóló 280/2004. (X. 20.) Korm. rendelet
1. § (3a) bekezdés a) pontja
5 https://bud.flighttracking.casper.aero/
6 https://budapest.hu/Lapok/2020/budapest-kornyezeti-allapotertekelese.aspx
rendelet 1. § (3) bekezdés b) pontot és a 3. § m)–n) pontjait.
8 A 280/2004. (X. 20.) Korm. rendelet 1. sz. melléklete alapján
9 A Zaj kezelése című szakaszt l.: a szerződés 11. oldalán:
https://budapest.hu/hatosagidk/Documents/Sziget%20Kultur%C3%A1lis%20Menedz
ser%20Iroda%20Zrt.pdf
10 https://budapest.hu/Lapok/2023/ajkeztato-a-budapesti-eredetu-zajterhelesekkel-
capcsolatos-bejelentesek-ugyintezeserol.aspx
11 http://budapest.hu/Documents/zajterkep/20190214_zajcs%C3%B6kkent%C3%A9s
i_intezkedesi_terv.pdf
12 Kvt. 48. § (3) bekezdés
II.1. Épített környezet

Az 52.514 ha területű főváros jelenleg 52%-a beépített. A beépített területek 61%-a lakó-, 12%-a gazdasági terület, minden más területhasználat összesen 6% alatt.

Az intenzív városi szétterülés főként a városi peremterületeket érinti (jellemzően mezőgazdasági területek és zöldfelületek rovására megy végbe), a nem szabályozott, spontán terjeszkedés pedig számos negatív következménnyel és negatív környezeti hatással is jár. Budapest beépített területei az elmúlt 70 év alatt közel megháromszorozódtak, ami a vizsgálatok alapján évi átlagos 313 ha új beépítésnek, 0.6%-os bővülésnek felel meg. A beépítések folyamatos növekedése a város szabadterületeinek csökkentését eredményezte. Jelenleg a város szabad területeinek aránya összesen 32%.

Előrejelzések szerint a városi szétterülés a fővárosban meg fog állni és az agglomerációs övezetben folytatódik tovább, köszönhetően az intenzív szuburbanizációs folyamatoknak. Mindemellett a fővároson belül is jellemzőek a nagy volumenű lakóingatlan-fejlesztések, a budapesti lakásállomány bő 20 év alatt 17%-kal növekedett.

Az épített környezet, illetve a beépített területek aránya a talajlezárás szempontjából (is) meghatározó. A talajlezárás kialakulása és mértéke szorosan szorosan szorosan összefügg a népesség növekedésével és a városok növekedésével, az infrastruktúra terjeszkedésével. A talajlezárás mértéke kapcsolatban áll a zöldfelület-intenzitással, egyes területeken azzal ellentétes értékeket mutat.

Budapest halajlezárási mértéke, a nagyarányú erdő- és mezőgazdasági területeknek köszönhetően, közigazgatási területen belül 44%, a funkcionalisurbánus környezet (FUA) határokat tekintve pedig 41%, ami az európai nagyvárosokkal összehasonlítva kedvezőnek mondható.

Az épített környezet, illetve a beépített területek aránya a talajlezárás szempontjából (is) meghatározó. A talajlezárás kialakulása és mértéke szorosan szorosan összefügg a népesség növekedésével és a városok növekedésével, az infrastruktúra terjeszkedésével. A talajlezárás mértéke kapcsolatban áll a zöldfelület-intenzitással, egyes területeken azzal ellentétes értékeket mutat.

Budapest halajlezárási mértéke, a nagyarányú erdő- és mezőgazdasági területeknek köszönhetően, közigazgatási területen belül 44%, a funkcionalis urbánus környezet (FUA) határokat tekintve pedig 41%, ami az európai nagyvárosokkal összehasonlítva kedvezőnek mondható.
Területhasználat

Budapest 52.514 ha teljes területén helyezkedik el, melynek jelenleg 52%-át a beépített telkek teszik ki, 48%-a beépíttelen. A hatályos településszerkezeti terv (a továbbiakban: TSZT) alapján az arány akár 59%-41% is lehet; ez azt jelenti, hogy a hatályos terv alapján a jelenleg még nem beépített területek rovására 3.675 ha terület újonnan beépíthető.

A területi mérleg Budapest 2030 – hosszú távú városfejlesztési koncepció helyzetfeltáró munkarésze során készült el. A mérleg jól mutatja, hogy a főváros területe jelenleg milyen célból igénybe vett, milyen a beépített és szabad (beépítetlen) területek aránya.

Az elemzések a beépített területek, a városi szabadrólterületek és a város speciális működtetési területei felosztásban mutatják be Budapest területi használatát. Budapest területhasználatának megoszlását az alábbi ábra szemlélteti.

A város területének legnagyobb részarányát (29%) a lakóterületek jelentik. Ezen belül a lakóterületek 10%-át kivevő zártterületen, intenzíven beépített lakóterületen a lakosság 28%-a él, elsősorban a történelmi belvárosban. Az ötvenes évektől kezdődő lakótelep építkezéseken, egészen a rendszerváltásig tartottak. Bár lakótelepek a lakóterületeknek csak a 12%-át adják, ugyanakkor a Budapestiek 29%-a itt él. Budapest lakóterületei azonban döntően szabadon állóan beépítettek (78%), így a lakosság 43%-a talált otthonra. A lakóterületek területi elhelyezkedését az 1. ábra, míg a lakóterületek népsűrűségét a 2. ábra szemlélteti.
A beépített területek zömét a lakóterületek (61%), ezt követően a gazdasági területek (12%) teszik ki, minden más területhasználat 6% alatti. A beépítetlen területek közül a mezőgazdasági területek, az erdők és a közlekedési területek hasonló arányban fordulnak elő. Mivel a közlekedési területek műszaki szempontból igénybe vett területek, a város szabad területeinek aránya a teljes területhez képest összesen csak 32%.

Budapest területhasználati megoszlásról szintén információt nyújt a földhivatal adatbázisa (TakarNet⁴), amely a közhiteles ingatlan-nyilvántartási adatokon alapul⁵. A földhivatali adatok alapján a művelésből kivett területek aránya a település közigazgatási területére vetítve 76%.

A fennmaradó termőterületek művelési ágak és minőségi osztályok szerinti megoszlását részletesen az I.3. Talajállapot című fejezet mutatja be.

A város terjeszkedése, lakásépítések

A városi széterülesek negatív következményekkel járó városi terjeszkedést jelent, „melyben a beépített területek terjedése nem kellően koordinált, kevessé kontrollált vagy korlátozott; főként a piacon folyamatok által vezérelt, és jellemzően a környező mezőgazdasági területek és zöldfelületek rovására megy végbe”.⁶ A széterülesek folyamata elsősorban a rurális jellegű városi peremterületek területhasználati változásaira van hatással, de következményei révén ugyanúgy a főváros belső zöldfelületeit is, ezen belül főként a zöldterületeket, építési telkek beépítetlen részeit, illetve kertként funkcionáló részeit érint. A folyamat az új ingatlanfejlesztési igények miatt a beépített területek növekedését, ezzel együtt pedig a zöldfelületek csökkenését, a természeti környezeti elemek minőségének romlását, illetve visszaszorulását okozza.
A korabeli térképeket elemezve az 1950-ben létrejött „Nagy-Budapest” beépített
területei az elmúlt bő fél évszázad alatt közel megháromszorozódtak, ami évente
átlagosan 0,6%-os (313 ha/év) bővülésnek felel meg (lásd 3. ábra), azaz nagyjából
ilyen ütemben zajlott a város szabadterületeinek csökkénése. A vizsgálatok alapján
1950-1990 közötti erős növekedés volt tapasztalható (átlagosan 350 ha új beépítés évente),
míg '90 után a beépítések intenzitása csökkent (az 1990-2013 közötti beépítési viszonyokat
elemezve átlagosan 250 ha új beépítés jelentkezett évente).

Egy 2020-ban publikált tanulmány előrejelzései szerint az elmúlt évtizedekre jellemző
intenzív városi széterüles a fővárosban meg fog állni és az agglomerációs
övezetben folytatódik tovább1. A budapesti agglomerációra jellemző városi
széterüles és a beépítettség növekedésének egyik fő kiváltó oka az erőteljes
szuburbanizáció. Az urbanizációs folyamatokat, azok jellemzőit, valamint kiváltó okait
a II.10. Társadalom c. fejezet mutatja be részletesen.

1. 3. ábra: Beépített területek alakulása 1686-2020 között Budapesten

2. 4. ábra: Felszínborítottság a budapesti agglomerációban 2012-ben és az előrejelzések
szerint 2040-ben (Forrás: Lennert J. et al. 20202)

Habár a fővárosban alapvetően a népességszám csökkenése várható, az agglomerációs őzeti településeinek közelébe hozódva a lakásállomány is egyenletesen növekedett: bő 20 év alatt Budapesten 17%-kal, míg az agglomerációs őzeteiben csaknem 37%-kal növekedett a lakások száma (I.: 5. ábra).

5. ábra: Lakásállomány (db) változása 2001 és 2022 között a fővárosban és az agglomerációs őzeteiben (Forrás: KSH adatai alapján)

6. ábra: Lakásállomány és népesség változása 2001 és 2022 között a fővárosi kerületekben (%) (Forrás: KSH adatai2 alapján)

Habár a fővárosban alapvetően a népességszám csökkenése várható, az agglomerációs őzeti településeinek közelébe hozódva a lakásállomány is egyenletesen növekedett: bő 20 év alatt Budapesten 17%-kal, míg az agglomerációs őzeteiben csaknem 37%-kal növekedett a lakások száma (I.: 5. ábra).

5. ábra: Lakásállomány (db) változása 2001 és 2022 között a fővárosban és az agglomerációs őzeteiben (Forrás: KSH adatai alapján)

A fővárosban a lakóterületek, ezzel együtt pedig a lakásállomány további növekedése a jövőben jellemzően a jelenleg alulhasznosított vagy üres területek átalakulásával, funkcióváltásával mehet végbe. Potenciális fejlesztési területek jellemzően a főváros elővárosi zónájában, a külső kerületekben, valamint az átmeneti zónában található városrészeken találhatóak (l.: Függelék 11. ábra). Emellett évtizedes távlatban a csőkkenő fővárosi népességszám miatt a lakóterületek iránti igény is csökkenhet.

Az üresen álló lakások aránya a belvárosban az V. (38%) és VI. (32%) kerületben a legmagasabb, a XXII. (5%) és a XVII. (4%) kerületben a legalacsonyabb. A IX. kerületben a lakásszám százalékos növekedése egyik legkiemelkedőbb, ugyanakkor ebben a kerületben az üresen álló ingatlanok száma is magas (28%). A 2011-es népszámlálási adatokhoz viszonyítva a Ü. kerületben közel 5 ezerre nőtt, ugyanannyival, mint az üresen álló lakások aránya. Összesen 7 kerületben (XII., XXII., VII., IX., XVII., XVI., XXIII.) pozitív mind a lakásállomány, mind a népességváltozás aránya az elmúlt bő 20 évben.

A lakóingatlanok nagyarányú fejlesztése kapcsán különösen fontos a szabadon hozzáférhető rekreációs funkciókkal is rendelkező városi zöldfelületekhez (pl. városi parkok, erdők) való hozzáférés lehetősége, amely a környezeti állapotra, ezáltal pedig az életelőképességére is kedvezően hat. Budapesten az egy főre jutó közhasználatú zöldfelületekkel való ellátottság meglehetősen alacsony. Legjobb helyzetben jellemzően a külső kerületek vannak: a II. és XII., valamint a III., a XVI., a XVII., a XVIII., és a XXIII. kerület is magas értékre rendelkezik; legkevésbé ellátottak a VI., VII., VIII., IX., XIII., XIX. és a XXII. kerületek. A közhasználatú zöldfelületek rendszerét, jellemzőit részletesen az I.2. Épített zöldfelületek c. fejezet mutatja be.

Adott társadalmi folyamatok, tendenciák (pl. kései gyermekvállalás, a szülői ház korai elhagyása, a várható élettartam növekedése miatt előregedés, lazuló generációs kapcsolatok) hatására Budapesten az egyszemélyes háztartások aránya növekszik (ez az arány 1970-ben 25,5%, 1990-ben 32,5%, 2001-ben 34,6%, 2016-ban pedig 40%, 2022-ben 45% volt). A 2022-es népszámlálási eredményei szerint a lakott ingatlanok 45%-ban egy, 27%-ban két személy él. Emellett pedig a megváltozott lakhatási igényeknek köszönhetően az egy személyre jutó nagyobb lakótér igénye is növekedett, 2001-hez képest közé 7%-kal. A legnagyobb arányban, 21%-ban 40-59 m², míg 19%-ban 10 m²-nél kisebb alapterület jut egy lakosra. 80 m² vagy annál nagyobb lakótér az ingatlanok mindössze 8%-ára jellemező. A belvárosi kerületek (V., VI., VII.) esetében a legmagasabb a 10 m²-nél kisebb egy főre jutó lakótér aránya, míg az agglomerációs övezet felé haladva, a külső kerületekben ez az érték növekszik, ahogy a társasházaik lakásait felváltja a szabadon álló, családi házás beépítés. A változó igények nagy hatással vannak a városperem átalakulására, a beépítettég arányát növelik, a megfelelő területfelhasználás hatékonyságát rontják, amit a jelenlegi érvényes építési szabályozás sem tud ellensúlyozni.

A környezetállapot tekintetében a lakóépületek kora is meghatározó. A fővárosi lakóépületek 30%-a több mint 70 éves (lásd 7. ábra), ami számos környezeti problémát (pl. elavult fűtési rendszerek légszennyezése, hiányos szigetelés energiapazarlása, vízhálózatban lévő ólomcsövek vízszennyezése stb.) okoz, amennyiben a felújítások nem vagy csak részben valósultak meg az elmúlt időszakban.

A környezetállapot tekintetében a lakóépületek kora is meghatározó. A fővárosi lakóépületek 30%-a több mint 70 éves (lásd 7. ábra), ami számos környezeti problémát (pl. elavult fűtési rendszerek légszennyezése, hiányos szigetelés energiapazarlása, vízhálózatban lévő ólomcsövek vízszennyezése stb.) okoz, amennyiben a felújítások nem vagy csak részben valósultak meg az elmúlt időszakban. A lakóépületek energetikai állapota a város energiafelhasználásának legmegtárolóbb tényezője. A fővárosi épületállomány energetikai besorolásának megoszlását részletesen a II.2. Energiagazdálkodás című fejezet mutatja be.
Talajlezárás mértéke

A beépített területek változásaival párhuzamosan a talajlezárás mértéke is jelentősen kihat a környezet állapotára. A talajlezárás, mint fogalom, egyaránt jelenti a talajok vízzáró anyaggal (például aszfalttal vagy betonnal) történő fedését, és a talajok főként építési műveletek következtében megvalósuló eltávolítását. Mértéke megmutatja, hogy egy adott területen belül milyen arányban (%-ban) vannak jelen tartósan mesterséges felszínnel fedett földterületek a természetes, illetve feltermészetes területek mellett. A talajlezárás mértéke, illetve kialakulása szorosan összefügg egyrészt a népesség növekedésével, másrészt - a területelvonások és talajok eltávolítása miatt - a városok, illetve az infrastruktúrák terjeszkedésével, vagyis a beépítettség mértékének növekedésével.

A talajlezárás veszélyforrást jelent mind az ökoszisztéma-szolgáltatásokra, mind a biológiai sokféleségre. A talajok nagyfokú leromlása, illetve degradáció kedvezőtlen hatásai a környezet állapotában közvetlenül és közvetetten is megmutatkoznak. Az alkalmazott vizsgálati módszer leírása a Függelékben található, a feldolgozott adatok pontossága, illetve a térképek megbízhatósága legalább 90%-os.

A Budapestre vonatkozó vizsgálatból jól látható, hogy a talajlezárás mértéke a zöldfelület-intenzitáshoz (lásd I.2. Épített zöldfelületek c. fejezet 2. ábra) hasonló, am azzal ellentétes értékekkel bíró területeket rajzol ki. A talajlezárás esetében a legmagasabb átlagértékekkel a belső zóna területei rendelkeznek, valamint például az egykori Csepel Művek, és a soroksári bevásárlóközpont területei is szembetűnők.

7. ábra: A lakóépületek, lakások, lakók megoszlása a lakóépület építés éve szerint (forrás: KSH, 2011. évi népszámlálási adatok alapján)

Függelék F.2.
Jó áteresztő képességű talajok főként a külvárosban figyelhetők meg. Ezen területek nagyrészt átfedésben vannak a magas zöldfelület-intenzitással rendelkező területekkel. Az átlagmeneti zónában még változatos, hol magasabb – hol alacsonyabb értékek mutatkoznak, ám a Duna menti, a hegyvidéki és az élővárosi zónák felé haladva a talajlezárás mértéke jellemzően csökken. Ezekben a zónákban főként az alacsonyabb értékek jellemzőek, továbbá nagy arányban fordulnak elő olyan területek, ahol nincs talajlezárás (0%), például erdőterületek vagy mezőgazdasági területek esetében.

Az Európára kiterjedő adatbázis lehetőséget ad a Budapestre vonatkozó adatok összehasonlítására. Az összehasonlítás az egyes városok közigazgatási határait, valamint azok funkcionális urbánus környezetét (FUA) vette alapul. A funkcionális urbánus környezet a települések határain túl értelmezett terület, mely a magas népsűrűségű városból, illetve annak környező, munkaerőpiaca által a városhoz kapcsolódó területeiből, vagyis ingázási zónáiból áll.10

Az elemzés alapján elmondható, hogy Budapest – köszönhetően a közigazgatási területén belül megtalálható nagyarányú erdő- és mezőgazdasági területeknek – európai viszonylatban kedvező értékeket bír (közigazgatási területen 44%, FUA szerint 41%).

A vizsgált állapotfelmérések alapján Budapest talajlezárási mértéke 2006 és 2018 között gyakorlatilag változatlan (kb. 1%-kal növekedett, ami hibahatáron belüli változást jelent). Az adott időszakaszon belül szignifikáns változás a többi vizsgált európai város tekintetében sem volt kimutatható, habár a 2018-as és a korábban
közzétett térképek eltérő felbontában készültek, emiatt a változás nehezen értékelhető.

Épített környezet értékei, örökségvédelem

Az egyedi város karakter, a megőrzött történetiség egyre nagyobb értékei az európai településeken. Budapest is a legtöbb európai nagyvárosba hasonlóan különböző történelmi korszakokból származó épített örökséggel rendelkezik. Legjelentősebb a XIX. század utolsó és a XX. század első negyedének építészete, amely kialakította a belső városrészek funkcionális szerkezetét és ma is látható arculatát. A historizmus építészeti stílusság egységes és egyenlő tekinthető, azaz a neoreneszánsz, a neobarokk, a neoromán és a neogót stílusokban (1860–1905), a mintegy 12 km²-nyi egységes építészeti együttesével világszinten meghatározó. Ehhez képest más történeti korszakok csak nyomaikban, az alapkaraktert színesítve vannak jelen.

Területi védelmek:

- Az UNESCO Világörökség területe és pufferzónája.\(^{12}\)
- **Műemléki jelentőségű területként** műemléki védelemben részesül azon része, amelynek a jellegzetes, történelmileg kialakult szerkezete, beépítésének módja, összképe, a tájjal való kapcsolata, terei és utcaképei, építményeinek együttese összefüggő rendszert alkotva – védelemre érdemes módon – fejezi ki az azt létrehozó közösség építészeti kultúráját, és amelyet jogszabály ilyenként védett nyilvánított.\(^{13}\)
- **Régészeti lelőhelyek** azok a körülhatárolható területek, amelyen a régészeti örökség elemei történeti összefüggéseikben megtalálhatók. Az országosan védett régészeti lelőhelyek védelmük és kezelésük szempontjából az alábbi három kategóriába sorolhatók:
 - A védett nyilvánított régészeti lelőhely miniszteri döntéssel, határozattal vagy törvény alapján miniszteri rendelettel védett nyilvánított kiemelkedő történeti és kulturális jelentőségű, nyilvántartott régészeti lelőhely.
 - A nyilvántartott régészeti lelőhely közhiteles nyilvántartásba vett, törvény alapján általános védelem alatt álló régészeti lelőhely.
 - Régészeti érdekű terület valamennyi terület, természeti vagy mesterséges üreg és a vízmedrek azon része, amelyen, illetve amelyben régészeti lelőhely előkerülése várható vagy feltételezhető.

Épületek, épületegyüttesek védelem:

- **Országos szintű egyedi védelem. Műemléki érték** fogalmát a Kötv.\(^{14}\) 7. § 17. pontja tartalmazza: „minden olyan építmény, történeti kert, történeti temetkezési hely, vagy sajátos terület, valamint ezek maradványa, továbbá azok rendeltetéssé születhető összetartozó együttese, rendszere, amely hazánk múltja és a magyar nemzeti vagy más közösség hovatartozás-tudata szempontjából országos jelentőségű történeti, művészeti, tudományos és műszaki emlék alkotórészeivel, tartozékaival és beépített berendezési tárgyaival együtt“. A mintegy 2500 db
műemléki védettség alatt álló elem zömében a város központjában található, valamint az egykori történeti peremvárosok központi részein.

- A műemlékvédelem sajátos tárgyai a kulturális örökség védelméről szóló törvény meghatározásában a történeti kertek, a temetők és temetkezési emlékhelyek és a műemléki területek. A törvény rendelkezése szerint műemlékvédelem sajátos tárgyai körében védelem alatt álló valamennyi ingatlan esetében biztosítani kell az építészeti, településképi, valamint egyéb környezeti, természeti értékek fenntartható használatát és a hagyományos tájhasználat megőrzését.

- A nemzeti és történelmi emlékhelyek az ország történelmében központi szerepet betöltő helyszínek. 2012-ben a Magyar Országgyűlés bevezette a nemzeti és a történelmi emlékhelyek fogalmát. Összesen 60 (Budapesten 13) történelmi emlékhely15, valamint 20 (Budapesten 5) nemzeti emlékhely és 1 kiemelt nemzeti emlékhely (Országház és környéke) van16.

- Fővárosi és kerületi helyi szintű egyedi védelem: Az Étv-2016 meghatározottak szerint az építészeti örökségnek azok az elemei, amelyek nem részesülnek országos egyedi műemléki védelemben, de a sajátos megjelenésüknél, jellegzetességüknél, településképi vagy településszerkezeti értéküknél foga a térség, illetőleg a település szempontjából kiemelkedőek, hagyományt őriznek, az ott élt emberek és közösségek munkáját és kultúráját híven tükrözik, a helyi építészeti örökség részét képezik.

- A Fővárosi Önkormányzat, a 314/2012. (XI. 8.) Kormányrendeletben foglalt felhatalmazás alapján megalkotta a településkép védelméről szóló 30/2017. (IX. 29.) Főv. Kgy. rendeletét, amelyet azóta többször is módosítottak. A rendelet megalkotásának célja a Budapest főváros városképe és történelme szempontjából meghatározó építészeti örökség kiemelkedő értékű elemeinek védelme, jellegzetes karakterének a jövő nemzedékek számára történő megőrzése. A jegyzékben jelenleg kb. 2.000 építmény és épületemlőgyüttesekben további kb. 1.400 építmény áll védelem alatt.
Kerületi szinten az épített elemek helyi védelmét a településkép védelméről szóló önkormányzati rendeletek biztosítják. A helyi védett épületekről is rendelkező Településképi rendelet mind a 23 fővárosi kerületben elfogadásra került.

10. ábra: Nemzetközi, országos és helyi művi értékvédelem (forrás: TSZT)

Nemesvölgyi és országos művészi építési értékek

Műemlék

Világörökségi helyszín határterülete

Világörökségi helyszín határa területe

Műemlék jelentőségű határra terület

Műemlék jelentőségű határra terület

Történelmi emlékhely

Nemesvölgyi emlékhely

Kisvölgyi emlékhely

Történelmi körzet terület

Világörökségi terület

Kulturális központi terület

Nemesvölgyi kulturális központi terület

Nemesvölgyi kulturális központi terület

Helyi művészi értékvédelem

Fővárosi helyi védettségű épületegyüttes

Fővárosi helyi védettségű épületegyüttes
Függelék

F.1. A város terjeszkedése, lakásépítések

11. ábra: Településszerkezeti terv szerinti potenciális lakófejlesztési területek területfelhasználási egységek szerint

- Településközpont
- Intézményi
- Nagyvárosias
- Kisvárosias
- Kertvárosias
- Potenciális barnamezős fejlesztési terület
F.2. Talajlezárás mértéke

Talajlezárás vizsgálati módszertan

Az adatbázishoz - a zöldfelület-intenzitás vizsgálatához hasonlóan - nagy felbontású műholdfelvételeket (Sentinel-2, korábbi években IRS-P6/Resourcesat-2 LISS-III, SPOT 5 és Landsat 8) használtak fel, az adatsorokat pedig NDVI (vegetációs index) mérések alapján készítették el. A három különböző évszakban (tavasz-nyár-ősz) elkészített képeket a referenciaéven túl az azt megelőző évben, illetve a rakövetkező évben is elkészítették. A képadatok hiányosságainak minimalizálását a három különböző évben elkészített több évszakos képadatok összekapcsolásával érték el. A talajlezárás mértékének meghatározásához az egyes felvételek, képi adatok és az NDVI elemzések alapján elkülönítették a beépített és nem beépített területeket, melyeket 0-100%-ig terjedő skálán osztályoztak. Az osztályozásnál további szempontok is meghatározók voltak, mint például az adott terület borítottságának jellege vagy a területfelhasználás módja.
A fejezet hivatkozásai

3. 767/2013. (IV. 24.) Főv. Kgy. határozattal jóváhagyott BUDAPEST 2030 hosszú távú városfejlesztési koncepció
5. 1997. évi CXLI. törvény az ingatlan-nyilvántartásról
13. 7/2005. (III. 1.) NKÖM rendelet Budapest és Pannonhalma világörökségi helyszíneinek műemléki jelentőségű területével nyilvánításáról
14. 2001. évi LXIV. törvény a kulturális örökség védelméről
15. 303/2011. (XII. 23.) Korm. rendelet a történelmi emlékhelyekről
16. 1997. évi LXVIII. törvény az épített környezet alakításáról és védelméről
II.2. Energiagazdálkodás

A környezeti állapotot befolyásoló eddig ismertetett tényezőkön (természeti adottságok, területhasználat, népsűrűség, gazdasági hatékonyság) túl az egyik legmeghatározóbb hatótényező az olyan energiagazdálkodás, amely az ellátás biztonságán kívül az energiahatékonyság szemléleten is alapul, a hosszú távú környezeti érdekek egyidejű figyelembevétele mellett.

A szénhidrogén – bányászati termék alapú (fosszilis) – tüzelő anyagok égési, energiaátalakulási folyamatának egyik végterméke a szén-dioxid (CO₂), amely az egyik legfőbb üvegházhatású gáz, és amelynek globális szintű emelkedése a Föld légkörének felmelegedését vonja maga után.

Budapest energiafelhasználása 83%-ban fosszilis jellegű, mivel a villamos energia hazai termelése jelentős részben (34%), míg a távhő előállítása majdnem teljes mértékben (95%) szénhidrogén alapú energiahordozók felhasználásával történik.

Az atomenergia aránya az összenergiafelhasználáshoz képest – a villamos energia hazai termelésű része alapján – 11%, míg a megújuló energiahordozók 6%.

A KSH 2022. évre vonatkozó adatai alapján a budapesti lakások 28% a távhővel fűtt, a távfűttőt lakások köre 11 év alatt 35%-kal csökkent. A kizárólag földgázzal fűttők aránya a 2011. év 1,6%-ről 2022-re 4,9%-ra növekedett. A fűttőlés részaránya 1% alatt, az elmúlt 11 év alatt 35%-kal csökkent a kizárólag fával tüzelő háztartások száma.

A 2022. évi budapesti végfelhasználás (28.611 ezer MWh) alapján megállapítható, hogy az egy lakosra jutó energiafelhasználás 17 MWh/fő, ami a 2021. évi adathoz képest 6%-kal csökkent.

A 2015-ös bázisértékhez mérten a 2030-ra vállalt 40%-os CO₂-kibocsátás csökkentési célről tekintettel a 2022. évi CO₂-kibocsátás mintegy 2,3%-os növekedésnek felelt meg.

Az energiahordozók végfelhasználásában 41%-ot képvisel a földgáz, 25% a villamos energia, 24% a közlekedés ágazatban felhasznált gázolaj, benzin, folyékony gáz, míg a távhő 9%-ot jelent.

A 2022. évi budapesti energiagazdálkodáshoz köthető CO₂-kibocsátás eredményeképp egy lakosra 3,7 t CO₂ jut. A CO₂-kibocsátás 25%-a a fővárosi fogyasztású villamos energia előállításához használt tüzelőanyagok fosszilis jellegű részéből ered.

Energiagazdálkodás leírása, jellemzése

A Fővárosi Önkormányzat 2008-ban csatlakozott a Polgármesterek Szövetségéhez2 (Covenant of Mayors, a továbbiakban: CoM), ezáltal a CO₂-kibocsátás csökkentésével kapcsolatos vállalásokat tett az adatok nemzetközi szinten történő összehasonlíthatósága és a globális CO₂-szint csökkentés érdekében.

A fentieken túlmenően a Fővárosi Önkormányzat további klímavédelmi vállalásait (Under 2 Szövetség, Polgármesterek Paktuma stb.) az I.5. Klimatikus viszonyok fejezet tartalmazza.

A fentieken túlmenően a Fővárosi Önkormányzat további klímavédelmi vállalásait (Under 2 Szövetség, Polgármesterek Paktuma stb.) az I.5. Klimatikus viszonyok fejezet tartalmazza.

A 2015 és 2022 közötti energiafelhasználás CO₂-kibocsátásban mérhető alakulását a 2030-ra tervezett célállapot viszonyában az alábbi diagram szemlélteti.

![Diagram](image-url)

1. ábra: Energiafelhasználáshoz köthető CO₂-kibocsátás alakulása, 2015-2022 (saját számítás)
A 2022. évi energiafelhasználást az alábbi táblázat foglalja össze:

<table>
<thead>
<tr>
<th>Energiahordozó</th>
<th>Energiafelhasználás</th>
<th>CO₂</th>
<th>Összesen</th>
<th>CO₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>végfelhasználásuk szerint</td>
<td>MWh</td>
<td>%</td>
<td></td>
<td>MWh</td>
</tr>
<tr>
<td>Fosszilis energiahordozókból</td>
<td>23 759 941</td>
<td>83%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>Földgáz - lakóházak</td>
<td>6 959 192</td>
<td>24%</td>
<td>22%</td>
<td></td>
</tr>
<tr>
<td>Földgáz - szolgáltató épületek, létesítmények</td>
<td>3 254 863</td>
<td>11%</td>
<td>11%</td>
<td></td>
</tr>
<tr>
<td>Földgáz - ipar</td>
<td>1 165 844</td>
<td>4,1%</td>
<td>4%</td>
<td></td>
</tr>
<tr>
<td>Földgáz - önkormányzat</td>
<td>202 511</td>
<td>0,7%</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>Folyékony gáz (LPG)</td>
<td>65 823</td>
<td>0,2%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Benzín és E85</td>
<td>3 166 621</td>
<td>11,1%</td>
<td>13%</td>
<td></td>
</tr>
<tr>
<td>Gázolaj - közlekedés</td>
<td>3 414 279</td>
<td>11,9%</td>
<td>15%</td>
<td></td>
</tr>
<tr>
<td>Gázolaj - közösségi közlekedés</td>
<td>302 527</td>
<td>1,1%</td>
<td>1%</td>
<td></td>
</tr>
<tr>
<td>Gázolaj, fűzőolaj, egyéb</td>
<td>11 930</td>
<td>0,0%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Szén és tűzifa</td>
<td>245 907</td>
<td>0,9%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>Fosszilis - villamos energia</td>
<td>2 436 158</td>
<td>9%</td>
<td>26%</td>
<td></td>
</tr>
<tr>
<td>Fosszilis - távhő termelés*</td>
<td>2 534 266</td>
<td>8,9%</td>
<td>7%</td>
<td></td>
</tr>
<tr>
<td>Atomenergiából - villamos energia termelés**</td>
<td>3 184 101</td>
<td>11%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megújuló energiahordozókból</td>
<td>1 667 182</td>
<td>6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Villamos energia hazai termelés**</td>
<td>1 503 010</td>
<td>5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Távhő termelés*</td>
<td>139 999</td>
<td>0,5%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>További megújulók***</td>
<td>24 173</td>
<td>0,1%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Összesen</td>
<td>28 611 223</td>
<td>100%</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1. táblázat: Energiafelhasználás, 2022 (saját számítás)

2. ábra: Szilárdtüzelést használó háztartások aránya Budapesten és a főváros környékében járásokban (%); forrás: Mikrocensus, 2016

A távfűtésel fűttőt lakások nélkül; egy lakáshoz több típusú fűtőanyag is tartozhat.

Fentiek alapján a fővárosi energiagazdálkodás, illetve annak környezeti szempontú részletei, összefüggései az alábbiak szerint foglalhatók össze, különös tekintettel a főbb tényezőkre és az energiahatékonyság szempontjaira.
Gázellátás

A budapesti végfelhasználás szerint a legjelentősebb energiahordozó a földgáz (45,4%), amely a kisebb hazai termelés mellett (elsősorban orosz) import útján kerül a fogyasztókhoz. A nagyonmássú országos gázhálózatok és létesítmények – a gázadó-, nyomásszabályozó (csökkentő) állomások – a jelenlegi igényt biztosítani tudják, illetve rendelkeznek tartalékokkal. A főváros gázellátottsága gyakorlatilag teljesnek tekinthető.

A lakossági fogyasztás a 2022. évi földgáz-végfelhasználáson belül továbbra is a legmeghatározóbb a fővárosi energiafelhasználásban. A fővárosi földgáz-végfogyasztás a 2022. évi budapesti energiahordozókhoz köthető CO₂-kibocsátásúhoz 38%-ban járt hozzá. A magyarázat a legnagyobb részt a lakónézet (leginkább fűtési célú!) földgázfogyasztásához köthető (22,5%) kibocsátás adja.

A SECAP intézkedései között szerepel egy energiafelhasználás csökkentésére irányuló tematikus szemléletformáló kampany és tájékoztató tevékenység, ami a fűtött budapesti lakó és munkahelyi funkciónyú épületek 1 °C-kal alacsonyabb fűtésével számol. Ezen intézkedés – a jelenlegi épületszigetelési körülményekkel – átlagosan 6%-os hőenergia-felhasználás csökkentést eredményezne, amely becsült csökkénés a SECAP intézkedéseire között a 2030-ra – a 2015-ös bázisévi szinthez képest – kitöltött 40%-os CO₂-kibocsátás csökkentési célon belül 3,5%-ot jelentene, ha az intézkedés a fűtött budapesti lakó és munkahelyi funkciónyú épületek legalább 50%-ában megvalósulna. Megjegyezzük, hogy:

- egy 2022-es felmérés szerint a fővárosiak 74%-a, míg 2021-ben 81%-a volt hajlandó a klímaváltozás lassítása érdekében egy fokkal lejebb állítani a fűtést vagy kevésbé hűteni nyáron a lakását (l. később: 6. ábra);
- jelen becsült eredmény nem érvényes a minden további egyfokos csökkentési célokra, mivel a jövőbeli épületszigetelési intézkedések együttes hatása nem becsülhető (kuilónos tekintette arra a tényezőre, hogy a szigetelések együttes hatása nem lineáris épületenergetikai összfüggés eredménye).

Villamosenergia-ellátás

A villamosenergia-hálózatok Budapest teljes területét úgy fedik le, hogy azokról a fogyasztók ellátása gyakorlatilag teljesnek tekinthető; az igényekhez tartalékokkal is rendelkeznek. A tartalékokat a helyi villamosenergia-termelő berendezések kiegészítik, amelyek lehetnek az 500 kW és 5 MW közötti beépített teljesítményű kisenermővek (15-20 db), továbbá a gázmotoros energiatermelő egységek (5-10 db), valamint az akár nap-, szélenergiával működő háztartási méretű kisenermővek (mintegy 200 db).

Az energiahordozók összes mennyiségének 2022. évi budapesti végfelhasználását tekintve a villamos energia aránya mintegy 25%.

A fővárosi hálózati engedélyes (ELMÜ Hálózati Kft., akinek a hatóságtól kapott joga és kizárólagos felelőssége a hálózat fenntartása) adatai alapján a Budapest területén átadott villamos energia mennyisége 2022-ben 7,12 millió MWh volt, amely 2,8%-kal volt magasabb a 2021. évének, valamint 5,4%-kal volt magasabb a 2015. évének.

A fővárosi villamosenergia-fogyasztás a 2022. évi budapesti energiafelhasználáshoz köthető CO₂-kibocsátáshoz 26,2%-ban járt hozzá.
Közvilágítás

Budapesten a közvilágítás (a közlekedés-, köz- és vagyonbiztonság érdekében szükséges összefüggő, rendszeres, meghatározott időtartamú, villamos üzemű megvilágítás) biztosítása a Fővárosi Önkormányzat kötelező feladata, amelyet – valamint azon túl, az egyes fővárosi jelentőségű objektumok díszvilágítását (mint önként vállalt önkormányzati feladatot) – 2001 szeptemberétől a vonatkozó jogszabály alapján a Budapesti Dísz- és Közvilágítási Kft. lát el.

A közvilágításra vonatkozó részletes szabályokat a Kormány rendeletben állapítja meg, ami eddig nem történt meg. A budapesti közvilágítás üzemkészsége – a havonta végzett ellenőrzések alapján – 99% feletti. A fővárosi közvilágítás beépített teljesítménye 20 MW, a díszvilágítás teljesítményigénye további mintegy 1,5 MW, az energiafelhasználásuk köthető CO₂-kibocsátáshoz 0,3%-ban járult hozzá.

A közvilágítási energiaigény csökkenését olyan technikai korszerűsítések (higanygőzről nátrium lámpás világításra történő áttérés, illetve LED fényforrások alkalmazása) teszik lehetővé, amelyek akár növekvő megvilágítás mellett kevesebb energiát fogyasztanak.

Gázolaj- és benzinfelhasználás

Az energiahordozók összes mennyiségének 2022. évi budapesti végfelhasználását tekintve a gázolaj- és benzinfelhasználás aránya mintegy 24%.

A fővárosi közlekedés a 2022. évi budapesti energiafelhasználáshoz köthető CO₂-kibocsátáshoz 29,6%-ban járult hozzá. Ezen belül a közösségi közlekedés hozzájárulása 2,1% – itt a villamosüzemű járműveket és a további önkormányzati járművek fogyasztását is figyelembe véve.

Távhőszolgáltatás

2022-ben a fővárosi távhőszolgáltató által a lakosság számára értékesített hőmennyiség 2.077 ezer MWh volt, amely a korábbi évhez képest 10%-os csökkenés. A nem lakossági fogyasztóknak értékesített hőmennyiség is alacsonyabb volt mintegy 16%-kal. A hőigények változásának tendenciája a földgáz felhasználáshoz hasonlóan a fűtési időszak átlaghőmérsékletével követte.

A fővárosi távhőellátási rendszer jellegzetességei:

- szigetszerű kialakítás: az egymástól független távhőkörzetek (legjelentősebbek: az Észak-pesti, az Észak-budai, a Kelenföldi Erőmű, a Kispesti Erőmű távhőrendszere) és a tömbkazárnáházak mindegyike külön-külön hőforrással rendelkezik, a nagy szigetűzemű távhőrendszerek összeköttetés nélkül
kizárólagos helyzetet teremtenek, a hőtermelői verseny hiányában viszonylag magas hőáarak jellemzőek (súlyozott átlag 3.311 Ft/GJ), ami megnehezíti a hálózat bővítését;
• a rövid idejű, legmagasabb (csúcs) hőteljesítmény-igény a hőbázisokba beépített lehetőségeknek a felét éri el, tehát jelentős tartalék (hőtermelő-) kapacitás áll rendelkezésre;
• a FŐTÁV távhőhálózatának mintegy 40%-a korszerűsített, a rendszerek fajlagos hővesztesége összességében az európai átlagnál jobb;
• a hálózatokra adott hőt jelentős mértékben nagy energiahatékonyságú – a villamos energia előállításával együtt történő – kapcsolt energiatermeléssel állítják elő, amely műszaki megoldás környezetügyi szempontból is kedvezőbb.

Megújuló energiaforrások alkalmazása, energetikai célú hulladékhasznosítás

Az energiahordozók összes mennyiségének 2021. évi budapesti végfelhasználását tekintve a megújuló energiahordozók aránya mintegy 5% (az alkalmazott SECAP módszertan szerint a megújuló energiahordozók a CO₂-kibocsátáshoz nem járulnak hozzá). Ezen felül a privát szférában folyamatosan növekvő ütemben használnak napenergia- és hőszivattyús rendszereket. Az elosztóhálózati engedélyes adatai alapján a napelemes háztartási méretű kiserőművek száma és beépített teljesítménye évről-évre dinamikusan növekedett, 2021-ben összesen 87 MW beépített teljesítményt képviselt, 2022-ben meghaladta a 130 MW-ot, ami a korábbi évhez képest 50%-os növekedés. 2022-ben az elosztóhálózatra betáplált napelemes rendszerek által termelt villamos energia mennyisége 619 ezer MWh volt. A ténylegesen megttermelt és egyidőben fel is használt szolárenergíáról, illetve a lakossági biomassza felhasználásról nem áll rendelkezésre megbízható információ vagy nyilvántartás.

A megújuló energiahordozókon belül a villamos energia hazai termeléshez használt megújuló energiák (1.503 ezer MWh) mennyisége 5%, a távhőtermelésen belüli (140 ezer MWh) megújuló energiaforrások használata 0,5%.
A budapestiek véleménye az energetikáról

A 2023-as felmérés szerint a budapestiek 26%-a korszerűsítette a házát, lakását az energiaválság miatt: 5% a hűtési-fűtési rendszerét, 13% épület-szigetelésre, illetve nyilászárócsereére ruházott be, 8% pedig mindkét módszerrel igyekezett csökkenteni a költségeit.

A fővárosiak 23%-a tervez három éven belül (újabb) energetikai korszerűsítést: 5% biztosan belevág, 17% pedig valószínűleg. Az idei alcsonyabb felújítási kedv oka feltételezhetően a tavaly végrehajtott, nagyszámú energetikai felújítás lehet. Továbbá sajátossá, hogy az életkor előrehaladával csökken a felújítási kedv, a 65 éven felüliek jelentős többsége teljesen elzárkózik ettől a lehetőségtől.

Eddig is a családi házban élők korszerűsítettek viszonylag magas arányban, és a következő években is a leginkább ők terveznek ilyen jellegű beruházást.

Akik 2020-ban nem tartották valószínűnek, hogy energetikai felújításba kezdjenek, jellemzően azzal indokolták, hogy a lakásuk már így is energia-hatékony. Ezt főként a 40 évesnél idősebbek, a családi házakban vagy a lakótelepen élők, valamint a pesti kertvárosokban lakók választották. Az, hogy nem érzik fontosnak az ingatlan energia-hatékonyságának fejlesztését, jobban jellemzi a tárgyban vett belvárosi és a budai kertvárosi lakókat, mint a lakótelepeken és a pesti kertvárosban élőket.

A megkérdezettek negyede gondolja úgy, hogy új, vagy teljesen felújított, az energiahatékonyságot figyelembe vevő lakásban él. A többség otthona részben felújított, tehát már tettek lépéseket az energetikai korszerűsítés irányába.
Az egyáltalán nem korszerűsített lakásban élők a megkérdezettek 14 százalékát teszi ki, legmagasabb arányban a történeti belvárosban élők körében fordul elő ez.

A 2021. évi felmérés szerint a korszerű lakásoktól a teljesen felújításra szorulók felé haladva enyhén nő a beruházási hajlandóság, de alacsonyabb a biztosan felújítók hányada a korszerűsített lakások esetén.

A 2020-as felmérésben a háztetőkön elhelyezett napelemek látványára is rákérdeztek. A megkérdezettek csupán két százalékának volt ezzel kapcsolatban fenntartása, közülük is minden második csak a belvárosban tartotja zavarónak a napelemek látványát.

A Medián 2021-ben, illetve 2022-ben végzett telefonos felméréséhez hasonlóan 2023-ban is kérdezték a budapesti lakások hőmérsékletszabályozásával kapcsolatban.

Korábban nem változott, hogy milyen hőmérsékletet tartanak ideálisnak az emberek télen és nyáron, nappal és éjszaka a lakásukban, azonban a 2023-as felmérés szerint a korábbi állandósággal szemben kis mértékben csökkent a tél nappali elvárt hőmérséklet (0,3 °C-kal), ami összefüggésben állható az energiaárak növekedésével. Ugyanakkor a nyáron elfogadható hőmérséklet is alacsonyabb lett (nappal 0,9 °C-kal, éjjel 0,5 °C-kal).

A főváros lakosságának jelentős része a lakásban nappal ideálisnak tartott hőmérsékletet körübelű 0,5 °C-kal alacsonyabbnak nevezte meg télen, mint nyáron, azonban van egy szűk réteg, akik alacsonyabb hőmérsékletet tartanak ideálisnak a lakásában nyáron (nappal), mint télen (nappal).
A 2023-as felmérésben a budapestiek arról is kérdezték, hogy az energiaválság hatására változtatták-e a fűtési vagy hűtési szokásaikon. Annak ellenére, hogy az elvárt hőmérséklet érdemben nem változott, a budapestiek kétötöde állítja, hogy változtatott a fűtési, hűtési szokásain az energiaválság hatására. Elsősorban a kertvárosokban, a családi házban (ikerházban vagy sorházban) élők kényészhivatkozását változtatták.

Azok, akik változtattak a fűtési-hűtési szokásaikon, a célhőmérsékletet tekintve átlagosan csupán fél Celsius fokon belül különböziknek azoktól, akik nem változtattak.

6. ábra: A lakásban elvárt nappali hőmérséklet télen és nyáron a Medián 2023-as felmérése alapján (Celsius fok, átlagok)

<table>
<thead>
<tr>
<th>Élőhely egység</th>
<th>tél</th>
<th>nyár</th>
</tr>
</thead>
<tbody>
<tr>
<td>fémfi nem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>nő</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-29 éves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30-39</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40-49</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50-64</td>
<td></td>
<td></td>
</tr>
<tr>
<td>65 éves vagy idősebb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>legelőjebb 8 osztály</td>
<td></td>
<td></td>
</tr>
<tr>
<td>szakmunkásépő</td>
<td></td>
<td></td>
</tr>
<tr>
<td>érettségi diploma</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lakótelepi panelház</td>
<td></td>
<td></td>
</tr>
<tr>
<td>egyéb többszintes társasház</td>
<td></td>
<td></td>
</tr>
<tr>
<td>családi ház, ikerház, sorház</td>
<td></td>
<td></td>
</tr>
<tr>
<td>történeti belváros</td>
<td></td>
<td></td>
</tr>
<tr>
<td>belváros körüli zártsonorú</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lakótelepek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>budai kertváros</td>
<td></td>
<td></td>
</tr>
<tr>
<td>pesti kertváros</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7. ábra: A lakásban elvárt hőmérséklet 2023-as alapján, hogy változtattak-e a fűtési vagy hűtési szokásaikon (Celsius fok, átlagok)
A 2022-es felmérés szerint a legtöbb fővárosi hajlandó lenne a klímaváltozás lassítása érdekében egy fokkal lejjebb állítani a fűtést vagy kevésbé hűteni nyáron a lakást.

Intézkedések

Budapest klímastratégiája és fenntartható energia- és klíma akcióterve az alábbi fontosabb intézkedéseket határozta meg az energiagazdálkodáshoz kapcsolódóan:

- Az épületek, az ipari termelő és szolgáltató létesítmények energiahatékonyságának javítása, valamint a megújuló energiaforrások részarányának növelése.
 - A Fővárosi Önkormányzat, valamint a közszolgáltatásokat végző gazdasági társaságok épületeinek, létesítményeinek energetikai korszerűsítése és energiatudatos működtetése.
 - Közvilágítási hálózat rekonstrukciója, energetikai korszerűsítése.
 - Lakóépületek energetikai korszerűsítése.
 - Napelemes fejlesztések elősegítése.
 - Távhőellátó-rendszer fejlesztése, környezetbarátabbá tétele (rekonstrukció, a megújuló energiaforrások részarányának növelése stb).
 - Alapozó felmérések, kutatások végzése a fenntartható energiagazdálkodás és körkörös gazdaság megvalósíthatósága és alkalmazása tárgyban.
 - Ipari termelő és szolgáltató létesítmények mitigációs és dekarbonizációs tevékenységének elősegítése.

- Közlekedési infrastruktúrák energiahatékonyságának javítása és a környezetarány közlekedési módot támogatása és fejlesztése.
 - Vonzó járművekkel és szolgáltatásokkal, jobb infrastrukturával a községi közlekedés fejlesztése.
 - A kerékpáros és gyalogos infrastruktúra fejlesztése.
 - Elektromos meghajtású vagy alacsony kibocsátású gépjárművek használatának elősegítése.
Az autómegosztás (carsharing) és telekocsi rendszerek használatának elősegítése.

Kibocsátás-csökkentő forgalomszabályozás, alacsony kibocsátású övezetek kijelölése és az ehhez kapcsolódó infrastruktúra kiépítése.

- Klimatudatos városlakók: a környezeti kultúra és a felelősségvállalás erősítése a lakosságban, gazdasági szereplőkben – szemléletformálás.
- Tematikus szemléletformáló kampányok és tájékoztató tevékenységek a Főpolgármesteri Hivatal és a főváros gazdasági szervezetein keresztül, kiemelt tekintettel a lakossági energiafelhasználás csökkentésére.

Az energiagazdálkodás 2015. évi LVII. törvény jogi keretet biztosít az energiapolitikai célkitűzések teljesítéséhez, a megújuló energiák részarányának növeléséhez, az energiahatékonyság és energia-megtakarítás növeléséhez, valamint az üvegházhatású gázok kibocsátásának csökkentéséhez.

Az energiagazdálkodás jobb állapotának elérését segítő fővárosi intézkedések az elmúlt időszakban:

- Három fővárosi szennyvíztisztító telepen megvalósult a biogáz termelés (pl.: a Dél-pesti Szennyvíztisztító Telep hőenergia tekintetében önellátó vált, a villamos energia igényének mintegy 80-90%-át fedezt);
- A rákospalotai hulladékhasznosító mű által az energetikailag hasznosított hulladék mennyisége 2022-ben 373 692 tonna volt. A HHM villamosenergia-értékesítése 95 819 MWh, a távhőhálózatra adott hő mennyisége 1 113 032 GJ volt;
- A Budapest Gyógyfürdői és Hévizei Zrt. (BGYH) Széchenyi Fürdőjének termálvíz hőjéből a FŐTÁV-BGYH konzorcium által a Fővárosi Állat- és Növénykert (FÁNK) részére 2022-ben szolgáltatott geotermikus hő mennyisége 13 308 GJ (3697 MWh) volt;
- A fővárosi távhőhálózaton végzett fejlesztéseket a Fővárosi Önkormányzat évente ellenőrzi, amelyről jegyzőkönyv készül.
Függelék

F.1. Kibocsátás leltárak

2015. évi kibocsátás leltár

<table>
<thead>
<tr>
<th>Ágazat</th>
<th>Végő energiaforrások (%)</th>
<th>Fűtő energia</th>
<th>Cserélő energia és gáz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaz</td>
<td>973</td>
<td>5,93</td>
<td>0</td>
<td>0</td>
<td>3,63</td>
<td>0</td>
<td>3,63</td>
<td>0</td>
<td>3,63</td>
<td>0</td>
<td>3,63</td>
</tr>
<tr>
<td>Termékeny energia</td>
<td>63</td>
<td>4,41</td>
<td>0</td>
<td>0</td>
<td>3,63</td>
<td>0</td>
<td>3,63</td>
<td>0</td>
<td>3,63</td>
<td>0</td>
<td>3,63</td>
</tr>
</tbody>
</table>
B. Energiaellátás

B1. Az önkormányzat által vásárolt hitelesített zöldarám

<table>
<thead>
<tr>
<th>Vásárolt megújuló villamos energia [MWh]</th>
<th>Vásárolt hitelesített zöldarám</th>
</tr>
</thead>
<tbody>
<tr>
<td>Előállított villamos energia [MWh]</td>
<td></td>
</tr>
</tbody>
</table>

B2. Helyi/elosztott villamosenergia-termelés (kizárólag megújuló energia)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Szélenergia</td>
<td>10,259</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>Vízenergia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fotovoltaikus berendezések</td>
<td>3523,413</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>Geotermikus energia</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ÖSSZESEN</td>
<td>3893,472</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

B3. Helyi/elosztott villamosenergia-termelés

|--|----------------------------------|---|-----------------------------|---|

B4. Fűtés/hűtés helyi biztosítása

|------------------------|-----------------------------|-----------------------------|---|
C. Szén-dioxid-kibocsátás

C1. Kérjük, adja meg az elfogadott szén-dioxid-kibocsátási tényezőket [TWh]:

Kattintson ide a tisztségviszonyhoz kapcsolódó kibocsátási tényezők megtekintéséhez

<table>
<thead>
<tr>
<th>Fűtőfolyadék</th>
<th>Cseppefolyás gáz</th>
<th>Fűtőolaj</th>
<th>Dieszel</th>
<th>Benzin</th>
<th>Lignit</th>
<th>Szén</th>
<th>Egyéb fosszilis tüzelőanyag</th>
<th>Növényi olaj</th>
<th>Bio-üzemanyag</th>
<th>Egyéb biomassza</th>
<th>Naphol-energia</th>
<th>Geotermikus energia</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,230</td>
<td>0,230</td>
<td>0,183</td>
<td>0,222</td>
<td>0,222</td>
<td>0,267</td>
<td>0,267</td>
<td>0,249</td>
<td>0,364</td>
<td>0,346</td>
<td>0,043</td>
<td>0,000</td>
<td>0,000</td>
</tr>
</tbody>
</table>

Kibocsátásleltár

<table>
<thead>
<tr>
<th>Ágazat</th>
<th>Villamos energia</th>
<th>Fűtőfolyadék</th>
<th>Cseppefolyás gáz</th>
<th>Fűtőolaj</th>
<th>Dieszel</th>
<th>Benzin</th>
<th>Lignit</th>
<th>Szén</th>
<th>Egyéb fosszilis tüzelőanyag</th>
<th>Növényi olaj</th>
<th>Bio-üzemanyag</th>
<th>Egyéb biomassza</th>
<th>Naphol-energia</th>
<th>Geotermikus energia</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPÜLETET, BERENDELÉSZEGÉS/ÍMÉNYEK ÉS PAR</td>
<td>77 610</td>
<td>14 758</td>
<td>42 046</td>
<td>158</td>
<td>98</td>
<td>1 328</td>
<td>242</td>
<td>0</td>
<td>0</td>
<td>2 156</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Specifikus (nem állományos) energiatermelési berendezés (ágazati)</td>
<td>684 532</td>
<td>33 064</td>
<td>446 240</td>
<td>0</td>
<td>1 164 735</td>
</tr>
<tr>
<td>Lapkásítás</td>
<td>407 224</td>
<td>307 529</td>
<td>1 369 547</td>
<td>0</td>
<td>1 002</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>28 358</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Személygép</td>
<td>20 225</td>
<td>0</td>
<td>165</td>
<td>0</td>
</tr>
<tr>
<td>Készülékek (nem ETS-terület)</td>
<td>244 015</td>
<td>67 509</td>
<td>406 219</td>
<td>9 563</td>
<td>0</td>
</tr>
<tr>
<td>Építmények</td>
<td>0</td>
</tr>
<tr>
<td>Összesen</td>
<td>1 403 906</td>
<td>514 086</td>
<td>2 344 222</td>
<td>9 730</td>
<td>1 730</td>
<td>1 530</td>
<td>242</td>
<td>0</td>
<td>0</td>
<td>28 358</td>
<td>2 166</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

KÖZELÉNY

<table>
<thead>
<tr>
<th>Ágazat</th>
<th>Villamos energia</th>
<th>Fűtőfolyadék</th>
<th>Cseppefolyás gáz</th>
<th>Fűtőolaj</th>
<th>Dieszel</th>
<th>Benzin</th>
<th>Lignit</th>
<th>Szén</th>
<th>Egyéb fosszilis tüzelőanyag</th>
<th>Növényi olaj</th>
<th>Bio-üzemanyag</th>
<th>Egyéb biomassza</th>
<th>Naphol-energia</th>
<th>Geotermikus energia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ökonomiai folde</td>
<td>0</td>
<td>0</td>
<td>1 211</td>
<td>0</td>
<td>0</td>
<td>8 716</td>
<td>660</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Összesen</td>
<td>58 697</td>
<td>0</td>
<td>5 895</td>
<td>11 149</td>
<td>0</td>
<td>938 771</td>
<td>696 618</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1 709 130</td>
</tr>
</tbody>
</table>

EGYÉB

<table>
<thead>
<tr>
<th>Ágazat</th>
<th>Villamos energia</th>
<th>Fűtőfolyadék</th>
<th>Cseppefolyás gáz</th>
<th>Fűtőolaj</th>
<th>Dieszel</th>
<th>Benzin</th>
<th>Lignit</th>
<th>Szén</th>
<th>Egyéb fosszilis tüzelőanyag</th>
<th>Növényi olaj</th>
<th>Bio-üzemanyag</th>
<th>Egyéb biomassza</th>
<th>Naphol-energia</th>
<th>Geotermikus energia</th>
</tr>
</thead>
<tbody>
<tr>
<td>MÁS, ENERGIAFOGYASZTÁS HOZ NEM KAPCSOLÓDÓ ÁGÁZATOK</td>
<td>4 360</td>
<td>0</td>
</tr>
<tr>
<td>Távvezetőipar</td>
<td>0</td>
</tr>
<tr>
<td>Összesen</td>
<td>1 554 642</td>
<td>514 086</td>
<td>2 350 192</td>
<td>20 887</td>
<td>1 730</td>
<td>940 301</td>
<td>695 860</td>
<td>0</td>
<td>28 358</td>
<td>2 156</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
2018. évi kibocsátás leltár

A. Vágpá és energiakereskedés

<table>
<thead>
<tr>
<th>Felhasználás</th>
<th>Vágpá energiaforrások</th>
<th>Végös energiaforrások (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nádfűszem</td>
<td>Fűszemkohó</td>
<td>Pakolás</td>
</tr>
<tr>
<td>Fűszemkohó</td>
<td>Pakolás</td>
<td>Nádfűszem</td>
</tr>
<tr>
<td>Pakolás</td>
<td>Nádfűszem</td>
<td>Fűszemkohó</td>
</tr>
<tr>
<td>Nádfűszem</td>
<td>Fűszemkohó</td>
<td>Pakolás</td>
</tr>
</tbody>
</table>

Éveli leltár

<table>
<thead>
<tr>
<th>Felhasználás</th>
<th>Vágpá energiaforrások</th>
<th>Végös energiaforrások (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nádfűszem</td>
<td>Fűszemkohó</td>
<td>Pakolás</td>
</tr>
<tr>
<td>Fűszemkohó</td>
<td>Pakolás</td>
<td>Nádfűszem</td>
</tr>
<tr>
<td>Pakolás</td>
<td>Nádfűszem</td>
<td>Fűszemkohó</td>
</tr>
<tr>
<td>Nádfűszem</td>
<td>Fűszemkohó</td>
<td>Pakolás</td>
</tr>
</tbody>
</table>

Energiatársaságok

<table>
<thead>
<tr>
<th>Felhasználás</th>
<th>Vágpá energiaforrások</th>
<th>Végös energiaforrások (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nádfűszem</td>
<td>Fűszemkohó</td>
<td>Pakolás</td>
</tr>
<tr>
<td>Fűszemkohó</td>
<td>Pakolás</td>
<td>Nádfűszem</td>
</tr>
<tr>
<td>Pakolás</td>
<td>Nádfűszem</td>
<td>Fűszemkohó</td>
</tr>
<tr>
<td>Nádfűszem</td>
<td>Fűszemkohó</td>
<td>Pakolás</td>
</tr>
</tbody>
</table>

Egyéb energiaforrások

<table>
<thead>
<tr>
<th>Felhasználás</th>
<th>Vágpá energiaforrások</th>
<th>Végös energiaforrások (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nádfűszem</td>
<td>Fűszemkohó</td>
<td>Pakolás</td>
</tr>
<tr>
<td>Fűszemkohó</td>
<td>Pakolás</td>
<td>Nádfűszem</td>
</tr>
<tr>
<td>Pakolás</td>
<td>Nádfűszem</td>
<td>Fűszemkohó</td>
</tr>
<tr>
<td>Nádfűszem</td>
<td>Fűszemkohó</td>
<td>Pakolás</td>
</tr>
</tbody>
</table>

Összesen

<table>
<thead>
<tr>
<th>Felhasználás</th>
<th>Vágpá energiaforrások</th>
<th>Végös energiaforrások (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nádfűszem</td>
<td>Fűszemkohó</td>
<td>Pakolás</td>
</tr>
<tr>
<td>Fűszemkohó</td>
<td>Pakolás</td>
<td>Nádfűszem</td>
</tr>
<tr>
<td>Pakolás</td>
<td>Nádfűszem</td>
<td>Fűszemkohó</td>
</tr>
<tr>
<td>Nádfűszem</td>
<td>Fűszemkohó</td>
<td>Pakolás</td>
</tr>
</tbody>
</table>
B. Energiarendelés

B1. Az önkormányzat által vásárolt hitelbővített zöldarám

<table>
<thead>
<tr>
<th>Vásárolt megjegyző villamos energia [MWh]</th>
<th>Kibocsátási tényező, szén-dioxid / szén-dioxid-egyenérték [t]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B2. Helyielasztott villamosenergia-termelés (kizárólag megjegyző energia)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Szélenergia</td>
<td>8</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>Vízenergia</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Fotovoltaikus berendezések</td>
<td>20.479</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>Geotermikus energia</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ÖSSZESEN</td>
<td>20.487</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

B3. Helyielasztott villamosenergia-termelés

<table>
<thead>
<tr>
<th>Helyi villamosenergia-termelő erőművek (ETS és nagyméretű erőművek > 20 MW nem javasolt)</th>
<th>Előállított villamos energia [MWh]</th>
<th>Energiafordító-bevétel [MWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Megjegyző alapú</td>
<td>Egyéb</td>
</tr>
<tr>
<td></td>
<td>Nem megjegyző alapú</td>
<td>Egyéb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kapcsolt hő- és villamosenergia-termelés</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Egyéb</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ÖSSZESEN</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

B4. Fűtés/hűtés helyi biztosítása

<table>
<thead>
<tr>
<th>Helyi fűtő/hűtőüzemek</th>
<th>Kibocsátott fűtés/hűtés [MWh]</th>
<th>Energiafordító-bevétel [MWh]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Megjegyző alapú</td>
<td>Egyéb</td>
</tr>
<tr>
<td></td>
<td>Nem megjegyző alapú</td>
<td>Egyéb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kapcsolt hő- és villamosenergia-termelés</td>
<td>104516,75</td>
<td>104</td>
</tr>
<tr>
<td>Egyéb</td>
<td>3.872</td>
<td>3.872</td>
</tr>
<tr>
<td>ÖSSZESEN</td>
<td>108390,99</td>
<td>104192,51</td>
</tr>
</tbody>
</table>
C. Szén-dioxid-kibocsátás

C1. Kérjük, adja meg az elfogadott szén-dioxid-kibocsátási tényezőket [t/MW]:

<table>
<thead>
<tr>
<th>Apalet</th>
<th>Villamos energia</th>
<th>Fűtés/űzés</th>
<th>Főolaj</th>
<th>Csepp-foley gáz</th>
<th>Főolaj</th>
<th>Dízel</th>
<th>Benzin</th>
<th>Lángolaj</th>
<th>Szén</th>
<th>Egyéb főolaj-zavaranyagok</th>
<th>Német</th>
<th>Bio-izomantag</th>
<th>Egyéb biomasseza</th>
<th>Napfény energia</th>
<th>Geotermikus energia</th>
</tr>
</thead>
<tbody>
<tr>
<td>BI</td>
<td>0,230</td>
<td>0,230</td>
<td>0,183</td>
<td>0,202</td>
<td>0,231</td>
<td>0,267</td>
<td>0,267</td>
<td>0,269</td>
<td>0,364</td>
<td>0,346</td>
<td>0,403</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>MB</td>
<td>0,230</td>
<td>0,230</td>
<td>0,191</td>
<td>0,202</td>
<td>0,231</td>
<td>0,267</td>
<td>0,267</td>
<td>0,269</td>
<td>0,364</td>
<td>0,346</td>
<td>0,403</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
</tbody>
</table>

Kibocsátási számok

<table>
<thead>
<tr>
<th>Apalet</th>
<th>Villamos energia</th>
<th>Fűtés/űzés</th>
<th>Főolaj</th>
<th>Csepp-folyó gáz</th>
<th>Főolaj</th>
<th>Dízel</th>
<th>Benzin</th>
<th>Lángolaj</th>
<th>Szén</th>
<th>Egyéb főolaj-zavaranyagok</th>
<th>Német</th>
<th>Bio-izomantag</th>
<th>Egyéb biomasseza</th>
<th>Napfény energia</th>
<th>Geotermikus energia</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPÜLETKEK, BERENDEZÉSÉKLETÍSTMÉNYEK ÉS IPAR</td>
<td>0,048</td>
<td>0,154</td>
<td>0,331</td>
<td>0,128</td>
<td>0,175</td>
<td>0</td>
<td>0</td>
<td>109</td>
<td>0</td>
<td>0</td>
<td>2257</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Szálláshelyek (nem épületkekek)</td>
<td>0,373</td>
<td>0,257</td>
<td>0,141</td>
<td>0,056</td>
<td>0</td>
</tr>
<tr>
<td>Lakóépületek</td>
<td>0,362</td>
<td>0,362</td>
<td>0,142</td>
<td>0,073</td>
<td>0</td>
</tr>
<tr>
<td>Közlekedés</td>
<td>0,359</td>
<td>0,359</td>
<td>0,142</td>
<td>0,073</td>
<td>0</td>
</tr>
<tr>
<td>Ipar</td>
<td>0,359</td>
<td>0,359</td>
<td>0,142</td>
<td>0,073</td>
<td>0</td>
</tr>
<tr>
<td>Egyéb</td>
<td>0,359</td>
<td>0,359</td>
<td>0,142</td>
<td>0,073</td>
<td>0</td>
</tr>
<tr>
<td>Rezervszer</td>
<td>1,031</td>
<td>0,065</td>
<td>0,320</td>
<td>0,082</td>
<td>0,335</td>
<td>0,182</td>
<td>0,100</td>
<td>0</td>
<td>0</td>
<td>2835</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Kü üzlekedés

<table>
<thead>
<tr>
<th>Apalet</th>
<th>Villamos energia</th>
<th>Fűtés/űzés</th>
<th>Főolaj</th>
<th>Csepp-folyó gáz</th>
<th>Főolaj</th>
<th>Dízel</th>
<th>Benzin</th>
<th>Lángolaj</th>
<th>Szén</th>
<th>Egyéb főolaj-zavaranyagok</th>
<th>Német</th>
<th>Bio-izomantag</th>
<th>Egyéb biomasseza</th>
<th>Napfény energia</th>
<th>Geotermikus energia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Országút</td>
<td>0</td>
<td>0</td>
<td>917</td>
<td>0</td>
<td>0</td>
<td>2071</td>
<td>615</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tisza</td>
<td>0</td>
<td>0</td>
<td>5503</td>
<td>0</td>
<td>0</td>
<td>74970</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Magasból és károskemény szén</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>19043</td>
<td>0</td>
<td>961202</td>
<td>74152</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Rezervszer</td>
<td>0</td>
<td>0</td>
<td>6420</td>
<td>19043</td>
<td>0</td>
<td>1056890</td>
<td>747787</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Egyéb

<table>
<thead>
<tr>
<th>Apalet</th>
<th>Villamos energia</th>
<th>Fűtés/űzés</th>
<th>Főolaj</th>
<th>Csepp-folyó gáz</th>
<th>Főolaj</th>
<th>Dízel</th>
<th>Benzin</th>
<th>Lángolaj</th>
<th>Szén</th>
<th>Egyéb főolaj-zavaranyagok</th>
<th>Német</th>
<th>Bio-izomantag</th>
<th>Egyéb biomasseza</th>
<th>Napfény energia</th>
<th>Geotermikus energia</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAGÁVÁGÁVÁSZTÁSHEZ NEM KAPCSOLÓDÓ ÁGAZATOK</td>
<td>0</td>
</tr>
<tr>
<td>Szabadsági tevékenység</td>
<td>0</td>
</tr>
<tr>
<td>NAPÉRZSÉKaszámlázáshoz nem kapcsolódó ÁGAZATOK</td>
<td>0</td>
</tr>
</tbody>
</table>

Összesen

<table>
<thead>
<tr>
<th>Apalet</th>
<th>Villamos energia</th>
<th>Fűtés/űzés</th>
<th>Főolaj</th>
<th>Csepp-folyó gáz</th>
<th>Főolaj</th>
<th>Dízel</th>
<th>Benzin</th>
<th>Lángolaj</th>
<th>Szén</th>
<th>Egyéb főolaj-zavaranyagok</th>
<th>Német</th>
<th>Bio-izomantag</th>
<th>Egyéb biomasseza</th>
<th>Napfény energia</th>
<th>Geotermikus energia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Összesen</td>
<td>1687398</td>
<td>500613</td>
<td>2330007</td>
<td>19024</td>
<td>3552</td>
<td>1057072</td>
<td>747876</td>
<td>0</td>
<td>26208</td>
<td>2557</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Ágazat</td>
<td>Vizsgás energia</td>
<td>Végleges energiafogyasztás (MWh)</td>
<td>Fűtés</td>
<td>Dúsító</td>
<td>Légtűz</td>
<td>Zóna</td>
<td>Építkezés</td>
<td>Szóródási energia</td>
<td>Növényi főzára</td>
<td>Bihari, öntött</td>
<td>Nélküli</td>
<td>Délkeleti energia</td>
<td>Építőipari energia</td>
<td>Nagyterületi energiafogyasztás</td>
<td>Geothermikai energia</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>----------------------------------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>------</td>
<td>---------</td>
<td>-----------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------</td>
<td>----------------</td>
<td>----------------</td>
<td>---------------------------------</td>
<td>-----------------</td>
</tr>
</tbody>
</table>
| 2019. évi kibocsátás leltár

A. Vásárló energiafogyasztás

<table>
<thead>
<tr>
<th>Összesen</th>
<th>Gáz / lánchordó</th>
<th>Fűszeres</th>
<th>Élőkór</th>
<th>Tűzvastagság</th>
<th>Zóna</th>
<th>Építkezés</th>
<th>Szóródási energia</th>
<th>Növényi főzára</th>
<th>Bihari, öntött</th>
<th>Nélküli</th>
<th>Délkeleti energia</th>
<th>Építőipari energia</th>
<th>Nagyterületi energiafogyasztás</th>
<th>Geothermikai energia</th>
<th>Napfényi energia</th>
</tr>
</thead>
</table>
| 2019. évi kibocsátás leltár

B. Vásárló energiafogyasztás

<p>| Összesen | Gáz / lánchordó | Fűszeres | Élőkór | Tűzvastagság | Zóna | Építkezés | Szóródási energia | Növényi főzára | Bihari, öntött | Nélküli | Délkeleti energia | Építőipari energia | Nagyterületi energiafogyasztás | Geothermikai energia | Napfényi energia |</p>
<table>
<thead>
<tr>
<th>Energiaforrások-bemutó (kWh)</th>
<th>Fűszerdélés</th>
<th>Tárolás</th>
<th>Német energia-termelés</th>
<th>Magyar energia-termelés</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kibocsátás, szén-dioxid 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Egyéb</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Megjelenés alapján</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gáz</td>
<td>6.327</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A szövetek és kiegészítők</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Energiaforrások-bemutó (kWh)</td>
<td>Fűszerdélés</td>
<td>Tárolás</td>
<td>Német energia-termelés</td>
<td>Magyar energia-termelés</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------</td>
<td>--------</td>
<td>----------------------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>Kibocsátás, szén-dioxid 1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Egyéb</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Megjelenés alapján</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Gáz</td>
<td>6.327</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A szövetek és kiegészítők</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Naptári év</td>
<td>BB1</td>
<td>BB2</td>
<td>BB3</td>
<td>ME</td>
</tr>
<tr>
<td>----------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>----</td>
</tr>
<tr>
<td>2012</td>
<td>0.320</td>
<td>0.320</td>
<td>0.320</td>
<td>0.320</td>
</tr>
<tr>
<td>2013</td>
<td>0.320</td>
<td>0.320</td>
<td>0.320</td>
<td>0.320</td>
</tr>
</tbody>
</table>

Agazat

<table>
<thead>
<tr>
<th>Energiaterek</th>
<th>Fűtési energia</th>
<th>Forgaz</th>
<th>Csepel</th>
<th>Gáz</th>
<th>Ózongáz</th>
<th>Gáz</th>
<th>Platt</th>
<th>Ólom</th>
<th>Øl</th>
<th>Öl</th>
<th>Öl</th>
<th>Öl</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>0.123</td>
</tr>
<tr>
<td>2013</td>
<td>0.123</td>
</tr>
</tbody>
</table>

Energiafogyasztás (GWh)

<table>
<thead>
<tr>
<th>Energiafogyasztás</th>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naptári év</td>
<td>2012</td>
<td>2013</td>
</tr>
<tr>
<td>BB1</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>BB2</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>BB3</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>ME</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>MEI</td>
<td>0.000</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Bemutatkozás

- BB1: 2012
- BB2: 2013
- BB3: 2012
- ME: 2012
- MEI: 2012

Összesen

<table>
<thead>
<tr>
<th>Energiaterek</th>
<th>Összesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB1</td>
<td>0.000</td>
</tr>
<tr>
<td>BB2</td>
<td>0.000</td>
</tr>
<tr>
<td>BB3</td>
<td>0.000</td>
</tr>
<tr>
<td>ME</td>
<td>0.000</td>
</tr>
<tr>
<td>MEI</td>
<td>0.000</td>
</tr>
</tbody>
</table>

Energiagazdálkodás | Függelék

- BB1: 2012
- BB2: 2013
- BB3: 2012
- ME: 2012
- MEI: 2012

Összesen

<table>
<thead>
<tr>
<th>Energiaterek</th>
<th>Összesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>BB1</td>
<td>0.000</td>
</tr>
<tr>
<td>BB2</td>
<td>0.000</td>
</tr>
<tr>
<td>BB3</td>
<td>0.000</td>
</tr>
<tr>
<td>ME</td>
<td>0.000</td>
</tr>
<tr>
<td>MEI</td>
<td>0.000</td>
</tr>
<tr>
<td>Nyomonkövetési kibocsátásleltár</td>
<td></td>
</tr>
<tr>
<td>----------------------------------</td>
<td></td>
</tr>
<tr>
<td>1) Lattárzási év: 2020</td>
<td></td>
</tr>
<tr>
<td>2) Látványok száma a lattárzási évben: 172828</td>
<td></td>
</tr>
<tr>
<td>3) Kibocsátás tényezők:</td>
<td></td>
</tr>
<tr>
<td>- IPCC</td>
<td></td>
</tr>
<tr>
<td>- LCA (léletciklus-elmélet)</td>
<td></td>
</tr>
<tr>
<td>4) Kibocsátáselosztás egysége:</td>
<td></td>
</tr>
<tr>
<td>- tonna szén-dioxid</td>
<td></td>
</tr>
<tr>
<td>- tonna szén-dioxid-egyenérték</td>
<td></td>
</tr>
<tr>
<td>5) Módoszatani megjegyzések:</td>
<td></td>
</tr>
</tbody>
</table>

A Végző energiáfogyasztás

<table>
<thead>
<tr>
<th>Ágazat</th>
<th>VÜMGSZ ENERGIAFOGYASZTÁS (MWh)</th>
<th>Foszilláris tüzelőanyagok</th>
<th>Megújuló energiaforrások</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>víllámpa</td>
<td>Fűtésellátás</td>
</tr>
<tr>
<td>EPIÜLTEK, BERENDELÉS/SZKLETÉSTÉRTÉMKÉNYEK ÉS IPAK</td>
<td>309 029</td>
<td>78 108</td>
<td>162 055</td>
</tr>
<tr>
<td>Oktatási szervek, kulturális közösségenként</td>
<td>1 771 062</td>
<td>170 675</td>
<td>800 769</td>
</tr>
<tr>
<td>Laktózottak</td>
<td>2 282 667</td>
<td>2 177 245</td>
<td>7 383 880</td>
</tr>
<tr>
<td>Kávészerek</td>
<td>97 052</td>
<td>8 335</td>
<td>0</td>
</tr>
<tr>
<td>az</td>
<td>1 021 542</td>
<td>382 626</td>
<td>3 544 003</td>
</tr>
<tr>
<td>nem ETS-megható</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>köztéri</td>
<td>1 243 733</td>
<td>2 865 454</td>
<td>11 891 529</td>
</tr>
<tr>
<td>Közlekedés</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Házszállítás</td>
<td>18 020</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Közlekedés</td>
<td>1 021 542</td>
<td>382 626</td>
<td>3 544 003</td>
</tr>
<tr>
<td>EGYÉB</td>
<td>4 091</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

| Közlekedés | 1 243 733 | 2 865 454 | 11 891 529 | 38 724 | 16 160 | 753 | 10 | 0 | 81 860 | 0 | 0 | 0 | 154 522 | 1 361 | 4 187 | 22 127 402 |

* Kézfutószerszám: Comment készlet
B. Energiaeltakarítás

B1. Az énkormányzat által vásárolt hitelesített zöldáram

<table>
<thead>
<tr>
<th>Vásárolt hitelesített zöldáram</th>
<th>Vásárolt megújuló villamos energia [MWh]</th>
<th>Kibocsátási tényező, szén dioxid / szén-dioxid-egyenérték [tCO₂/1MW]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B2. Helyéleszlesztett villamosenergia-termelés (vizsgálat megújuló energia)

<table>
<thead>
<tr>
<th>Szélességi energia</th>
<th>Megújuló energia</th>
<th>Kibocsátási tényező</th>
<th>Egyéb</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>0.000</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Fűnyírás</td>
<td>277</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Gáztermikus energia</td>
<td>23 210</td>
<td>0.000</td>
<td>0</td>
</tr>
<tr>
<td>ÖSSZESEN</td>
<td>23 505</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

B3. Helyéleszlesztett villamosenergia-termelés

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Megújuló energia</td>
<td>Nem megújuló energia</td>
<td>Földgáz</td>
<td>Cseppek és folyő</td>
<td>Főzőolaj</td>
<td>Légszén</td>
<td>Növényi olaj</td>
<td>Egyéb biomassza</td>
<td>Más megújuló</td>
</tr>
<tr>
<td>Kapcsolt hő- és villamosenergia-termelés</td>
<td>106 675</td>
<td>83 261</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Egyéb</td>
<td>ÖSSZESEN</td>
<td>106 675</td>
<td>83 261</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

B4. Fűtéstőlés helyi biztosítása

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Megújuló energia</td>
<td>Nem megújuló energia</td>
<td>Földgáz</td>
<td>Cseppek és folyő</td>
<td>Főzőolaj</td>
<td>Légszén</td>
<td>Növényi olaj</td>
<td>Egyéb biomassza</td>
<td>Más megújuló</td>
</tr>
<tr>
<td>Kapcsolt hő- és villamosenergia-termelés</td>
<td>193 330</td>
<td>395 658</td>
<td>333 256</td>
<td>896 990</td>
<td>131 531</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Tartósítás (csak hő)</td>
<td>4 187</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Egyéb</td>
<td>ÖSSZESEN</td>
<td>197 516</td>
<td>395 658</td>
<td>333 256</td>
<td>896 990</td>
<td>0</td>
<td>0</td>
<td>136 117</td>
</tr>
</tbody>
</table>
C. Szén-dioxid-kibocsátás

<table>
<thead>
<tr>
<th>Villamos energia</th>
<th>Fűtési energia</th>
<th>Fosszilis tüzelőanyagok</th>
<th>Megjelölt energiaforrások</th>
</tr>
</thead>
<tbody>
<tr>
<td>BE</td>
<td>2,230</td>
<td>0,230</td>
<td>0,163</td>
</tr>
<tr>
<td>ME</td>
<td>0,250</td>
<td>0,330</td>
<td>0,184</td>
</tr>
</tbody>
</table>

C2. Környezet, tiltsa ki, ha nem energiahoz kapcsolódó agazatokat is tartalmaz.

Nem energiahoz kapcsolódó agazatok

- Kibocsátás, szén-dioxid-egyenérték [1]
- Iszlámképződés
- Ősfűtés
- Más, energiaforrásokhoz nem kapcsolódó agazatok

Kibocsátási tartalom

<table>
<thead>
<tr>
<th>Agazat</th>
<th>Villamos energia</th>
<th>Fűtési energia</th>
<th>Fosszilis tüzelőanyagok</th>
<th>Megjelölt energiaforrások</th>
</tr>
</thead>
</table>

ÉPÜLET, BERENDZIELEDÉKÖLETTESTÍMÉNYEK ÉS IPS

- Országos épületi építkezés, berendezéselédiületőket csomagított
- Országos, nem országos építkezés, berendezéselédiületőket csomagított

Hanggalakodás

- Töltés: 775344
- 31345: 971785
- 0: 0
- 0: 0
- 0: 0
- 0: 0
- 0: 0
- 0: 0
- 0: 0
- 0: 0
- 0: 0
- 0: 0
- 0: 0

Kérelmekesség

- 20171: 0
- 0: 188
- 0: 201
- 0: 0
- 0: 0
- 0: 0
- 0: 0
- 0: 0
- 0: 0
- 0: 0
- 0: 0
- 0: 0

Szoftver

- ELS-kezelés: 7399,79

KÖZLEKEDÉS

- Országos közlekedés
- Országos közlekedés
- Országos közlekedés
- Országos közlekedés
- Országos közlekedés
- Országos közlekedés
- Országos közlekedés
- Országos közlekedés
- Országos közlekedés
- Országos közlekedés
- Országos közlekedés
- Országos közlekedés

ÉPÍTÉS

- Építés, épületkészletéle, építőipar

INÉRGIA FOGYASZTÁSHOZ NEM KAPCSOLÓDNÉ AGAZATOK

- Iszlámképződés
- Ősfűtés
- Más, energiaforrásokhoz nem kapcsolódó agazatok

ÖSSZEKÖTTETÉS

1882979: 4217414
2439019: 1529019
49849: 629170
700046: 28378
0: 0
0: 0
0: 0
Kibocsátásleltár

Nyomonkövetési kibocsátásleltár

- **Szósszek szerinti memóriaégiébén másolja le a „MDF” feliratot a Nyomonkövetési kibocsátásleltárak címére.

Leltározás

1. **Leltározási év**
 - 2021

2. **Lakosok száma a leltározási évben**
 - 1708801

3. **Kibocsátási lényegének**
 - IPCC
 - LCA (átkomplexus-elemzés)

4. **Kibocsátási lényegének**
 - tonna szén-dioxid
 - tonna szén-dioxid-egegységikt

5. **Módosítani megjegyzések**

A. Végző energiagyorsítás

<table>
<thead>
<tr>
<th>Ágazat</th>
<th>Vízenergia</th>
<th>Fűszerhűs</th>
<th>Fűszerkő</th>
<th>Csepp-fozókő</th>
<th>Gáz</th>
<th>Cseplos</th>
<th>Dízel</th>
<th>Bérsül</th>
<th>Légi</th>
<th>Szén</th>
<th>Egyéb</th>
<th>Növényi</th>
<th>Biokszem</th>
<th>Egyéb</th>
<th>Naphid</th>
<th>Geotermikus</th>
<th>Összesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>EPJLET</td>
<td>ÉPJLETÉK</td>
<td>1907.10</td>
</tr>
<tr>
<td>1907.10</td>
</tr>
</tbody>
</table>

Műszaki adatok

- **2021. évi kibocsátás leltár**

- **Gáz**
 - 230

- **Egyéb**
 - 0

felülvizsgálati útmutatót ismertetve
B1. Az önkormányzat által vásárolt hitelesített zöldenergiára

<table>
<thead>
<tr>
<th>Vásárolt megújuló villamos energia [MW]</th>
<th>Kibocsátási tényező</th>
<th>Szén-dioxid / szén-dioxid-egyenérték [t]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vásárolt hitelesített zöldenergia</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B2. Helyilegpusztított villamosenergia-termelés (kiadott megújuló energia)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Szélenergia</td>
<td>57</td>
<td>0,000</td>
<td>0</td>
</tr>
<tr>
<td>Vízenergia</td>
<td>272</td>
<td>0,200</td>
<td>0</td>
</tr>
<tr>
<td>Feltovábbított berendezések</td>
<td>33,947</td>
<td>0,000</td>
<td>0</td>
</tr>
<tr>
<td>Geotermikus energia</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ÖSSZESEN</td>
<td>39,777</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

B3. Helyilegpusztított villamosenergia-termelés

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kapcsolt hő és villamosenergia-termelés</td>
<td>97,181</td>
<td>86,121</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Egyéb</td>
<td>97,181</td>
<td>86,121</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

B4. Fűtőhidősz abszolút helyi biztosítása

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Kapcsolt hő és villamosenergia-termelés</td>
<td>104,001</td>
<td>328,874</td>
<td>431,983</td>
<td>926,042</td>
<td>123,280</td>
<td>87,261</td>
<td>0</td>
</tr>
<tr>
<td>Tökvés (csak hő)</td>
<td>4,409</td>
<td></td>
<td>4,409</td>
<td>4,409</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Egyéb</td>
<td>108,409</td>
<td>333,284</td>
<td>436,392</td>
<td>926,042</td>
<td>123,280</td>
<td>87,261</td>
<td>0</td>
</tr>
</tbody>
</table>

ÖSSZESEN 108,409 333,284 436,392 926,042 123,280 87,261 0
C. Szén-dioxid-kibocsátás

C1. Kérjük, adja meg az elfogadott szén-dioxid-kibocsátási törvényeket (HIVH):

<table>
<thead>
<tr>
<th>Villamos energia</th>
<th>Fűtés/hűtés</th>
<th>Földgáz</th>
<th>Csepp- és folyóvíz</th>
<th>Fűtőolaj</th>
<th>Dízel</th>
<th>Benzín</th>
<th>Lignit</th>
<th>Szén</th>
<th>Egyéb fosszilis</th>
<th>Növényi olaj</th>
<th>Bio-üzemanyag</th>
<th>Egyéb biomassza</th>
<th>Kápráj-energia</th>
<th>Gaztermelés energiája</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nem zset</td>
<td>Helyi</td>
<td></td>
</tr>
<tr>
<td>BEI</td>
<td>0,230</td>
<td>0,230</td>
<td>0,183</td>
<td>0,202</td>
<td>0,231</td>
<td>0,267</td>
<td>0,267</td>
<td>0,249</td>
<td>0,346</td>
<td>0,346</td>
<td>0,403</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>MEI</td>
<td>0,230</td>
<td>0,230</td>
<td>0,189</td>
<td>0,202</td>
<td>0,231</td>
<td>0,267</td>
<td>0,267</td>
<td>0,249</td>
<td>0,346</td>
<td>0,346</td>
<td>0,403</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
</tbody>
</table>

C2. Kérjük, töltse ki, ha nem energiához kapcsolódó ágazatokat is tartalmaz:

<table>
<thead>
<tr>
<th>Nem energiához kapcsolódó ágazatok</th>
<th>Kibocsátás, szén-dioxid-egyszemek [t]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hőfűtőkészülések</td>
<td></td>
</tr>
<tr>
<td>Énergiagyártások</td>
<td></td>
</tr>
<tr>
<td>Más energiagyártások nem kapcsolódó ágazatok</td>
<td></td>
</tr>
</tbody>
</table>

Kibocsátásiattár

<table>
<thead>
<tr>
<th>Közlekedési szállítási leforgalomból, építőanyagokból és szállításból</th>
<th>Villamos energia</th>
<th>Fűtés/hűtés</th>
<th>Földgáz</th>
<th>Csepp- és folyóvíz</th>
<th>Fűtőolaj</th>
<th>Dízel</th>
<th>Benzín</th>
<th>Lignit</th>
<th>Szén</th>
<th>Egyéb fosszilis</th>
<th>Növényi olaj</th>
<th>Bio-üzemanyag</th>
<th>Egyéb biomassza</th>
<th>Kápráj-energia</th>
<th>Gaztermelés energiája</th>
</tr>
</thead>
<tbody>
<tr>
<td>Összesen</td>
<td>60925</td>
<td>12112</td>
<td>41229</td>
<td>61</td>
<td>1816</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>119053</td>
</tr>
<tr>
<td>Összesen ne szállításból, építőanyagokból és szállításból</td>
<td>71698</td>
<td>34676</td>
<td>104252</td>
<td>0</td>
<td>895828</td>
</tr>
<tr>
<td>Összesen ne szállításból, építőanyagokból és szállításból</td>
<td>550366</td>
<td>389209</td>
<td>2456122</td>
<td>0</td>
<td>1060</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>5277828</td>
</tr>
<tr>
<td>Összesen ne szállításból, építőanyagokból és szállításból</td>
<td>19965</td>
<td>0</td>
<td>168</td>
<td>0</td>
<td>0</td>
<td>201</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20928</td>
</tr>
<tr>
<td>Összesen ne szállításból, építőanyagokból és szállításból</td>
<td>177164</td>
<td>72245</td>
<td>283653</td>
<td>8492</td>
<td>0</td>
<td>542094</td>
</tr>
<tr>
<td>Összesen ne szállításból, építőanyagokból és szállításból</td>
<td>0</td>
</tr>
</tbody>
</table>

Építőanyagok

<table>
<thead>
<tr>
<th>Villamos energia</th>
<th>Fűtés/hűtés</th>
<th>Csepp- és folyóvíz</th>
<th>Fűtőolaj</th>
<th>Dízel</th>
<th>Benzín</th>
<th>Lignit</th>
<th>Szén</th>
<th>Egyéb fosszilis</th>
<th>Növényi olaj</th>
<th>Bio-üzemanyag</th>
<th>Egyéb biomassza</th>
<th>Kápráj-energia</th>
<th>Gaztermelés energiája</th>
</tr>
</thead>
<tbody>
<tr>
<td>Összesen</td>
<td></td>
</tr>
</tbody>
</table>

Révászerűség

<table>
<thead>
<tr>
<th>Villamos energia</th>
<th>Fűtés/hűtés</th>
<th>Csepp- és folyóvíz</th>
<th>Fűtőolaj</th>
<th>Dízel</th>
<th>Benzín</th>
<th>Lignit</th>
<th>Szén</th>
<th>Egyéb fosszilis</th>
<th>Növényi olaj</th>
<th>Bio-üzemanyag</th>
<th>Egyéb biomassza</th>
<th>Kápráj-energia</th>
<th>Gaztermelés energiája</th>
</tr>
</thead>
<tbody>
<tr>
<td>Összesen</td>
<td></td>
</tr>
</tbody>
</table>

Kápráj-energia

<table>
<thead>
<tr>
<th>Villamos energia</th>
<th>Fűtés/hűtés</th>
<th>Csepp- és folyóvíz</th>
<th>Fűtőolaj</th>
<th>Dízel</th>
<th>Benzín</th>
<th>Lignit</th>
<th>Szén</th>
<th>Egyéb fosszilis</th>
<th>Növényi olaj</th>
<th>Bio-üzemanyag</th>
<th>Egyéb biomassza</th>
<th>Kápráj-energia</th>
<th>Gaztermelés energiája</th>
</tr>
</thead>
<tbody>
<tr>
<td>Összesen</td>
<td></td>
</tr>
</tbody>
</table>

Gaztermelés energiája

<table>
<thead>
<tr>
<th>Villamos energia</th>
<th>Fűtés/hűtés</th>
<th>Csepp- és folyóvíz</th>
<th>Fűtőolaj</th>
<th>Dízel</th>
<th>Benzín</th>
<th>Lignit</th>
<th>Szén</th>
<th>Egyéb fosszilis</th>
<th>Növényi olaj</th>
<th>Bio-üzemanyag</th>
<th>Egyéb biomassza</th>
<th>Kápráj-energia</th>
<th>Gaztermelés energiája</th>
</tr>
</thead>
<tbody>
<tr>
<td>Összesen</td>
<td></td>
</tr>
</tbody>
</table>

Egyéb

<table>
<thead>
<tr>
<th>Villamos energia</th>
<th>Fűtés/hűtés</th>
<th>Csepp- és folyóvíz</th>
<th>Fűtőolaj</th>
<th>Dízel</th>
<th>Benzín</th>
<th>Lignit</th>
<th>Szén</th>
<th>Egyéb fosszilis</th>
<th>Növényi olaj</th>
<th>Bio-üzemanyag</th>
<th>Egyéb biomassza</th>
<th>Kápráj-energia</th>
<th>Gaztermelés energiája</th>
</tr>
</thead>
<tbody>
<tr>
<td>Összesen</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Villamos energia</th>
<th>Fűtés/hűtés</th>
<th>Csepp- és folyóvíz</th>
<th>Fűtőolaj</th>
<th>Dízel</th>
<th>Benzín</th>
<th>Lignit</th>
<th>Szén</th>
<th>Egyéb fosszilis</th>
<th>Növényi olaj</th>
<th>Bio-üzemanyag</th>
<th>Egyéb biomassza</th>
<th>Kápráj-energia</th>
<th>Gaztermelés energiája</th>
</tr>
</thead>
<tbody>
<tr>
<td>Összesen</td>
<td></td>
</tr>
</tbody>
</table>

Más energiagazdálkodásiak nem kapcsolódó ágazatok

<table>
<thead>
<tr>
<th>Villamos energia</th>
<th>Fűtés/hűtés</th>
<th>Csepp- és folyóvíz</th>
<th>Fűtőolaj</th>
<th>Dízel</th>
<th>Benzín</th>
<th>Lignit</th>
<th>Szén</th>
<th>Egyéb fosszilis</th>
<th>Növényi olaj</th>
<th>Bio-üzemanyag</th>
<th>Egyéb biomassza</th>
<th>Kápráj-energia</th>
<th>Gaztermelés energiája</th>
</tr>
</thead>
<tbody>
<tr>
<td>Összesen</td>
<td></td>
</tr>
<tr>
<td>Ágazat</td>
<td>Villamos energia</td>
<td>Fűtőkötés</td>
<td>Fűtőgáz</td>
<td>Csok. folyó gáz</td>
<td>Fűtőolaj</td>
<td>Dízel</td>
<td>Benzín</td>
<td>Língol</td>
<td>Szén</td>
<td>Egyéb fosszilis tüzelő-anyag</td>
<td>Növényi olaj</td>
<td>Bio- szennygáz</td>
<td>Egyéb biomassza</td>
</tr>
<tr>
<td>--------</td>
<td>----------------</td>
<td>-----------</td>
<td>---------</td>
<td>---------------</td>
<td>----------</td>
<td>-------</td>
<td>--------</td>
<td>-------</td>
<td>------</td>
<td>----------------------------</td>
<td>-------------</td>
<td>--------------</td>
<td>----------------</td>
</tr>
<tr>
<td>EPULÉTEK, BERÉZDÉSEK, ÉLETISMETLENÉK ÉS IPAR</td>
<td>239 947</td>
<td>61 954</td>
<td>201 169</td>
<td>229 5 091</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>27</td>
<td>242</td>
</tr>
<tr>
<td>Ökológiai élet</td>
<td>3 216 775</td>
<td>221 485</td>
<td>3 254 863</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leállítás</td>
<td>2 169 106</td>
<td>2 077 037</td>
<td>6 951 162</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>81 960</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Közlekedés</td>
<td>55 923</td>
<td>0</td>
<td>812</td>
<td>0</td>
<td>0</td>
<td>513</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Összesen</td>
<td></td>
</tr>
<tr>
<td>EGYÉB</td>
<td>1 138 244</td>
<td>313 005</td>
<td>1 160 437</td>
<td>35 033</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Összesen</td>
<td></td>
</tr>
</tbody>
</table>

VÉGSŐ ENERGIAFOGYASZTÁS (MWh)

- Villamos energia
- Fűtőkötés
- Fűtőgáz
- Csok. folyó gáz
- Fűtőolaj
- Dízel
- Benzín
- Língol
- Szén
- Egyéb fosszilis tüzelő-anyag
- Növényi olaj
- Bio- szennygáz
- Egyéb biomassza
- Naphő Vigyor
- Geotermikus energia
- Összesen

Centrala igazolás

- Az adatok igazolása: 2022. évi kibocsátás leltár
- További információk: IPCC, LCA (életciklus-szerkezetés)
- További adatok: tonna szén-dioxid, tonna szén-dioxid-egyenérték

A. Végző energiatablázat

B. Energiaelőírás

B1. Az önkormányzat által vásárolt hitelesített zöldarám

| Az önkormányzat által vásárolt hitelesített zöldarám | Vásárolt megújuló villamos energia [MWh] | Kiírásási tényező, szén-dioxid / szén-dioxid-

| természet | Kibocsátásai
| természeti | [MW] | [t/MWh] | természeti
szennyeződés	[MW]		
Szélenergia	132	0.000	0
Vízenergia	260	0.000	0
Fotovoltaikus berendezések	618 185	0.000	0
Geothermikus energia	0	0	0
ÖSSZESEN	619 589	0	

B2. Helyilegosztott villamosenergia-termelés (különböző megújuló energia)

| Helyi megújuló villamosenergia-termelői erőművek (ETS és nagyméretű erőművek > 20 MW nincsenek) | Termelt megújuló villamos energia [MW] | Kiírásási tényező természeti
szennyeződés	természeti		
Szélenergia	132	0.000	0
Vízenergia	260	0.000	0
Fotovoltaikus berendezések	618 185	0.000	0
Geothermikus energia	0	0	0
ÖSSZESEN	619 589	0	

B3. Helyilegosztott villamosenergia-termelés

<table>
<thead>
<tr>
<th>Helyi villamosenergia-termelői erőművek (ETS és nagyméretű erőművek > 20 MW nincsenek)</th>
<th>Energiahordozó-bevétel [MW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Helyi villamosenergia-termelői erőművek (ETS és nagyméretű erőművek > 20 MW nincsenek)</td>
<td>Energiahordozó-bevétel [MW]</td>
</tr>
</tbody>
</table>

B4. Fűtésészmények helyi biztosítása

<table>
<thead>
<tr>
<th>Helyi fűtésészmények</th>
<th>Kibocsátott fűtésészmény [MW]</th>
<th>Energiahordozó-bevétel [MW]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kibocsátott fűtésészmény [MW]</td>
<td>Energiahordozó-bevétel [MW]</td>
<td></td>
</tr>
</tbody>
</table>

234
C. Szén-dioxid-kibocsátás

C1. Kérjük, adja meg az erőfeszített szén-dioxid-kibocsátási tényezőket (TNEW):

<table>
<thead>
<tr>
<th>Villamos energia</th>
<th>Füstölőhűtős</th>
<th>Fűtőgáz</th>
<th>Csepp- folyós gáz</th>
<th>Fűtőolaj</th>
<th>Diesz</th>
<th>Benzin</th>
<th>Lignit</th>
<th>Szén</th>
<th>Egyéb füstölő</th>
<th>Növényi olaj</th>
<th>Bio- üzemanyag</th>
<th>Egyéb biomassza</th>
<th>Naphő- energia</th>
<th>Geothermikus energia</th>
</tr>
</thead>
<tbody>
<tr>
<td>BEI</td>
<td>0,230</td>
<td>0,230</td>
<td>0,183</td>
<td>0,202</td>
<td>0,231</td>
<td>0,267</td>
<td>0,267</td>
<td>0,249</td>
<td>0,364</td>
<td>0,346</td>
<td>0,403</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>MEI</td>
<td>0,230</td>
<td>0,230</td>
<td>0,147</td>
<td>0,202</td>
<td>0,231</td>
<td>0,267</td>
<td>0,267</td>
<td>0,249</td>
<td>0,364</td>
<td>0,346</td>
<td>0,603</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
</tbody>
</table>

C2. Kérjük, töltse ki, ha nem energiálánc közelső ágazatot is tartalmaz:

<table>
<thead>
<tr>
<th>Nem energiálánc közelső ágazatok</th>
<th>Kibocsátás, szén-dioxid-egyenérték [t]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hűtőkészülékek</td>
<td></td>
</tr>
<tr>
<td>Szennygázgazdálkodás</td>
<td></td>
</tr>
<tr>
<td>Vez. energiafogyasztók nem közelső ágazatok</td>
<td></td>
</tr>
</tbody>
</table>

Kibocsátásfaktor

<table>
<thead>
<tr>
<th>Agazat</th>
<th>Villamos energia</th>
<th>Fűtőhűtős</th>
<th>Fűtőgáz</th>
<th>Csepp- folyós gáz</th>
<th>Fűtőolaj</th>
<th>Diesz</th>
<th>Benzin</th>
<th>Lignit</th>
<th>Szén</th>
<th>Egyéb fűtőhűtős</th>
<th>Növényi olaj</th>
<th>Bio- üzemanyag</th>
<th>Egyéb biomassza</th>
<th>Naphő- energia</th>
<th>Geothermikus energia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Napénnyű (NEM ETS-eset)</td>
<td>261796</td>
<td>52422</td>
<td>254408</td>
<td>8285</td>
<td>2901</td>
<td>164</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>ETS (mért érték)</td>
<td>0</td>
</tr>
<tr>
<td>Értékelés</td>
<td>1576419</td>
<td>440066</td>
<td>233555</td>
<td>8145</td>
<td>2901</td>
<td>164</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

MÁS ENERGIAFOGYASZTÁSIHOZ NEM KAPCSOLÓDÓ ÁGAZATOK

<table>
<thead>
<tr>
<th>Ágazat</th>
<th>Villamos energia</th>
<th>Fűtőhűtős</th>
<th>Fűtőgáz</th>
<th>Csepp- folyós gáz</th>
<th>Fűtőolaj</th>
<th>Diesz</th>
<th>Benzin</th>
<th>Lignit</th>
<th>Szén</th>
<th>Egyéb fűtőhűtős</th>
<th>Növényi olaj</th>
<th>Bio- üzemanyag</th>
<th>Egyéb biomassza</th>
<th>Naphő- energia</th>
<th>Geothermikus energia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hűtőkészülékek</td>
<td>0</td>
</tr>
<tr>
<td>Szennygázgazdálkodás</td>
<td>0</td>
</tr>
<tr>
<td>Vez. energiafogyasztók nem közelső ágazatok</td>
<td>0</td>
</tr>
</tbody>
</table>

| Összesen | 1630352 | 446006 | 2344084 | 14312 | 2901 | 987779 | 788489 | 0 | 28356 | 0 | 0 | 0 | 0 | 0 | 0520940 |
A fejezet hivatkozásai

1 Mivel égési, energiaátalakulási folyamatok az élő szervezetekben is zajlanak, ezért az így keletkező szén-dioxid is hozzájárul a globális szintű CO₂-szint emelkedéséhez.
2 2089/2008 (12.18.) Főv. Kgy. határozat alapján
3 638/2021.(03.31.) Főv. Kgy. határozat
4 A villamos energiáról szóló 2007. évi LXXXVI. törvény 3. § 39. pont
5 Magyarország helyi önkormányzatairól szóló 2011. évi CLXXXIX. törvény 23. § (4) bekezdés 9. pont
7 A villamos energiáról szóló 2007. évi LXXXVI. törvény 34. § (6) bekezdés.
II.3. Közlekedés

A koronavírus-világjárvány elleni egyes védelmi intézkedések 2022. márciusi megszüntetésének hatására a mobilitási igények minden közlekedési alágazatban ismét növekedni kezdtek, továbbá ez a változás a mikromobilitási eszközök használata és a gyalogos közlekedés terén is érzékelhető volt. Ugyanakkor a pandémia hatása az utazási, helyváltoztatási szokásokon tavaly még mindig érezhető volt, de a 2020 és 2021-es éveknél már mérsékeltetben.

2021-ben az irányadónak tekinthető őszi adatorsor alapján a közlekedési módválasztási arány ismét kedvezőtlenül, a személygépjármű-használat irányába toltódott el, ugyanakkor ezek az eredmények nem alkalmazak az utazási szokások elemzésére, mert a pandémiai helyzet alapján változtatva meg az elmúlt években a mobilitási szokásokat. Ezért – a 2021-ben meghatározott értékek helyett – továbbra is a 2019-es modal split adatok tekinthetők mértékedőnak.

A Lánchíd felújításának idején a közúti forgalom leginkább az Erzsébet hídra és a Rákóczi hídra terelődött át, miközben a Szabadság híd forgalma mérséklődött. A híd 2022 decemberétől – akkor még ideiglenesen, kísérleti jelleggel – megnyitásra került a közösségi közlekedés járművei, a taxik, a motorkerékpárral és a kerékpárral közlekedők számára, 30 km/h sebességkorlátozás mellett.

A kerékpárt egyre többen napi rendszerességgel használják, ami kedvező a közlekedési eszközválasztás szempontjából is. A pandémia idején a kerékpárosok hatására kerékpárforgalom nagysága megnövekedett, majd az 2022-ben sem esett vissza a 2019 előtti szintre – a kerékpáros forgalom mértéke az elmúlt években lényegében nem változott.

Tavaly egyre gyakrabban vetették igénybe a felújított MOL Bubi szolgáltatást is, valamint a közösségi autóbérlés (carsharing) dinamikusan – az utazások távolsága egy év alatt a másfélszeresére – növekedett. Utóbbi szolgáltatásban közel fele-fele arányban vesznek részt tisztán elektromos (5E) meghajtású és Euro 6-os környezetvédelmi besorolású járművek.
A közlekedési jellemzők leírása, ismertetése

Forgalmi viszonyok

A fővárost kiszolgáló közúti főhálózat forgalmi terhelése a 2010-es évtized első felében évről évre mintegy 2%-ot – de a második felében is évente mintegy 1-1,5%-ot – növekedett.

A Belváros térségének közlekedését 2022-ben a Lánchíd felújítás miatti lezárása, az M3 metró rekonstrukciója és a hozzá kapcsolódó autóbuszos pótlásból adódó sávlezárások, a pesti alsó rakpart gyalogosok és kerékpárosok számára történő időszakos megnyitásai jellemzték. A belvárosi dunai átkelési lehetőség megszűnésevel a gépjárműforgalom átrendeződött, azonban az egyéb belvárosi közlekedési beavatkozások, forgalomkorlátozások miatt a forgalom egy része a szomszédos hidak helyett a külső, nagyobb kapacitású hidakon jelent meg, csökkentve ezzel a Belváros forgalmát.

A Lánchíd felújításának idején a közúti forgalom leginkább az Erzsébet hídra és a Rákóczi hídra terhelődött át, miközben a Szabadság híd forgalma mérséklődött. A forgalom átrendeződésére valószínűleg a Hegyalja úti buszsáv és az M3 metrópótlást elősegítő kiskörúti buszsáv kialakítása is hatással volt.

A Lánchíd 2022 decemberétől megnyitásra került – akkor ideiglenes, kísérleti jellegű forgalmi renddel– a közösségi közlekedés járművei, a taxik, a motorkerékpárral és a kerékpárral közlekedők számára, 30 km/órás sebességkorlátozás mellett. A gyalogosok 2023 augusztusától használhatják a hidat.

A bevezetett ideiglenes forgalmi rend hatására a hidat használó közösségi közlekedés az elmaradó torlódások hatására várhatóan kiszámíthatóbbá, így vonzóbbá válik. Továbbá a hidon való áthaladás a kerékpáros közlekedés számára is gyorsabb, illetve a gyalogosnak is biztonságosabb lesz, ami vonzóbbá teheti a modal split szempontjából kedvező eszközválasztásokat. Az egyéni gépjárműforgalom rekonstrukció előtti jelentős visszarendeződésére várhatóan már nem kell számítani.

Az agglomeráció felől érkező közúti forgalom a pandémiával kapcsolatos intézkedések hatására sem – ellentétben a közösségi közlekedésnél tapasztaltakkal – változott számottevően.

Az elmúlt években a közlekedési eszközváltást – illetve annak a forgalmi hálózatra gyakorolt hatásososztás-változását – főként a közúti forgalom csökkentését célzó forgalomtechnikai beavatkozások befolyásolták. Különösen a pesti alsó rakpart hétvégi, gyalogosok és kerékpározók előtti megnyitása, a Szentendrei út, a Vörösvári út és az Üllői út egyes szakaszain a megengedett sebesség csökkentése, valamint egyes összefüggő területegységek átfogó forgalomcsillapítása volt jelentősebb intézkedés.

Gépjárműállomány

A fővárosban a személygépjárművek száma 2013 óta folyamatosan emelkedik, a pandémia előtti időszakban ennek mértéke évről évre mintegy 2-4% közötti volt. Ez az intenzív növekedés 2020-tól – a járványhelyzethez kapcsolódó, a mobilitási igényeket és a kereskedelmet is érintő korlátozások ideje alatt – mérsékeldődött, de nem állt meg.

2021-ben – a korlátozó intézkedések részleges feloldását követően – a fővárosban a gépjárművek száma nagyobb mértékben emelkedett (1,78%-kal), mint a 2020-ban. A személygépkocsik száma 2022 végén 710.752 darab volt, ami 7.887 darabbal (1,12%-kal) több az előző événél. Megjegyzendő azonban, hogy a gépjárműveket nem feltétlenül a gépjárműhasználat jellemző helyén regisztrálják.

2. ábra: Budapesten regisztrált közúti közlekedési eszközök száma 2012 – 2022. között (Adatforrás: KSH)

A budapesti gépjárműállományt az elmúlt évtizedben a személygépkocsik öregedése jellemzette: a budapesti személygépkocsik átlagéletkora 2012 és 2022 között 11,0 évről 12,8 évre nőtt.

A fővárosban a járműállomány öregedése az országos átlagnál (2022-ben 15,4 év) kedvezőbb képet mutat: 2012 óta a gépkocsik életkora Budapesten 1,8 évvel, országos átlagban viszont 2,9 ével nőtt.
Gépjárművek környezetvédelmi besorolása

A gépjárművek környezetvédelmi tulajdonságát jelölő plakettek (matricák) helyett, azok megszüntetése után, 2016. január 1-jétől a közúti járművek forgalomba helyezésére vonatkozó miniszteri rendeletben első írt – valamint a forgalmi engedélyben is bejegyzett – környezetvédelmi osztályba sorolás kódjait indokolt figyelembe venni. E jogszabályi változás alapján a Főváros szmogriadó-tervéről szóló rendelet is módosult.

Az Építési és Közlekedési Minisztérium (ÉKM) adatszolgáltatása alapján a Budapest és környéke légszennyezettségi agglomeráció településein 2023 áprilisában üzemben tartott gépjárművek számát, a forgalmi engedélyükben bejegyzett környezetvédelmi osztályuk (V.9 kódja) szerint a 3. ábra szemlélteti.

Az üzemben tartott gépjárművek környezetvédelmi tulajdonságuk szerinti főbb változásai, a vizsgált 75 település rendelkezése álló 2015-ös, majd 2018-2023. közötti éves statisztikai adatai alapján a következőképp foglalhatók össze:

- a vizsgált gépjárműállomány száma 2023-ban 1.187.641 darab volt, ami 7%-kal nagyobb a 2021. évi adatokhoz képest, és 22%-kal haladja meg a 2015-ös, (972 ezer jármű) mennyiséget;
- az elmúlt években elsősorban a régibb, szennyezőbbek járművek száma csökkent, a viszonylag kedvezőbb üzembe helyezések növekménye mellett;
- az összes gépjármű közül dízelüzemű, vagy részben dízelüzemű (pl. a különböző híbridek, amelyek elektromos és dízelüzeműek is) a vizsgált gépjárművek 43,1%-a (474.998 db), ami 2,5%-os részarány növekedést jelent 2021-hez képest (40,6%); a hibrid és elektromos gépjárművek aránya jelenleg 2,2%-os (24.637 db), ami 2021-hez képest 160%-os növekedést jelent (2018-ban a számuk még csak 5.649 db volt);
A gépjármű-állomány növekedése és a kedvezőbb tulajdonságúak arányának növekedése eredményeképp indokolttá vált a korlátozás hatálya alá eső gépjárművek körének felülvizsgálata, mivel a Szmogriadóterv Rendelet változtatása nélkül a korlátozott gépjárművek aránya kevesebb, mint felére (40,8%-ra) csökkent volna. Ezért a Szmogriadóterv Rendelet 2022 júniusában – 2022. november 1-jei hatályba lépéssel – úgy szigorodott, hogy annak eredményeképp a budapesti szmogriadó riasztási – a fővárosi gépjármű-forgalom korlátozásával járó – fokozatában már az EURO 3-as benzinesek (ami megfelel a forgalmi engedély V.9 mezőbe jegyzett 6-os jelű kódnak) sem közlekedhetnek, és az EU EURO 5 és 6-féle kiadású gépjárművek érintésével a korlátozások 2023. áprilisában lépésével továbbra is biztosíthatóvá vált, hogy a korlátozott, kedvezőtlenebb környezetvédelmi tulajdonságú gépjárművek aránya a korábbi szintektől 5%-os csökkenésre csökkenjön.

Igazi légszennyezés előrejelzése szerint az új korlátozások érvényben lévő hatákon belül komoly légszennyezéssel jártak, az emellett elkötelezett intézkedések hatására 2023-ban az elsődleges légszennyezettségű agglomerációban származó légszennyezettség 5%-os csökkenését és a korlátozásokban szereplő mérsékelt légszennyezettség vízszintes csökkenését igazolták, így a korlátozások hatására a 2023. december 31-étől kezdődően a korlátozott gépjárművek alól a csúcsról csak az EU VI mesterséges és LPG gépjárművek maradnak.

A képet a 4. ábra szemlélteti, amely a körülbelül két évig tartó korlátozások hatására jelenleg létező gépjárművek összetételét mutatja.

1. ábra: A „Budapest és környéke légszennyezettségi agglomerációban” regisztrált járművek környezetvédelmi besorolásának megoszlása és a gépjárműveket érintő korlátozások 2023. áprilisi adatok alapján (Adatforrás: Építési és Közlekedési Minisztérium Között Gépjármű-közlekedési Hatósági Főosztály; saját számítás)

2. ábra: Az EU VI mesterséges és LPG gépjárművek összegyűjtése a fővárosi forgalom korlátozásai alapján

4. ábra: A „Budapest és környéke légszennyezettségi agglomerációban” regisztrált járművek számának trendje - Budapest és környéke légszennyezettségi agglomeráció 2019.01.01.-2023.04.01. (Adatforrás: Építési és Közlekedési Minisztérium Között Gépjármű-közlekedési Hatósági Főosztály; saját számítás)
A gépjármű hajtóanyagát (pl. benzin vagy gázolaj) a forgalmi engedély szintén tartalmazza (l. a P.3 jelű adatot). A különböző környezetvédelmi besorolású gépjárművel számának elmúlt 4 éves alakulását az alábbi diagramok tartalmazzák, a hajtóanyag szerinti bontásban.

A közösségi közlekedés járműállománya

A járműállomány megújítása érdekében 2022-ben már 66 db korszerű trolibusz üzemelt, valamint 20 alacsonypadlós CAF villamos opcionális megvásárlásáról született megállapodás, valamint további 135 új busz állt forgalomba.

A közúti közösségi közlekedés terén a 2012-ben elindított új autóbusz-üzemeltetési modellt a Fővárosi Önkormányzat lehetővé tette, hogy viszonylag gyorsan, nagyobb volumenben kerüljenek be a korszerű járművek a közszolgáltatásba.

A beszerzések eredményeképp 2018-ra mintegy 1.050 db (~650 db új korszerű, ~400 db használt alacsonypadlós) járművel újult meg az állomány. A bevont külső operátorok, valamint a BKV saját járműbeszerzéseinek köszönhetően az autóbuszok átlagéletkora 2013. évi 16,0 év rövidebbé vált, 2017-re mindössze négy év alatt 10,4 évre csökkent.

A 2019 és 2021 között forgalomba állított korszerű, Euro6-os környezetvédelmi besorolású, dízel motorral szerelt autóbuszokkal, valamint a 2022-ben érkezett 135 db Mercedes-Benz Conecto Next Generation autóbuszokkal megfelelően jártak az autóbuszok környezetterhelése is jelentősen csökkent. Az alacsonypadlós buszok aránya 2022 végére előre elérte a 100%-ot, az autóbuszok átlagéletkora 9,8 évre csökkent.

Jelenleg az autóbuszos közszolgáltatások több mint 30%-a külső szolgáltató bevonásával történik. A közbeszerzési tenderen kiválasztott operátorral együtt a járműpark környezetfrekvenciatételének jelentős csökkentése, az alacsonypadlós buszok aránya 2022 végére előre elérte a 100%-ot, az autóbuszok átlagéletkora pedig 9,8 évre csökkent.

Az alábbi táblázat és diagram a budapesti közösségi közlekedés autóbuszparkjának környezetvédelmi besorolását mutatja be.

<table>
<thead>
<tr>
<th>Környezetvédelmi besorolás</th>
<th>2021</th>
<th>2022</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euro 0</td>
<td>9 db</td>
<td>0 db</td>
</tr>
<tr>
<td>Euro 1</td>
<td>50 db</td>
<td>0 db</td>
</tr>
<tr>
<td>Euro 2</td>
<td>82 db</td>
<td>47 db</td>
</tr>
<tr>
<td>Euro 3</td>
<td>385 db</td>
<td>318 db</td>
</tr>
<tr>
<td>Euro 4</td>
<td>18 db</td>
<td>18 db</td>
</tr>
<tr>
<td>Euro 5</td>
<td>79 db</td>
<td>73 db</td>
</tr>
<tr>
<td>EEV</td>
<td>203 db</td>
<td>203 db</td>
</tr>
<tr>
<td>Euro 6</td>
<td>602 db</td>
<td>739 db</td>
</tr>
<tr>
<td>Elektromos</td>
<td>19 db</td>
<td>14 db</td>
</tr>
<tr>
<td>OSSZESEN</td>
<td>1447 db</td>
<td>1412 db</td>
</tr>
</tbody>
</table>

2. táblázat: A budapesti közösségi közlekedés autóbuszainak környezetvédelmi besorolása, 2021. (Adatforrás: BKK)

8. ábra: A budapesti közösségi közlekedés autóbuszainak megoszlása a környezetvédelmi besorolás szerint, 2021. (Adatforrás: BKK)

9. ábra: A budapesti közösségi közlekedés autóbuszainak változása a környezetvédelmi besorolás szerint 2012-2022. (Forrás: BKK)

A gyorsvasúti hálózaton közlekedő szerelvények közül az Alstom járművei a legkorszerűbbek, az M4 vonalon közlekedő járművek 8,8 évesek, míg az M2-es metró szerepvonala 10 éves értékre került sor. A vonalak utolsó, 2018-tól gyakorlatilag új, orosz gyártású, de korszerűtlen szerelvények kerültek forgalomba. Ebből következően az M3 metróvonalon közlekedő járművek átlagéletkora 5,1 év.

A gyorsvasúti hálózat fejlődése valóban eltérő üzemű és kapacitású Kisföldalatti vonalát is szokás a metróhálózat részeként említeni, az itt közlekedő 23 db szereplő átlagéletkora 48 év.

A villamos- és trolibusz-járműfejlesztési projekt keretében új villamosok, valamint trolibuszok álltak forgalomba és további járművek megrendelésére is sor került. A járműbeszerzések következtében Budapest teljes trolíhalózatán lényegesen megnőtt az akadálymentes szolgáltatás aránya.

A közúti vasúti (villamos) járműállomány 418 szerelvényből áll, a járművek átlagéletkora 35,4 év. A villamosok közül a 73 szerelvényből álló CAF flotta a legfiatalabb (kb. 5,4 év), míg a nagyokrútról ismert Combino villamosok már 16,4 évesek. A Tátra, valamint az ún. hajók garáznái villamosok átlagéletkorta meghaladja a 40, ill. a 45 évet, míg a Ganz csuklósok már több, mint 50 éve közlekednek a fővárosban.

Ezek mellett a járművekkel együtt a főváros trolibussz-vonalain összesen 141 db jármű (61 db szóló és 80 db csuklós trolibusz) szolgálja a közösségi közlekedést. A járművek átlagéletkora 16,4 év, azonban a trolibuszok közül 59 darab 20 évesnél idősebb.

A fővárosi közösségi közlekedési hálózat részét képezi a közforgalmú dunai vízi közlekedés is, azonban a 2019-es téli menetrend szerinti leállást követően a 2020-ban a pandémia miatt a szolgáltatás nem indult újra. A közszolgáltatás keretében működő menetrend szerinti vízi közlekedésben összesen 6 darab hajó vesz részt (jellemzően BKV 100, BKV 130 átkelőhajó, valamint 3011 típ. vízbussz), melyek közül összesen 4 db a BKV tulajdona, a többi járművet külső szolgáltatók üzemeltetik. A hajók átlagéletkora 44,0 év, a legfiatalabb 34, a legidősebb 59 éves.

<table>
<thead>
<tr>
<th>Járművek / szerelvények száma és átlagéletkora</th>
</tr>
</thead>
<tbody>
<tr>
<td>jármű / szerelvény</td>
</tr>
<tr>
<td>autóbusz</td>
</tr>
<tr>
<td>trolibusz</td>
</tr>
<tr>
<td>villamos (szerelvény)</td>
</tr>
<tr>
<td>metró (szerelvény)</td>
</tr>
<tr>
<td>hajó</td>
</tr>
</tbody>
</table>

A városi és elővárosi közlekedést is kiszolgáló HÉV vonalak járműállománya összesen 196 motorkocsiból és 98 pótkocsiból áll. A négy HÉV-vonalon közlekedő járművek átlagéletkora 46,6 év. A MÁV STRAT a budapesti elővárosi forgalomban összesen 472 darab járművet közlekedtet, melyek közül a legújabbak a Stadler emeletes villamos motorvonatai – ezek átlagosan egy évnél fiatalabbak, a legidősebbek 56 évükkel az ún. „fecske-Bhv”-k. A teljes elővárosi járműállomány átlagéletkora 36,6 év.

Az elővárosi közüti közlekedésben a Volánbusz Zrt. mintegy 160 darab 7,5 éves átlagéletkorú autóbuszt üzemeltet.

A Fővárosi Önkormányzat elkötelezett a közösségi közlekedésből eredő szennyezőanyagok csökkentése iránt, ennek érdekében a BKK olyan járműbeszerzési stratégiát készített, amelyben a szükséges járműcserék bemutatásán túl javaslatot fogalmaz meg a közösségi közlekedés dekarbonizációja, valamint a dízel buszok hosszú távú kivezetésére is.

Közlekedési módválasztás – modal split

A városi forgalom értékelésének fontos jellemzője az utazások különböző közlekedési módok közötti megoszlása (modal split). A közösségi közlekedés és az egyéb környezetbarát közlekedési módok, az aktiv- és mikromobilitási eszközök használatának részaránya a közlekedésből eredő károsanyag-kibocsátás – elsődlegesen a zajterhelés és a légszennyezés – szempontjából is meghatározó.

Budapesten az egyéni autóhasználat az utóbbi évtizedekben számottevően emelkedett, elsősorban a személygépjármű-ellátottság emelkedéséből, másodsorban az agglomeráción kétletelelők számának növekedéséből adódóan. A Budapesti Agglomerációs Vasúti Stratégia szerint az ingázók kétharmada autóval közlekedik. Annak ellenére, hogy a közlekedés fenntartható fejlesztésának céljai között az egyéni motorállapot közlekedés részarányának csökkentése kiemelt jelentőségű, a megtevett távolságok alapján a közösségi közlekedés és az aktiv közlekedési módok egyre kisebb arányban vesznek részt a mobilitási igények kiszolgálásában.

A fővárosi lakosság közlekedési szokásainak felmérésére a BKK Zrt. 2012 óta minden évben végez olyan felmérést, amelyben 1.000 db szerdai és 1.000 db szombati utazás lekérdezésével vizsgálja az utazások jellemző módválasztási arányát (modal split). 2021 októberében a korábbi mintanagyaktól eltérően a kutatás 5.000 fős mintavételén történt, így a 2021-es eredmények alapját a Budapesten és agglomerációban mért 5.278 fő 12.775 darab utazási adat adták. A hibahatár a 2021-es modal split eredmények esetében mindössze +/-1,35%.

Az utazások közlekedési módok közötti megoszlásának elemzése 2016-ig jellemzően kételemű – autós és közösségi közlekedés – volt, és az utazások száma alapján meghatározott értékek kerültek publikálásra. A nemzetközi irányelveknek megfelelően azonban 2017-től az utazási távolság alapú modal split alkalmazására került sor, amely értékek a városokat belüli, helyköznapi helyváltoztatásokra vonatkoznak.

A 2018. évi felülvizsgálat attért az utaskilométer, azaz az utazás távolságát is figyelembe vevő, és ezzel az utazási teljesítményt jobban kifejező mértékegység használatára. Emiatt 2018-tól a közlekedési módválasztás értékei eltérnek a korábban meghatározott adatsorok értékeitől.

A 2021 októberében elvégzett felmérés alapján az egyes közlekedési módok utazásszám alapú megoszlását a következő ábra mutatja.

11. ábra: A közlekedési módok utazásszám alapú megoszlása 2021-ben (forrás:BKK)

2021-ben az irányadónak tekinthető őszi adatsor alapján a közlekedési módválasztási arány ismét kedvezőtlenül, a személygépjármű-használat irányába toltott el. Ugyanakkor ezek az eredmények nem alkalmazsak az utazási szokások idősorának elemzésére, mivel a pandémiás helyzet alapjaiban változtatta meg az elmúlt években a mobilitási szokásokat.

Tekintettel arra, hogy 2022-ben nem történt modal-split felmérés, illetőleg a 2021-es kutatás is terhelt volt a járvány okozta korlátozások torzító hatásával, emiatt mind a 2022-es évre vonatkozóan, mind a 2021-ben meghatározott értékek helyett a 2019-es modal split adatok tekinthetők mértékadónak.

Torlódási index

A torlódási index azt mutatja meg, hogy közúton a terhelt állapotban vett átlagos utazási idő hány százalékkal hosszabbodik meg a szabadforgalmi áramláshoz képest.

Az indikátor Európa egyik vezető navigációs rendszerének – gyártója az amszterdami székhelyű TomTom NV publikált – adatai alapján kerül bemutatásra. (Az alapadatok a TomTom technológiáját alkalmazó navigációs eszközök, fedélzeti rendszerek és mobiltelefonok anonim felhasználói utazási jellemzői alapján kerültek meghatározásra.)

A COVID-19 járvány megjelenését követő kormányzati intézkedések jelentősen befolyásolták a mobilitási igényeket, amelyek elsősorban a 2020-as év forgalmi adataira voltak hatással. Emiatt a trendserű változások megállapításához viszonyítási alapként a pandémiát megelőző, 2019 évi adatokkal való összehasonlítás is szükséges.

Budapesten a torlódási index 2014-ben volt a legalacsonyabb (20%), melyet az azt követő két évben mérsékelt emelkedés jellemzett. A 2017 és 2019 közötti időszakban az utazások során elszenvedett időveszteség dinamikusan nőtt, 2019-ben már 37% volt. Ebben a személygépjármű-forgalom növekedése mellett valószínűsíthetően közre játszhattak a főváros legforgalmasabb metróvonalának felújításához kapcsolódó ideiglenes közúti forgalomkorlátozások is. 2020-ban a koronavírus-korlátozások alapvetően megváltoztatták a napi utazási szokásokat, a közúti forgalom nagysága az egész évre vonatkoztatva 27%-kal volt kevesebb, mint 2019-ben. Ez összességében a torlódási index 10 százalékpontos csökkenését eredményezte. 2021-ben a korlátozások enyhítése, majd feloldása következtében a gépjárműforgalom ismételten emelkedett, ami a magával vonta a torlódások növekedését is. A fővárosban mért 30%-os torlódási szint azt jelentette, hogy egy 30

12. ábra: A hasonló adottságú európai városok torlódási indexének 2011 – 2021. évi változása (Forrás: TOMTOM)

A felhasznált adatsorokat 2022-től a korábbiaktól eltérő struktúrában publikálja az adatgazda Tom-Tom NV, ezért a városi forgalom lefolyásának jellemzői ezek alkalmazásával kerülnek értékelésre.

Európában a nagyvárosok közül a legkedvezőbb (legkisebb utazási időveszteséget jelentő) forgalmi indexsel Bilbaon és Katowicén kívül három holland nagyváros (Hága, Rotterdam és Amsterdam) rendelkezik, ahol a 10 km megtételéhez szükséges utazási idő kevesebb, mint 13 perc. A rangsor másik végén London található (36 p 20 mp), valamint további hét olyan nagyváros (Dublin, Milánó, Bukarest, Párizs, Róma, Brüsszel és Torinó), ahol a 10 km megtétele több, mint 25 percig tart. Budapest ebben a rangsorban (a legkedvezőtlenebb, legnagyobb utazási idővel rendelkező London tekintve elsőnek) az 59 rangsorolt európai nagyváros közül a 16. helyet foglalja el, 21 perc 40 másodperces idővel, ami 20 másodperccel kisebb a 2021-ben mért adatoknál. A 15. helyen Bécs található (22 perc), a 17. a török Gaziantep (21 perc 10 mp.), míg a 18. Lyon, ahol a 10 km megtételéhez szükségessé idő 20 perc 40 mp.

2022-ben egy hétköznapi 10 kilométeres, optimálisan 15 perces utazás a délelőtti csúcstróba +11 perccel, míg délután +12 perccel hosszabb utazási időt igényelt.

A 15. helyen Bécs található (22 perc), a 17. a török Gaziantep (21 perc 10 mp.), míg a 18. Lyon, ahol a 10 km megtételéhez szükséges idő 20 perc 40 mp.

13. ábra: Utazási időveszteség a reggeli és a délutáni csúcstróba, 2022. (Forrás: TOMTOM®)
A BKK által közszétett adatok a forgalmi viszonyokat a torlódásmentes helyzetben, szabad forgalmi áramlásban elérhető ideális sebesség által meghatározott utazási időhöz képest a torlódásban eltöltött utazási időveszteséggel jellemzik.

11. ábra: A közúti torlódásokban eltöltött idő változása Budapest egyes kerületeiben 2022 és 2023 között (Forrás: BKK)

Az utazási időveszteség legnagyobb mértékű növekedése a délelőtti csúcsórában a XXII. kerületben (+42 mp), a II. kerületben (+29 mp) és a XVIII. kerületben (+25 mp) volt a legnagyobb, míg a délután a XII. kerület (+37 mp), a XII. kerület (+34 mp) és a XI. kerületet (+30 mp) mellett további hat kerületben érte el, vagy haladta meg a 20 másodpercet a torlódásban eltöltött idő növekedése.

Üzemanyag-felhasználás

Budapesten az elmúlt tíz évben (2013 és 2022 között) értékesített motorbenzin mennyisége mintegy 15 %-kal, 300 millió literről 344 millió literre, a gázolajé több, mint 17%-kal 315 millió literről 370 millió literre nőtt.(A Budapesten regisztrált, forgalomban lévő gépjárművek száma ez idő alatt mintegy 25%-kal lett több, 679 ezerről 847 ezerre emelkedett.) 2022-ben motorbenzinből 5,8 %-kal, gázolajból 1,2 %-kal fogyott több, mint a megelőző évben.

Az üzemanyag-fogyasztás mértékét jelentős mértékben befolyásolta, hogy a magyar kormány 2021 novemberében döntött arról, hogy befagyasztja az üzemanyagárakat, amelyek keretében a 95-ös benzin és a gázolaj kiskereskedelmi ára 480 Ft-os fogyasztói áron került rögzítésre. Ez a korlát 2022. február végétől a nagykereskedelmi árra is bevezetésre került. Ezt követően az országban csak a MOL szállított üzemanyagot a benzinkutaknak, így a szállítási kapacitáshiány miatt egyes benzinkutakon átmeneti készlethiány is előfordult. Az átmeneti intézkedés többször hosszabbítását követően 2022. december 31-ig maradt érvényben.

A fővárosi üzemanyagátolt állomásokon értékesített motorbenzin és gázolaj mennyisége adatainak változása viszonylag jól tükrözi a gépjárművek által megtett átlagos futástermelés mértéke alakulását, azonban az nem ismert, hogy a felhasználás hányad része tartozik a Budapest területén megvalósult gépjárműhasználathoz. Mivel ez a kérdés az ellenőrzés viszonylatban is megválaszolható (ami viszont összességében – egymást akár kiegyenlítve – már kisebb bizonytalanságot eredményez), így valószínűsíthetően a forgalmi viszonyok is az értékesített üzemanyag mennyiségéhez hasonlóan alakultak.
A 2009-2012 közötti időszakot jellemző mérsékelt gépjármű-használatot követően előbb a dízel-, majd a benzinüzemű járművek által felhasznált üzemanyag mennyisége ismét emelkedésnek indult, ami a benzin esetében egy visszafogottabb, míg a gázolajnál egy erőteljesebb felhasználás-növekedést eredményezett. Ez a tendencia 2013-tól 2019-ig tartott. Az ezt követő évben a koronavírus-járvány miatti korlátozások bevezetésével az utazások száma jelentősen csökkent, ami az értékesített üzemanyag mennyiségében is megmutatkozott, ez a benzin esetében 9,7%-os, a gázolajnál 12,8%-os visszaesést eredményezett. 2021-től a korlátozások feloldásával mind a benzín, mind a gázolaj esetében a felhasználás kismértékű (5-6%-os) emelkedése figyelhető meg, ez a dinamikus tendencia 2022-ben azonban csak a benzín esetében maradt meg (5,8%), a gázolaj felhasználás csak kis mértékben (+1,2%) emelkedett.

Elektromos meghajtású gépjárművek

A gépjárművek meghajtási módja szerint mind Budapesten, mind országosan a benzín-, illetve dízelüzemű gépkocsik túlsúlya a jellemző. Az elektromos meghajtású gépjárművek száma a fővárosban az elmúlt évben több, mint 40%-kal, 18.223 darabra emelkedett, így már megközelítette a teljes járműállomány 3,0%-át, amely 2022-ben 847.614 darab volt.

Magyarországon 2015 szeptemberétől vezették be a zöld rendszámat, amelyet a tisztán elektromos (5E környezetvédelmi osztályú), a növelt hatótávolságú külső töltésű hibrid elektromos (5N), a külső töltős hibrid elektromos (5P), valamint egyéb, nulla emissziós gépkocsik (5Z) kaphatnak. A zöld rendszámmal rendelkező gépjárművek száma 2022 decemberében Magyarországon 63.597 db volt, ez közül 50%-kal haladja meg a 2021. évi 42.633 darabos járműállományt. A zöldrendszámos autók mintegy 41%-át, 26.131 darabot Budapesten regisztrálták, melyből 7.908 darab 2022-ben állt forgalomba.

töltőberendezések adatait, így a töltőberendezések száma nagy valószínűséggel ennél magasabb.)

Az elektromos autók és a nyilvános töltőberendezések számának növekedésével (Budapesten az előző 7.908 darabnal, míg utóbbi 58 darabbal volt több, mint az előző évben) párhuzamosan a töltések száma mintegy 65 %-kal (!), 818.873 alkalomra, a vételezett töltési energia pedig közel 80 %-kal (!), 6.898 MWh-ra nőtt.

A közlekedésből származó környezetszennyezés

Agglomerációs forgalom, P+R parkolók

A budapesti városhatárt hétkóznap, kétirányban összesen több mint 1,2 milliónyian lépik át, melyből a személygépkocsival utazók száma mintegy 755 ezer főt tesz ki. A közösségi közlekedést naponta közel 447 ezer utas használja, melynek 45%-a vonattal, 11%-a HEV-vel, valamint 44%-a autóbuszal lépi át a városhatárt. A napi ingázóforgalom mintegy 78%-a irányul az agglomerációból Budapestre, míg 22%-a Budapestről az agglomeráció irányába.

Ennek eredményeképp Budapesten a 2022 év végén a kijelölt és kiépített P+R parkoló-férőhelyek száma 5.832 darab, amelyből fővárosi kezelésben (Fővárosi Önkormányzat, BKK, Budapest Közút, BKV) 3.722 parkolóhely van nyilvántartva, a fennmaradó 2.110 férőhelyet egyéb gazdasági szereplők, kerületi önkormányzatok stb. üzemeltetik.

A P+R parkolókhoz kapcsolódóan 43 helyszínen található a Fővárosi Önkormányzat tulajdonában lévő B+R parkoló, a férőhelyek száma 1.145 darab.

A fővárosban kiépített P+R parkolókon kívül a belvárosi kötöttpályás közlekedési kapcsolatot biztosító megállóhelyek térségében található bevásárlóközpontok, lakótelepek stb. területén is jelentős azon parkolóhelyek száma, amelyek napközben lényegében P+R funkcióit töltene be.

A személygépkocsival történő ingázó forgalom csökkentése érdekében nem a főváros területén, hanem elsősorban az agglomeráció településeinek szükséges az eszközváltást elősegítő P+R parkolók számának növelése. A főváros külső kerületeiben (az elővárosi és az átmeneti zóna területén) lévő P+R parkolóknak távlátban a város belső forgalmából adódó eszközváltási igényeket kellene szolgálniuk. A városhatárt átélő napi hivatásforgalomban esetében a közösségi közlekedés részarányának növelése a P+R parkolók és B+R tárolók fejlesztésén túl a vasútállomások térségének gyalogos és kerékpáros elérhetőségének javításával, valamint ráhordó autóbuszjáratokkal segíthető elő.
Kerékpáros közlekedés

A fővárosi kerékpárforgalmi fő- és alaphálózat komplex kerékpáros-barát fejlesztéseinek köszönhetően a kerékpárol közlekedők száma – mind a turisztika, mind a hivatásforgalom terén – folyamatosan növekszik. A kerékpáros infrastruktúra hálózata a Hungária körúti kerékpárút megvalósításával jelentősen bővült.

A BKK a fővárosi és a kerületi önkormányzatokkal együttműködve 2021-ben ún. Mobi-pontok hálózat létrehozásának előkészítésébe kezdett 2021-ben a belváros térségére kiterjedően.

A 2020/2021-es közösségi költségvetésből 2022-ben további 80 helyszínen létesültek kerékpártámaszok.

A főváros területén a kerékpárforgalmi főhálózat hossza 2010-ben 209 km volt, ami 2020. év végére 337 km-re bővült, több mint 61%-os növekedést jelent. Infrastrukturális beavatkozások nélkül kerékpározás-barátnak tekinthető a más módon kerékpározásra ki nem jelölt mellékúthálózaton kb. 1.900 km.

A főváros távlati, összesen 811 km hosszúságú kerékpáros főhálózatának jellemzése ún. „komfortszintek” alapján történik. Az 1-es szint a jó elvi kialakítású, jó állapotú létesítmény, az 5-ös szint pedig a jelenleg még kijelöletlen/kiépítetlen, nem létező infrastruktúra-elem.

Az elmúlt 20 évben Budapest belső területén a kerékpárforgalom nagysága kb. tízszeresére nőtt, a külső területeken ennél kisebb mértékben növekedett. A kerékpáros közlekedés fejlesztése megfelelő infrastruktúráis ellátottság esetén stratégiai eszköz a közlekedési igények kielégítésében és az eszközválasztás befolyásolásában, és ezzel jelentősen hozzájárulhat a fenntartható városi mobilitás kialakulásához.

A kerékpár egyre többen használják napi rendszerességgel közlekedési eszközként, ami az előkévetkező évekre nézve is kedvező a közlekedési eszközválasztás szempontjából.

Budapesten a különböző kerékpáros útvonalakon kihelyezett mérőeszközök folyamatosan mérik az áthaladók számát. A kerékpáros hálózaton hat helyszínen – a Múzeum körúton, az Andrássy úton, a Bem rakparton, az Árpád hídon, a Hungária körúton és a Weiss Manfréd úton – 2017 óta állnak rendelkezésre adatok a kerékpárok áthaladásáról.

15. ábra: A kerékpáratok hossza komfortszint alapján, 2022. (Adatforrás: BKK)
A Múzeum körút egy irányon mért forgalma a 2011. évhez képest már 2015-re több mint 60%-kal nőtt. Az ezt követő években a mérőpontokon tapasztalható forgalomcsökkenés a kerékpáros hálózat, valamint az alternatív útterv-választási lehetőségek bővülésével magyarázható, ez nem jelenti összességében a kerékpárforgalom volumenének hálózati szintű mérséklődését.

A 2020-as évben a mérőpontokon tapasztalható ismételt forgalomnövekedés a koronavírus-járványhoz kapcsolódó kormányzati intézkedések hatására bekövetkező közlekedési eszközválasztási szokások megváltozásával (közösségi közlekedés helyett kerékpár), valamint a belváros elérését biztosító útvonalakon az ideiglenes kerékpárútok kijelölésével magyarázható.

A vizsgált mérőállomások forgalmi adatai alapján a kerékpárral megjelent utazások számának az utóbbi évekre jellemző dinamikus növekedése megtorpant, 2022-ben azonban a négy állandó mérési helyszínen (Bem tér, Hungária krt., Weiss Manfréd út, Árpád híd) 1%-kal kevesebb áthaladást regisztráltak, mint az előző évben.

A forgalmi adatokból megfigyelhető, hogy a pandémia idején a korlátozások hatására megnövekedett forgalom nagysága a korlátozások feloldását követően, 2022-ben sem esett vissza az azt megelőző szintre, a kerékpáros forgalom volumene lényegében nem változott.
Mikromobilitás, közösségi járműmegosztás

A fővárosban az elmúlt években a MOL Bubi mellett számos közösségi megosztásban alapú kerékpár és egyéb mikromobilitási eszközök üzemeltetésével foglalkozó szolgáltató jelent meg (Donkey Republic, Lime, Bird, Tier stb., valamint 2023-ban várhatóan a Whoosh). A kerékpárokat és a mikromobilitási eszközöket a felhasználók főként a belváros térségében, a közösségi közlekedés alternatívájaként veszik igénybe. Szintén 2018-ban Budapesten indult el Magyarország első robogó megosztó rendszere, a Blinkee.city 50 db elektromos robogóval.

A MOL Bubi a budapesti közösségi közlekedés szerves része 2014 óta. A kerékpárber lések száma az indulás első évben mintegy 1.800 darab volt naponta, amely 2017-től folyamatosan csökken, 2019-ben már csak alig napi 1.000-nél több bérlet történt éves átlagban. 2020 novemberében a lejáró üz emeltetői szerződésével egyidejűleg a rendszer frissítése miatt a szolgáltatás ideiglenes felfüggesztésére került sor. Az új kerékpárokkal és applikációval visszatérő MOL Bubi 2.0 közbringarendszer 2021 májusától vehető igénybe. A szolgáltatás kezdetén belül ekkor 158 gyűjtőállomás és 1560 kerékpár üzemelt. 2022-ben 20 darab új Bubi állomás került átadásra, valamint 500 új kerékpár is forgalomba állt, ezzel a gyűjtőállomások száma 178-ra, a kerékpároké 2060 darabra emelkedett. Ezen felül 2022. tavaszán további öt „újgenerációs” gyűjtőállomás is létesült, amelyek a dokkolók helyett „hagyományos” kerékpártámaszokkal rendelkeznek, illetve a gyűjtőállomások mellett mikromobilitási pontok is elhelyezésre kerültek.

A MOL Bubival 2022-ben már több, mint 2 millió 900 ezer utazás történt, az összes megtett távolság pedig meghaladta a 5 millió 800 ezer kilométert.

17. ábra: A MOL Bubi állomások számának változása 2014-2022 között (forrás: bkk.hu)

A közösségi megosztásban alapuló kerékpár és egyéb mikromobilitási eszközök rendezett közterületi elhelyezhetősége, szabályozott felvétele és leadása érdekében a belső kerületek és a főváros együttműködésében 2022 végén már közel 640 mikromobilitási pont (Mobi-pont) működött a belső városrészeken. Az illetékes önkormányzatok döntése alapján a külső kerületközpontokban is lehetőség van mikromobilitási pontokra korlátozni a járművek parkolását.

Az e-roller használók csak mintegy negyedére jellemző, hogy autóról váltott mikromobilitási eszközre, azaz az e-rollerek főként a gyaloglást, kerékpározást, kerékpármegosztást és közösségi közlekedést váltják ki.

A városi közlekedési módok fajlagos szén-dioxid kibocsátásáról (gramm/utaskilométer) a Nemzetközi Közlekedési Fórum (ITF) készíttetett elemzést, amely szerint a városi közlekedésben elterjedt első generációs, megosztás-alapú e-roller a személyautós után a legszennyezőbb környezeti forma. Még egy plug-in híbrid vagy elektromos autóhoz képest sem környezetbarátabb, továbbá fajlagosan a közösségi közlekedésnél is lényegesen szennyezőbb.
Közösségi autómegosztás

A mikromobilitási eszközök mellett a fővárosban folyamatosan bővülnek a közösségi autóbérlo szolgáltatások (carsharing) kínálata is. A rendszer 2016-ban a GreenGo kizárólag elektromos meghajtású járműveivel indult, amelyhez 2018-ben csatlakozott a MOL-Limo és a Drive Now (Share Now) is.

2022-ben már közel 1.400 db, 2,0 év átlagkorú carsharing jármű közlekedett Budapesten (2021-ben 1.190 db). A közösségi autóbérlelés rendszerben a bérlések száma 2022-ben meghaladta a 1,5 milliót, a járművekkel megtett utazások hossza pedig a 21,7 millió kilométert.

A szolgáltatásban részt vevő járművek esetében a tisztán elektromos (5E) meghajtású járművek aránya nem érte el az 50%-ot (46%), a járművek nagyobb hányada (54%) Euro 6-os környezetvédelmi besorolással rendelkeztek. Ez az arány azonban az egyes szolgáltatóknál jelentősen eltérő.

Légiközlekedés

A Budapest Liszt Ferenc Nemzetközi Repülőtér (repülőtér) forgalma a MALÉV repülési tevékenységének felfüggesztése után részben a diszkont légitársaságok gyors térhódításának köszönhetően 2013-tól évről évre dinamikusan emelkedett. 2012-ben az érkező és induló utasok számát tekintve mindösszesen még „csak” 8,5 millió utas fordult meg a repülőtérien, addig 2019-ben már több mint 16 millió.

A COVID-19 járvány megjelenését követően az országhatárok lezárása gyakorlatilag a turizmus teljes megszűnését eredményezte, amelynek hatására a repülőtér utasforgalma 2020-ban 4 millió fő alá esett vissza. Ez 76%-os csökkenést jelent az előző évihez képest. Az utazási korlátozások enyhítésével, feloldásával 2021-től az utasforgalom ismét növekedésnek indult. 2022-ben a mintegy 12,2 millió utas már több mint háromszorosa a 2020-as forgalomnak, de még mindig kb.30%-kal elmarad a 2019-es adatoktól.
A repülőtérnek az utasforgalom mellett az árufuvarozás terén is jelentős a szerepe. A térség logisztikai fejlesztéseihez kapcsolódóan a pandémia időszakáig a légi áruszállítás volumene az utasforgalomhoz hasonlóan emelkedett, a cargo forgalom a 2012. évi 62 ezer tonnáról 2018-ra mintegy 100 ezer tonnára nőtt.

A pandémia a teherforgalom dinamikus növekedését ugyan megállította, de a visszaesés mértéke lényegesen alacsonyabb volt, mint az utasforgalom esetében. 2020-ban összesen mintegy 89 ezer tonna áru haladt át a budapesti repülőtéren, amely mintegy 7,0%-kal volt csak kevesebb a 2019-ben regisztrált mennyiségnél. Az ezt követő években a szállított áru mennyisége viszont már ismét emelkedett, 2022-ben a közel 134 ezer tonnára nőtt, mintegy 40%-kal volt magasabb, mint 2019-ben.

Megjegyzendő, hogy a repülőtér forgalmi adatait is publikáló bud.hu weblap (a Budapest Airport weboldala) alapján 2022-ben a áruszállítás volumene 194.000 tonna volt, ami közel másfélszerese az 2020-ban közzétett mennyiségnek.

Az utasforgalom, illetve a légi áruszállítás dinamikus növekedése a gépmozgások tekintetében is megmutatkozott, a fel- és leszállások száma 2012 és 2019 között 87.000-ről közel 123.000-re nőtt. Az utazási korlátozások bevezetése a repülőgépek forgalmában jelentős visszaesést eredményezett, 2020-ban az a gépmozgások száma mindössze 40%-a volt az előző évének. 2021-től a turistaforgalom ismét megjelenésével, valamint az légi áruszállítás jelentőségének folyamatos növekedésével a fel- és leszállások száma 2022-ben már több, mint a kétszerese volt a 2020. évi forgalmi adatoknak.

18. ábra: Budapest Liszt Ferenc Nemzetközi Repülőtér utas-
száМАNÁK változása 2012-2022 között (forrás: ksh.hu)

19. ábra: Budapest Liszt Ferenc Nemzetközi Repülőtér
áruszállításának változása 2012-
2022 között (forrás: ksh.hu)

20. ábra: Budapest Liszt Ferenc
Nemzetközi Repülőtér
gépmozgásainak változása 2012-
2022 között (forrás: ksh.hu)
A repülőtér üzemeltetési jogának 2005-ös privatizációjától, de különösen az utóbbi évtizedben egyre nagyobb mértékben növekszik annak működtetésével, forgalmával összefüggő – környezeti, elsősorban a zajterheléssel kapcsolatos – fővárosi lakossági panaszok száma, amelyek érezhetően csak a koronavírus pandémia időszakában csökkentek átmenetileg. Ezen zajpanaszok növekedése párhuzamosan követi a repülőtér utóbbi két évtizedben végrehajtott fejlesztéseit, amelyek – a személyszállító repülőgépek le- és felszállási és az azokhoz kapcsolódó földi műveleteinek től – már a légi teherforgalom (cargo) műveletekhez, illetve a repülőgépek szervízszolgáltatási tevékenységeihez is köthetők.

A repülőtér működésével, elsősorban a lakossági zajterheléssel kapcsolatos fővárosi panaszok megoldása érdekében a vonatkozó jogszabályok részletes ismertetését, a jogi helyzet értékelését, valamint azok módosítására tett fővárosi intézkedési javaslatokat az I.7. Zajterhelés című fejezet tartalmazza.
A budapestiek véleménye a közlekedésről

A budapesti lakosok 45%-a az utazásai során leggyakrabban közösségi közlekedést használ (az utasok 24%-a kötöttpályás közlekedési eszköz, 21%-a autóbuszt), míg 39%-a számára a személyautó az elődleges közlekedési eszköz, a mikromobilitási eszközök jelentősége még mindig kicsi (4%).

Kedvező, hogy a felnőtt lakosság 27%-a szokott valamilyen gyakorisággal kerékpárral vagy rollerrel közlekedni, ugyanakkor a városban élő felnőttek 12%-a csak autóval közlekedik.

![Diagram](image-url)

21. ábra: Közlekedési szokások Budapesten, % (forrás: MEDIÁN, 2021)

A Budapesten élők 47 százaléka kevesebb időt töltött utazással a járvány alatti rendkívüli jogrend idején. Az érettségizettek és diplomások az átlagosnál magasabb arányban tudtak (legalább részben) otthonról dolgozni, így esetükben jellemzőbb, hogy csökkent a közlekedéssel töltött idő. A szakmunkás végzettségűek körében csak 27 százalék azok aránya, akik kevesebbet utaztak.

A fiatalok 65%-a utazott kevesebbet a korábbinál; ez a magas arány valószínűleg az egyetemek és a szórakozó helyek bezárásának eredménye.
A főváros lakosságának több mint fele érzékeli úgy, hogy lakóhelyén több az autó, mint a parkolóhely. A pesti kertvárosok kivételével ez minden lakóövezetben jellemző, a történeti belvárosban ezen belül is kiemelkedő probléma.

2021 óta összegében valamelyest javult a helyzet, de ez a kertvárosokban történt, nem a problémás területeken.

Az ott lakók (a korlátozott várakozási övezetben lakók) számára biztosított parkolási kedvezményt a válaszadók alapján, a lakosság háromnegyede meg szeretné tartani annak ismeretében is, hogy ezáltal az autóval rendelkezők évente milliós nagysággrendű őnkormányzati támogatást kapnak, míg azokban a lakásokban lakók, ahova nem regisztráltak autót nem részesülnek – elsősorban mobilitási igényüket támogató – juttatásban. Mindezt annak ellenére, hogy az utóbbi csoport társadalmilag kedvezőbb mobilitási gyakorlatot alkalmaz, míg az autót fenntartók környezetvédelmi, egészségügyi, társadalmi szempontból károsabb.
Az autósok által okozott teher, kár társadalmi költsége az állami ellátórendszereket terheli, az érintett önkormányzatok – a jelentősen szűkölő forrásait mellett – ezt a káros folyamatot ráadásul pénzügyileg jelentősen támogatják.

25. ábra: A lakosság véleménye a parkolási kedvezmény mértékéről, % (forrás: MEDIÁN, 2022.)

26. ábra: A lakóknak járó parkolási kedvezmény megítélésének változása, % (forrás: MEDIÁN, 2021-2022.)

Mindössze 11 százalék szeretné, ha többet fizetnének az ott lakók, ők viszont jelentősebb emelést is szívesen látanak: 23 százalékuk szerint a jelenlegi parkolási díj háromszorosa is elfogadható lenne. Ez jelentősen, 16 százalékponttal alacsonyabb a 2021-ben mérténél. Még azok körében is több mint két harmad támogatja a parkolási kedvezmény fennmaradását, akiknek nincs autójuk.

27. ábra: A parkolással és dugódíjjal kapcsolatos javaslatok megítélésének változása, % (forrás: MEDIÁN, 2021-2022.)
28. ábra: Javaslatok megítélése: parkolási kedvezményt kapjanak azok a gépjárművek, amelyek a forgalmi engedélyben látható adatok alapján kevésbé terhelik a környezetet, % (forrás: MEDIÁN, 2022.)

29. ábra: Javaslatok megítélése: egy lakáshoz csak egy autó után járjon kedvezményes parkolási engedély, % (forrás: MEDIÁN, 2022.)

30. ábra: Javaslatok megítélése: egy forgalomkorlátozott területre az ott lakókon kívül csak behajtási díj, „dugódíj” fejében hajthassanak be az autók, % (forrás: MEDIÁN, 2022.)
A budapestiek többsége nem szeretné, ha a Józsefváros mintájára máshol is bevezetnének 18-30 ezer forintos parkolási díjat a helyben lakók számára. A javaslatot a fővárosiak csupán egynegyede támogatja.

Valamivel elfogadóbbak a tervvel szemben a fiatalok és a diplomások, de ezekben a csoportokban is azok vannak többségben, akik ellenzik a lépést.

A város különböző övezeteiben lakók közül a történeti belvárosban élők támogatják legnagyobb arányban a kezdeményezést (37 százalék), őket a budai kertvárosi övezet lakói követik (31 százalék) jelezve, hogy a kérés megítélését minden bizonyos erősebben meghatározzák az emberek anyagi lehetőségei, mint a könyök parkolási helyzete.

A budai kertvárosokhoz hasonlóan jellemzően nem fizetős zónához tartozó lakótelepek és pesti kertvárosi övezetek lakossága a leginkább elutasító a helyben élőket érintő parkolási díjak bevezetésével kapcsolatban.

Az egy lakáshoz tartozó kedvezményes parkolási díj korlátozását – miszerint egy lakáshoz legfeljebb kettő autóra legyen kérhető kedvezményes parkolási díj - a kimagasló többség támogatja. A mintába 44 olyan válaszadó került, akinek a háztartásában kettőnél több autó van. Ennek a csoportnak a többsége (79 százalék) ért egyet a javaslattal, vagyis még az érintettek körében is többségben vannak a támogatói.

31. ábra: A kerületben lakók számára 18-30 ezer forintos éves parkolási díj bevezetésének megítélése, % (forrás: MEDIÁN, 2023.)

<table>
<thead>
<tr>
<th>Övezet</th>
<th>Értékelés</th>
<th>MINTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>történelmi belváros</td>
<td>37</td>
<td>54</td>
</tr>
<tr>
<td>belváros költő zártársorú</td>
<td>27</td>
<td>59</td>
</tr>
<tr>
<td>lakótelepek</td>
<td>20</td>
<td>70</td>
</tr>
<tr>
<td>budai kertváros</td>
<td>31</td>
<td>50</td>
</tr>
<tr>
<td>pesti kertváros</td>
<td>20</td>
<td>64</td>
</tr>
<tr>
<td>nincs</td>
<td>25</td>
<td>55</td>
</tr>
<tr>
<td>egy</td>
<td>24</td>
<td>68</td>
</tr>
<tr>
<td>kettő vagy több</td>
<td>24</td>
<td>61</td>
</tr>
<tr>
<td>naponta, szinte minden nap</td>
<td>18</td>
<td>71</td>
</tr>
<tr>
<td>hetente többzsőr</td>
<td>32</td>
<td>60</td>
</tr>
<tr>
<td>hetente egyszer-kétszer</td>
<td>30</td>
<td>64</td>
</tr>
<tr>
<td>ritkábban</td>
<td>31</td>
<td>57</td>
</tr>
</tbody>
</table>

32. ábra: Vélemények az egy lakáshoz tartozó kedvezményes parkolási díj korlátozásáról, % (forrás: MEDIÁN, 2023.)

<table>
<thead>
<tr>
<th>Övezet</th>
<th>Értékelés</th>
<th>MINTA</th>
</tr>
</thead>
<tbody>
<tr>
<td>történelmi belváros</td>
<td>83</td>
<td>14</td>
</tr>
<tr>
<td>belváros költő zártársorú</td>
<td>81</td>
<td>17</td>
</tr>
<tr>
<td>lakótelepek</td>
<td>85</td>
<td>12</td>
</tr>
<tr>
<td>budai kertváros</td>
<td>87</td>
<td>8</td>
</tr>
<tr>
<td>pesti kertváros</td>
<td>81</td>
<td>15</td>
</tr>
<tr>
<td>nincs</td>
<td>82</td>
<td>12</td>
</tr>
<tr>
<td>egy</td>
<td>85</td>
<td>12</td>
</tr>
<tr>
<td>kettő vagy több</td>
<td>79</td>
<td>10</td>
</tr>
<tr>
<td>naponta, szinte minden nap</td>
<td>81</td>
<td>17</td>
</tr>
<tr>
<td>hetente többzsőr</td>
<td>89</td>
<td>7</td>
</tr>
<tr>
<td>hetente egyszer-kétszer</td>
<td>86</td>
<td>12</td>
</tr>
<tr>
<td>ritkábban</td>
<td>82</td>
<td>15</td>
</tr>
</tbody>
</table>
A 2022-es felmérés részletesen foglalkozik az agglomerációs kérdéskörrel, a Budapestről költözők majdani utazási szokásaival, illetve az agglomerációs napi hivatásforgalom gyakoriságával, irányával és a közlekedési eszközválasztással.

A budapestiek 12%-a biztosan, 21%-a valószínűleg elköltözik a mostani lakóhelyéről a következő 5 évben. A költőzök négytizede Budapesten marad.

A költözők négytizede Budapesten marad.

A lakóhelyet változtatók bő harmada Budapesthez közeli településre szeretne költözni.

Ha ezt a számot a teljes fővárosi népességre vetítjük, kiderül, hogy a város lakosságának tizede az agglomerációba szándékozik költözni a következő 5 évben.

A Budapestről kiköltözők egyharmada fog autóval vagy robogóval járni a budapesti munkahelyére és 4 százalék azok aránya, akik csak így fognak közlekedni, tehát valószínűleg minden nap megteszik az utat. A városon kívülről költőzô családok 28 százaléka egyénül több autót fog használni. (Lásd még II.10. Társadalom c. fejezet)

A kiköltözők közlekedési törveit a teljes fővárosi népességre vetítve azt várhatjuk, hogy a fővárosi lakosság 5 százaléka a jövőben a városon kívülről autóval fog bejárnai, 4 százalék fogja kiköltözése után használni az elővárosi közösségi közlekedési módokat és 1 százalék fogja keresni a P+R lehetőségeket.

Az agglomerációba 1990 után költözök 59 százaléka betette többször ingázik más településre. Az átlagosnál jellemzőbb az ingázás a férfiakra és az legalább szakmunkás végzettségűkre. (A legkevésbé képzett réteg jelentős részben idősekből áll, ezért is kevésbé jellemző rájuk az ingázás).

Az ingázás legnagyobb részt Budapestre irányul, a vizsgált népesség 49 százaléka betette többször közlekedik Budapestre.
A legjellemzőbb ingázási ok a munka és a tanulás, de – főleg a másodlagos okokat is vizsgálva – igen jelentős azok aránya, akik vásárolni és a szórakozni is a fővárosba járnak. A teljes népesség arányában az ingázók 49%-a munka vagy tanulás, 33%-a vásárlás, 29%-a szórakozás és a társasági élet miatt jönnek Budapestre.

Az elmúlt öt évben az ingázás mértéke némileg csökkent (31 százalék öt évvel ezelőtt gyakrabban ingázott), az autóhasználat azonban kimutathatóan nőtt a vizsgált népességben. 56 százalékra nőtt azok aránya, akiknek a legjellemzőbb közlekedési eszköze az autó, valamint 89 százalékra nőtt azok aránya, akik használnak autót.

Az közlekedési mód megváltozásában általában személyes okok és a munkaviszonyban történt változások játszanzák szerepet, emellett jellemző a kényelem és az utazással történt idő csökkentésének célja. A környezettudatosság mindössze 16 százalékánál játszik fontos szerepet. Az új autóhasználók (öt évvel ezelőtt nem autóval jártak, most viszont igen) közel fele az elmúlt öt évben költözött ki, az autóhasználat tehát részben ettől nőtt meg.

34. ábra: Az utazások célja az ingázóknál azok körében, akik legalább havonta néhányszor utaznak, % (forrás: MEDIÁN, 2022.)

35. ábra: Hogyan közlekednek elősorban az agglomerációban élők, % (forrás: MEDIÁN, 2022.)

36. ábra: A közlekedési szokások változásának oka, % (forrás: MEDIÁN, 2022.)
Az autózók közel harmada használ P+R parkolót rendszeresen, ők jellemzően Budapesten belül teszik le az autót. 7 százalék nem tud ilyen szolgáltatást használni, mert általában nem talál szabad helyet. A régebben kiköltözők és az agglomeração déli településein élők az átlagosnál magasabb arányban használnak budapesti P+R parkolókat.

37. ábra: A P+R parkolók használata az autóhasználók körében, % (forrás: MEDIÁN, 2022.)
A távlati forgalomfejlődési irányszámok 15 éves időtávlatra a mobilitási igény és a futásteljesítmény 15-20%-os növekedését vetítik előre, ehhez társul továbbá a főváros gazdasági fejlődéséhez kapcsolódóan az egyes körzetekben megjelenő többletforgalom, valamint a közúthálózat elemeit érintő forgalmi átrendeződés is.

A gépjárműállomány és a futásteljesítmény növekedése a már jelenleg is túlterhelő útvonalakon, valamint a közúti közlekedés által nem, vagy alig érintett városrészeken nem lesz jelentős, míg a város gazdaságlag fejlődő területein a változás a közutak kapacitásának kimerüléséig növekszik, és átterjed az eddig kisebb forgalmú utakra. Gyakorlatilag ezen a ponton kapcsolódik a közlekedéstervezés és a közúthálózat fejlesztése a lakott területek légszennyezés csökkenési törekvéseihez.

A veszélyhelyzetet követő időszakra a trendek az egyéni motorizált közlekedés arányának további növekedését vetítik előre, amelyet a közösségi közlekedést, valamint az aktiv- és mikromobilitást támogató intézkedések tudnak ellensúlyozni. Az aktív és fenntartható közlekedési módok tényerősejéhez rövid távon is eredménnyel járó (quick-win pilot) projektek és mintafejlesztési lehetőségek is szükségesek.

● Az elmúlt két évig azonos fontos közúti elem megvalósítása, illetve rekonstrukciója jelentőséggel átalakította a forgalom hálózaton történő eloszlását (pl. Megyeri híd megépítése, M0 keleti szektor megvalósítása, Andor utca szélesítése stb.), azonban a közeljövőben elsősorban a belvárosi és kerületközponti forgalomcsillapítások, valamint a kerékpáros infrastruktúra fejlesztése jellemzette a közlekedéstervezési területen.

● 2021-ben megkezdődtek a pesti belvárosi Duna-part Kossuth tér – Fővám tér közötti szakaszának megújításának és a budai belvárosi Duna-part megújításának tervezése munkái.

● Befejeződtek a Széchenyi Lánchíd felújításának kivitelezési munkái, a 2022 decembertől alkalmazott kísérleti új forgalmi rend tapasztalatai alapján annak alkalmazásáról a Budapesti Lakógyűlés döntött8.

● A Széchenyi Lánchídhoz kapcsolódó közterületek rekonstrukciójának és fejlesztésének tervezése is folyamatban van. Megvalósult a Blaha Lujza tér rekonstrukciója (2022).

● Folyamatban vannak a Szilágyi Erzsébet fasor, továbbá a IX. ker. Mester utca (Ferenc körút – Haller utca) felújításának tervezési munkái (2022).

● A közösségi közlekedés átszervezése (villamos pályák felújítása, autóbusz-hálózat átszervezése, új közösségi közlekedési járművek) keretében Az új buszüzemeltetési modell eredményeképp a járműpark fiatalodott, a környezeterhelés jelentősen csökkent, az alacsonypadlós buszok aránya 2022 végén megközelítette a 100%-ot.

● Szennyező gépjárművek fokozatos visszaszorítása a városi közlekedésben: 2022. IV. negyedévében állt forgalomba a BKV-nél 35 db saját tulajdonú (22 szóló, 13 csuklós) és 100 db bérelt (50 szóló, 50 csuklós) autóbusz, mellyel párhuzamosan régi, nagyfogyasztású járművek kerültek ki a forgalomból.

● Átadták az M4 metróvonal Kelenföld vasútállomás és Keleti pályaudvar közötti 7,34 km hosszú szakaszát.

Az 1-es, és 3-as villamosok, valamint a 17-es villamos pályáját felújították, megépült a budai fonódó villamos Bem rakparti és Széll Kálmán térí ága, megtörnt a Széll Kálmán tér rekonstrukciója.

Az 1-es villamos vonalát meghosszabbították a Fehérvári útig, majd az Etele térig.

Az 1-es villamosvonal megújulóhelyei akadálymentesítése (2022).

Megvalósult a trolibusz felsővezeték hálózat és áramellátás fejlesztése a Baross utca – Úllói út – Kávóc tér nyomvonalon (2022).

Lehívásra került 20 db alacsonypadlós CAF villamos (2022).

Forrás rendelkezésre állása esetén 2022. II. félévben további 31 db alacsonypadlós CAF villamos megrendelése

A közösségi közlekedés használatának összszámolásának érdekelése érdekében 2021 szeptemberétől a 14 éven aluliak a közösségi közlekedési eszközöket ingyenesen vehetik igénybe.

A közösségi közlekedés utasforgalma lényegesen elmaradt még 2021-ben is a járványhelyzettel járó korlátozások miatt 2019-hez képest.

A kerékpáros infrastruktúra hálózata a nagykörútú, a Bartók Béla úti és az Úllói úti kerékpárútjainak kijelölésével, valamint a Hungária körútú kerékpárút megvalósításával jelentősen bővült.

2021-ben az év végéig 41 új MOL-Bubi gyűjtőállomás került telepítésre.

MOL Bubi közbringa rendszer bővítésére került sor 2022. I. félévben a VIII. kerület és a XI. kerületben.

A MOL Bubi rendszer bővítése Budapest I. és XIV. kerületében (2022. előkészítés alatt).

Az EuroVelo6 és EuroVelo14 nemzetközi kerékpár-útvonalak fejlesztésének tervezési és engedélyezési munkái folyamatban vannak.

Először fővárosi bringasztráda-hálózat létesítése (Kerékpáros útvonalak kialakítása a legfontosabb útvonalakon: Úllói út, Váci út, Andrásy út, Kerepesi út, Thököly út, Nagykörút, Kiskörút – 2022-ben előkészítés alatt).

2022-ben megkezdődtek a VEKOP program keretében a közlekedésfejlesztési és kerékpárosbarát intézkedések kivitelezési munkái az alábbi kerületekben: X., XV., XIX., XX.
Közlekedés

- Közlekedésfejlesztési és kerékpárosbarát intézkedések az alábbi kerületekben van 2022-ben előkészítsés alatt (kvitelezési feladatok közbeszerzés alatt): III., XIII., XI., XIV., XVII. (VEKOP)
- 2022-ben megkezdődött az M3 metróvonalhoz kapcsolódó gyalogos aluljáró rekonstrukciója (Határ út).
- A kerékpározás népszerűsítése érdekében kampányok lebonyolítása (Bringás reggeli, Bringázz a munkába kampány stb.)
- Válts közösségi közlekedésre! – Az autóval közlekedők átültetése a közösségi közlekedéssel, pl.: busz sávok használata busszal; a havi-bérlét nem emelkedik, de az üzemanyag igen; bármennyit utazhat ugyan azon az áron havi-bérlettel (2022).
- MOL Bubi: tavaszi imáz s kampány - vedd lazán a várost, tekerj MOL Bubival; edukációs kampány - figyeljünk egymásra az utakon (2022).
- Ón viszlek el! – Járművezetői kampány (2022).

2020-ban a Fővárosi Önkormányzat a kerületekkel együttműködésben 15 helyszínén mintaprojekteteket hajtott végre a közlekedésbiztonság, valamint a forgalomcsillapítás növelése érdekében. A mintaprojektetek célja, hogy megismerjék az emberek véleményét és az eredmények alapján meghatározzák a hosszú távú terveket, a jelenlegi nagy gépjárműforgalomból adódó zajterhelés csökkentésére vonatkozóan is. Az eredmények alapján a konkrét intézkedések bevezetésére ütemezetlen kerül sor:

- a pesti alsó rakpart Margit híd és a Szabadság híd között szakaszának hétvégé megnyitása, autóforgalom előtti lezárása;
- a III. kerületben a Szentendrei és a Vörösvári út lakóterületek áthaladó szakaszán a megengedett sebesség csökkentése, 60-ról 50 kilométer/órára;
- az V. kerületi Szabadság téméül az átmenő forgalom szabályozása;
- a VI. és VII. kerületet érintően a Kazinczy utca teljes hosszábán és a Király utca Károly körút felé eső részének sétálóutcává alakítása, Belső-Erzsébetváros átfogó forgalomcsillapítása;
- a IX. és X. kerületet érintően az Üllői út Könyves Kálmán körút és a Határ út közötti, lakóterületek mentén haladó szakaszain a megengedett sebesség csökkentése, 60-ról 50 kilométer/órára;
- Belső-Ferencváros átfogó forgalomcsillapítása;
- a XI. kerületi Bartók Béla út és Budafoki út térségének átfogó forgalomcsillapítása.

Az elmúlt években a kerékpárral közlekedők száma – mind a turisztika, mind a hivatalosforgalom terén – folyamatosan növekszik, köszönhetően a fővárosi kerékpárforgalmi főhálozat, valamint az alaphálózat komplex kerékpáros-barát fejlesztéseinek.

Elkészült a Fővárosi Önkormányzat munkahelyi mobilitási terve, elkészült a Budapesti Mobilitási Terv társadalmi egyeztetésre alkalmas felülvizsgálati anyaga, számos egyéb ügyféloldali és akadálymentes közlekedést szolgáló fejlesztés valósult meg (2022).

A forgalmi modell alkalmazása az alábbi előnyökkel járhat:

- a fővárosi közlekedés-fejlesztési projektek módszertana egységessé és áttekinthetővé válik, a becsült forgalmak és az erre alapuló költség-haszon elemzések szakmailag megalapozott adatokra támaszkodhatnak;
- az egyes közlekedésfejlesztési feladatoknál ugyanaz a „bázismodell” szolgál a forgalmi előre becslések alapjául, így a vizsgálatból kapott adatok visszacsatolhatók és összehasonlíthatók lesznek;
- a hosszú távú közlekedésstratégiai tervezés során biztosítottá válik a fejlesztések egymásra gyakorolt hatásának figyelembevétele, és ezáltal olyan beruházások valósuljanak meg, amelyek mind költséghatékonyság és megtérülés, mind az infrastruktúra-hálózat, illetve környezetvédelem szempontjából összességében a legelőnyösebbek a főváros és az agglomeráció számára;
- távlattal a bázismodellen alapuló városi forgalomrendszert rendszer hozható létre, amely a közlekedési rendszer jelenleginél hatékonyabb szervezését biztosítja;
- a FLOW H2020 kutatás-fejlesztési projekt keretein belül továbbfejlesztett kerékpáros réteg segítségével a kerékpáros infrastrukturális beruházások hatásai is vizsgálhatók.
További javasolt feladatok

A környezeti zaj- és levegőszennyezés csökkentése érdekében javasolható további feladatok, lehetőségek:

- a gépjármű-forgalom és a megengedett sebesség csökkentése, a forgalom folyamatosságának biztosítása;
- közlekedésszervezési intézkedések, sebességkorlátozott Tempo 30 és lakó-pihenő övezetek kialakítása;
- a közösségi közlekedés részarányának növelése;
- az alternatív üzemanyagokat árusító töltőállomások elterjedésének elősegítése;
- a közösségi közlekedésben részt vevő járművek emissziójának csökkentése, az Euro 0-s, valamint az EURO I. és EURO II. járművek, autóbuszok forgalomból való kivonása (2022-ben megvalósult);
- a biztonságos kerékpáros közlekedés feltételeinek megteremtése;
- a közbringa-rendszer területi lefedettségének bővítése;
- a P+R parkolók – elsősorban az agglomeráció területén történő – folyamatos bővítésének támogatása az átszállási kapcsolatok fejlesztése, minőségi kialakítása;
- az utak pormentesítése (burkolt utak folyamatos karbantartása, takarítása, tisztán tartása);
- a lakossági zajérzetettség-változás tervezési szakaszban történő előzetes meghatározása, majd költséghatékony műszaki intézkedési javaslatok optimalizálása a közlekedésfejlesztési beruházások, forgalomszervezési intézkedések előkészítése során;
- a terület-felhasználás, a területrendezés és az úthálózat-fejlesztés összhangjának megteremtése.

A II.9. Környezeti nevelés, tájékoztatás, szemléletformálás című fejezetben is megfogalmazásra került annak megfontolása, hogy a Fővárosi Önkormányzat saját hatáskörébe tartozó, társadalmi értékeresetével nem járó tevékenységek működtetési feltételeit, így többek között az ingyenes közterületi parkolást a Fővárosi Közgyűlés progresszív módon mihamarabb korlátozza, annak ellenére, hogy az ilyen jellegű bevételek a fővárosi önkormányzatok számára rövid távon egyre inkább nélkülızhetetlennek tűnnek.

A fejezet hivatkozásai

1 A közúti járművek forgalomba helyezésének és forgalomban tartásának műszaki felteteleiről szóló 6/1990. (IV. 12.) KöHÉM rendelet 5. számú melléklete
3 A légszennyezettségi agglomerációk és zónák kijelöléséről szóló 4/2002. (X. 7.) KvVM rendelet 2. mellékletében az 1. zóna
5 Kedvezőbb környezetvédelmi tulajdonságú, a 2021-ben hatálysos szmogriadó korlátozása alá eső járművek: az elektromos és hibrid meghajtású gépjárművek, az EURO-IV, és annál jobb benzin üzemű járművek, valamint a dízel üzemű járművek közül az EURO-VI osztályúak.
7 https://www.tomtom.com/en_gb/traffic-index/budapest-traffic#statistics
9 https://lakogyules.budapest.hu/4-kozlekedes-a-lanchidon
11 76/2019. (05.29.) Főv. Kgy. határozat
II.4. Gazdasági tevékenység

A budapesti telephelyű, környezeti szempontból meghatározó jelentőségű üzemek száma évek óta 40-50 között alakult, ezeket a környezetvédelmi hatóság az egységes környezethasználati engedélyezési (IPPC-) eljárás alapján felügyeli.

Egyes budapesti telephelyű üzemek működése jelentős környezeti kockázattal jár az ott használt anyagok veszélyes tulajdonságai miatt. 2022-ben Budapesten összesen 60, a vonatkozó jogszabályok szerinti veszélyes anyagokkal foglalkozó (többek között gyógyszer-, vegyi-, gáz- és olajipari üzem, erőmű, raktár) telephely található, a legtöbb a X., XXI., XXII. és XXIII. kerületekben. Ezek közül 12 üzem tartozik a legkockázatosabb, felső küszöbértékűnek nevezett csoportba.

A veszélyes anyagokkal foglalkozó üzemek biztonságos működését a katasztrófavédelmi hatóság felügyeli. Egy váratlanul bekövetkező súlyos ipari baleset kezelésére a katasztrófavédelmi hatóság helyi szerve – a veszélyeztetett település (Budapesten a kerület) polgármesterének közreműködésével – külső védelmi tervet készít, amelyről a megfelelő módon tájékoztatja a lakosságot. 2014-ben három fővárosi veszélyes üzem környezetében monitoring és lakossági riasztó rendszer telepítése valósult meg, a magasabb szintű üzem felügyelet biztosítása és a lakosság biztonsága érdekében.

Egy gazdasági tevékenységet végző szervezet környezeti teljesítményét

- tanúsíthatják (szabványokon alapuló rendszerek alapján), de ez csak a környezeti teljesítmény javulását igazolja, függetlenül attól, hogy a hatósági követelményeket teljesítették-e;
- hitelesíthetik (az EU rendeletével meghatározott, állami szinten nyilvántartott EMAS-rendszer alapján), ami a környezeti teljesítmény javulásán túl igazolja a hatósági környezetvédelmi követelmények maradéktalan teljesítését is.

2023-ban hazánkban 29 EMAS hitelesített – ebből 9 fővárosi telephelyű – szervezet működött. Az elmúlt időszakban újabb társasággal (FTSZV) gyarapodott az EMAS hitelesítéssel rendelkező fővárosi közszolgáltatók köre, amelybe így az alábbiak tartoznak:

- BKM Nonprofit Zrt. FŐKERT Kertészeti Divízió;
- BKM Nonprofit Zrt. FOTÁV Távhőszolgáltatási Divízió;
- FCSM Angyalföldi Szivattyútelepe;
- BKV Zrt. M4 Metró Járműtelepe és Budafok Villamos Járműtelepe és az
- FTSZV Fővárosi Településtisztasági és Környezetvédelmi Kft...
Gazdasági tevékenység, integrált szennyezés- és katasztrófhelyzet megelőzés

IPPC és E-PRTR jelentésköteles létesítmények

Az integrált megközelítés a környezetvédelem egyik alapvetően feltétele, ami azt jelenti, hogy a különböző környezeti elemek terhelését és szennyezését nem külön-külön, hanem egységesen kell vizsgálni. A levegőbe, vízbe vagy talajba történő kibocsátások egymástól elkülönített kezelése ugyanis inkább a szennyezés egyik környezeti elemből a másikba történő átvitelére össztöni, mintsem a környezet egészének védelméről.

Az egységes környezetvédelmi engedélyezési (IPPC-) eljárás alkalmazása biztosítja, hogy a levegőbe, vízbe vagy talajba történő kibocsátások egymástól elkülönített, akár párhuzamos hatósági vizsgálatok helyett egyidejű, megelőzést alkalmazó egységes hatósági védelme valósulhasson meg, elsősorban a környezetügy szempontjából is jelentős ipari üzemek, mezőgazdasági létesítmények esetében.

Az IPPC hatósági eljárás alá vont létesítményeknek kiadott egységes környezethasználati engedély alapját az **Európai Tanács integrált szennyezés-megelőzésről és csökkentésről (IPPC – Integrated Pollution Prevention and Control)** szóli írásbeli irányelv adja, amely hatáskörét a vonatkozó magyar jogszabály az eljárási szabályokon túl a létesítmények megelőzését, csökkentését és ellenőrzését szabályozza.

Az E-PRTR rendelet szerint valamennyi tagországban meghatározott (9 iparágban, 65 félé) tevékenységeknél a kapacitásküszöb feletti üzemek évente jelentik a hatóságnak a levegőbe, vízbe és földtani közegbe kibocsátott, valamint a szennyvízbe és mesterséges hulladékokat. Jelenteni kell a diffúz forrásból és a balesetekből származó kibocsátásokat is.

Veszélyes ipari üzemek

A természeti katasztrófák mellett egyes üzemek működése jelentős környezeti kockázattal jár, elsősorban az üzemben használt anyagok veszélyes (mérgező, robbanó, tűzveszélyes stb.) tulajdonságai miatt, függetlenül attól, hogy az adott üzemben ipari, mezőgazdasági vagy egyéb (pl. raktározási) tevékenységet végeznek.

A veszélyes anyagokkal kapcsolatos súlyos balesetek elleni védekezésről szóló kormányrendelet meghatározza a veszélyes anyagokkal foglalkozó üzemek csoportosítását. Eszerint megkülönböztetünk felső küszöbértékű és alsó küszöbértékű veszélyes anyagokkal foglalkozó üzemeket, továbbá a jogszabály előírásokat tartalmaz a küszöbérték alatti üzemekre is.

Felső küszöbértékű veszélyes anyagokkal foglalkozó üzem: ahol a jelenlévő veszélyes anyagok mennyisége (beleértve a technológia irányíthatatlanná válása miatt várhatóan keletkező veszélyes anyagokat is) a kormányrendelet 1. melléklete alapján meghatározható felső küszöbértéket eléri vagy meghaladja.

Alsó küszöbértékű veszélyes anyagokkal foglalkozó üzem: ahol a jelenlévő veszélyes anyagok mennyisége (beleértve a technológia irányíthatatlanná válása miatt várhatóan keletkező veszélyes anyagokat is) a rendelet 1. melléklete alapján meghatározható alsó küszöbértéket eléri vagy meghaladja, de nem éri el a felső küszöbértéket.

Küszöbérték alatti üzemek azonosítását a rendelet 2. mellékletében szereplő adatlap benyújtása alapján a hatóság területileg illetékes szerve végzi el.

A Magyar Tudományos Akadémia Energia tudományi Kutatóközpont üzem (völ KFKI telephely; 1121 Budapest, Konkoly-Thege Miklós út 29-33.) nukleáris biztonságának, fizikai védelmének és radioaktivanyag-nyilvántartásának hatósági felügyeletét az Országos Atomenergia Hivatal látja el. Az ott dolgozók foglalkozású sugárterhelésének ellenőrzését Budapest Főváros Kormányhivatala népegészségügyi szakigazgatási szerve végzi, a radioaktiv kibocsátások tekintetében az illetékes (pécsi székhelyű) környezetvédelmi hatóság jár el. A Budapesti Műszaki Egyetem kutatóreaktora nem szerepel a térképen, veszélyessége elhanyagolható.

Környezetirányítási rendszerek

A környezetszennyezés megelőzésének és a szennyezőanyag-kibocsátások jelentésének előzőkben tárgyalt eszközeit a jogszabály alapján meghatározott vállalatoknak kötelezően kell végrehajtaniuk, emellett ismertek a környezettudatos vállalatvezetés önkéntesen vállalt eszközei is, amikor egy gazdasági tevékenységet végző szervezet környezeti teljesítményét

- tanúsíthatják, szabványokon alapuló rendszerek alapján (az ISO (International Organization for Standardization – Nemzetközi Szabványügyi Szervezet által kidolgozott ISO 14001:2015 szabvány szerint), de ez az eljárás csak a környezeti teljesítmény javulását igazolja, függetlenül attól, hogy a hatósági követelményeket teljesítették-e;
- hitelesíthetik egy közvetlenül hatályos közösségi rendelet által meghatározott, állami szinten nyilvántartott EMAS-rendszer (Eco-Management and Audit Scheme – környezetvédelmi vezetési és hitelesítési rendszer) alapján, ami a környezeti teljesítmény javulásán túl igazolja a hatósági környezetvédelmi követelmények maradéktalan teljesítését is.

Az ISO 14001 környezetközpontú irányítási rendszert számos budapesti gazdasági társaság alkalmazza, ugyanakkor azokról közös nyilvántartás nem áll rendelkezésre, így számukat csak becsülni lehetne. A tanúsítási rendszer követelményszintje sok tekintetben elmarad az EMAS-rendszer követelményeihez képest.

Az EMAS-rendszerben egy független, erre a tevékenységre akkreditált hitelesítő igazolja, hogy a szervezet minden környezetvédelmi jogszabályi előírást betart, a hatósági követelmények (pl. határértékeknek) megfelel, és e tény mellett úgy működik, hogy továbbra is fokozatosan javítja környezeti teljesítményét. Ekkor bekerülhet az EU-tagállami EMAS nyilvántartásba, és használhatja az EMAS logót, mint a környezetvédelmi szempontból biztonságos szállítók és partnerek jelölését.

Pest Vármegyei Kormányhivatal Környezettvédelmi és Természetvédelmi Főosztály, Belföldi Hulladékgazdálkodási és Termékdíj Osztályán vezetett országos EMAS nyilvántartásban 2023 májusában 29 vállalat 53 telephelye szerepelt, ezek közül 9 budapesti telephely.

Ez a szám tagállami szinten is igen kevésnek bizonyul a főváros mintegy 230 ezer gazdasági társasághoz képest, ráadásul az utóbbi évben több, korábban hitelesítést szerzett vállalat ki is került a nyilvántartásból.

Budapest környezettvédelmi programjának célkitűzésének megfelelően a közelmúltban több fővárosi tulajdonú önkormányzati gazdasági társaság telephelye is EMAS-rendszerű hitelesítést szerzett, 2023-ban az FTSZV Kft. Így jelenleg az alábbi fővárosi közszolgáltató szervezetek, illetve azok részegységei rendelkeznek EMAS hitelesítéssel:

- BKM Nonprofit Zrt. FŐKERT Kertészeti Divízió;
- BKM Nonprofit Zrt. FÓTÁV Távhőszolgáltatási Divízió;
- FCSM Angyalföldi Szivattyűtelepe;
- BKV Zrt. M4 Metró Járműtelepe és Budafok Villamos Járműtelepe, és az
- FTSZV Fővárosi Településtedzítási és Környezettvédelmi Kft.

<table>
<thead>
<tr>
<th>Sorsz.</th>
<th>Név</th>
<th>Cím</th>
<th>Tevékenység</th>
<th>Csatl.-éve</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.</td>
<td>CREW Kft.</td>
<td>1161 János u. 175.</td>
<td>nyomda</td>
<td>2006.</td>
</tr>
</tbody>
</table>

1. táblázat EMAS hitelesítést szerzett szervezetek Budapesten, 2023. május
(Forrás: EMAS®)
Intézkedések

Veszélyes ipari üzemek

A környezeti szemponttól jelentős hatással bíró tevékenységek, létesítmények engedélyezésének feltétele a környezetvédelmi hatásvizsgálat (a továbbiakban: KHV) elvégzése, amely kierjed az ipari baleseteknél és a természet katasztrófának való kitettségéből eredő várható hatások vizsgálatára is15. Az eljárásban résztvevő elsőfokú szakhatóság Budapesten a Fővárosi Katasztrófavédelmi Igazgatóság, másodfokon pedig az OKF jár el. A veszélyes anyaggal foglalkozó üzem telephelye szerint illetékeny (kerületi) polgármesternek az üzemeltetővel és a hatósággal együttműködve a biztosítania kell, hogy a lakosság véleményét nyilváníthatson a fenti engedélyezési eljárásokra vonatkozó katasztrófavédelmi engedély kiadása előtt.16

A veszélyes üzem üzemeltetője köteles minden tőle elvárhatót megtenni a súlyos balesetek megelőzésére és a kialakult balesetek káros következményeinek mérsékeltére. A katasztrófavédelmi törvény az ipari üzemek vezetőinek kötelességévé teszi az üzemben jelenlevő veszélyes anyagokkal kapcsolatos kockázatok felmérése, a reálisan feltételezhető súlyos balesetek bekövetkezésekor jelentkező hatások meghatározását, a lakosság és a környezet védelmének érdekében a szükséges intézkedések megtervezését. Ezen információkat a veszélyes üzem biztonsági jelentése, biztonsági elemzése, súlyos káratelepítési terve tartalmazza. A veszélyes üzem biztonsági jelentése, vagy elemzése nyilvános, annak közérthető kivonata is a helyi (Budapesten a kerületi) polgármesteri hivatalban mindenki számára hozzáférhető.

Egy váratlanul bekövetkező súlyos ipari baleset kezelésére a katasztrófavédelmi törvény előírja alapján a hatóság helyi szerve, a veszélyeztetett település (Budapesten a kerület) polgármesterének közreműködésével külső védelmi tervet készíti, amely meghatározza a lakosság, az anyagi javak és a környezet védelmével kapcsolatos feladatokat, a végrehajtásukkal összefüggő feltételeket, erőket és eszközöket.

A katasztrófavédelmi törvény a felső küszöbértékű veszélyes üzemek által veszélyeztetett településeken polgármesterének feladatul ír elő a lakossági tájékoztató kiadását, Budapesten eddig a IV., IX., X., XIX., XXI. és XXII. kerületek készítettek tájékoztatót21.

A veszélyes ipari üzemek környezetében az OKF 2006 óta az ország több részén is monitoring és lakossági riasztó rendszert (MoLaRi) telepített, a lakosság súlyos ipari balesetek elleni magasfokú védelme érdekében, az EU kötelezettségek végrehajtásának megfelelően.

A MoLaRi-rendszert a veszélyes ipari üzemek környezetében bekövetkezett súlyos balesetekről és azok hatásaival és korai tájékoztatást a lakosság részére. Egy esetleges katasztrofa-esemény bekövetkezésekor a rendszer az esemény jelzésén túl a követendő magatartási szabályokról és a fontosabb tudnivalókról (közlekedési rend, ellenőrzés, egyéni védelem, stb.) képes informálni az érintett lakosságot.

Budapesten három veszélyes üzem – a EUROAPI Hungary Kft., a Richter Gedeon Nyrt., az EGIS Gyógyszergyár Zrt. – környezetében összesen 52 monitoring és 403
riasztó-tájékoztató végpont telepítése történt meg, kilenc kerületet (IV., IX., X., XIII., XIV., XV., XVI.,XIX. és XX.) érintve\(^{22}\). A rendszer segítségével riasztható budapesti lakosok száma megközelíti a 190 ezt. Annak érdekében, hogy a lakosság riasztása, tájékoztatása megfelelően megtörténhessen, a rendszer részét képező színénak havi rendszerességgel ellenőrizni kell. A riasztó végpontok próbája minden hónap első hétfőjén zajlik, kivételt képeznek azok a napok, amikor erre az időpontra hivatalos ünnepnap esik, ekkor a próbák időpontja a soron következő hétfő.

EMAS

(környezetvédelmi vezetési és hitelesítési rendszer)

Az EMAS-rendelet hatályos változata a megelőzőhöz képest az alábbi változásokat tartalmazza:

- A rendelet területi hatályának kiterjesztése – bizonyos feltételek megléte mellett – a világ összes országára;
- Regisztrációs folyamatot érintő változások:
 - feltételekkel igényelhető a hároméves regisztrációs ciklus meghosszabbítása négy évre, együtt mentesülnek a környezetvédelmi nyilatkozat évenkénti hitelesítésének kötelezettsége alól is;
 - lehetőség nyílt az akár több országban telephelyekkel rendelkező szervezet telephelyeinek egységes nyilvántartásba vételére;
- A környezeti teljesítmény pontosabb értékelése és kommunikálása:
 - bevezetett a környezeti teljesítménymutatók és jelentéstételi kötelezettsége;
 - az EU Bizottság a jövőben ágazati referenciadokumentumokat dolgoz ki, amelyek kötelezők a környezeti viszonyítási alapként szolgálnak az adott ágazathoz tartozó szervezetek környezeti teljesítményének, jobb összehasonlíthatóságához;
- A rendszer ismertségének növelése, motiválás:
 - a rendelet támogatja az egymással földrajzi közelségben lévő, vagy tevékenységük miatt üzleti kapcsolatban álló szervezetek számára a hitelesítésre való közös felkészülést;
 - megfogalmazódik az a követelmeny, hogy a tagországoknak és az EU Bizottságának is ismeretterjesztő és népszerűsítő tevékenységet kell folytatniuk, továbbá olyan jellegű jogszabályi változásokat elősegíteniük, amelyek kevésbé szigorú kötelezettségeket jelentenek az EMAS-ban résztvevő szervezetek számára. Hasonló motiválásra alkalmas terület az EMAS-rendszer működtető szervezetek előnyben részesítése a közbeszerzéseknél;
 - a kis- és középvállalkozások általi könnyebb bevezethetőséget támogatja az, hogy a tagországok segítségét nyújtanak a kis szervezetek részére a rájuk vonatkozó jogszabályok feltárásában, valamint azok alkalmazásában;
 - a döntéshozók a korábbi két logótípus helyett egyet hoztak létre („Hitelesített környezetvédelmi vezetési rendszer”), amelynek a használatát is egyszerűsítették.

Az EMAS rendszerrel kapcsolatos további információkat a Magyar Állam környezetvédelmi portálja\(^{24}\) tartalmazza.
További javasolt feladatok

- A fővárosi telephelyű felső küszöbértékű veszélyes üzemekkel kapcsolatos lakossági tájékoztatók kiadása a hiányzó XXIII. kerületben is.
- A felső küszöbértékű veszélyes üzemek által veszélyeztetett kerületek lakossági tájékoztatóinak közzététele egységesen a fővárosi honlapon is.
- A katasztrófavédelmi szempontból fokozottan veszélyes anyagokkal foglalkozó üzemekkel kapcsolatos rendszeresen frissített, naprakész információk, valamint a veszélyes üzemek nyilvános biztonsági jelentésének közzététele az állapotértékelés keretében (hatásterületek, releváns információk, vészhibezetelt tervek).
- Az EMAS hitelesítés kiterjesztése további, műszaki jellegű köszolgáltatásokat végző gazdasági társaságokra, tekintettel a Fővárosi Közgyűlés 56/2012. (01. 25.) számú határozatára, miszerint a Fővárosi Közgyűlés „megerősíti azt a célkitűzést, hogy a fővárosi tulajdonú közművállalatok működésük során minden környezetvédelmi szabályt, előírást tartsanak be, ezért 2012. szeptember 30-i határidővel hitelesítsék, majd a hitelesítés után folyamatosan tartsák fenn az Európai Parlament és a Tanács 761/2001/EK rendelete szerinti EMAS rendszerüket”. Ezt a célt a hatályban lévő Budapest környezetvédelmi programja 2021-2026 is tartalmazza a „D-1-3 EMAS általános bevezetése, majd fenntartása a közszolgáltatást végző gazdasági társaságoknál” című feladatában.
- Az EMAS-rendszer működtető szervezetek előnyben részesítése a közbeszerzések során az EMAS-hitelesítés figyelembevételével, különösen a fővárosi IPPC üzemektől, nagy kereskedelmi szervezetektől, beszállítóktól.
Függelék

F.1. E-PRTR jelentést tett üzemek

<table>
<thead>
<tr>
<th>Létesítmény</th>
<th>Cím (telephely)</th>
<th>PRTR tevékenységi kör</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 WIENERBERGER Zrt.- Solymárkönyv l. Teglagyár</td>
<td>1034 Solymárkönyv</td>
<td>égetett agyag építőanyag gyártása</td>
</tr>
<tr>
<td>2 BKM Zrt. - Észak budai fűtőmű</td>
<td>1037 Kunigunda u. 49</td>
<td>fűtőmű - távhőellátás</td>
</tr>
<tr>
<td>3 MVM Balance Zrt. - Észak-Buda Gáztermelés Kogenerációs Fűtőerőmű</td>
<td>1037 Kunigunda u. 49</td>
<td>fűtőerőmű - villamosenergia-termelés</td>
</tr>
<tr>
<td>4 Messer Hungarogáz Kft. - hidrogén előállító üzem</td>
<td>1044 Váci út 77.</td>
<td>nagytisztaságú hidrogéngáz előállítás</td>
</tr>
<tr>
<td>5 Tungsram Operations Kft. Budapest Fényforrásgyár - Törzstelep</td>
<td>1044 Váci út 77.</td>
<td>fényforrás- és volfrám fémhuzal gyártás</td>
</tr>
<tr>
<td>6 EUROAPI Hungary Kft. - Újpesti telephely</td>
<td>1045 Tő u.1-5.</td>
<td>gyógyszerlapanyagok, intermedierek gyártása</td>
</tr>
<tr>
<td>7 Euro-Metall Öntödei Kft - Vasöntőde</td>
<td>1045 Elem u. 5-7.</td>
<td>vasöntőde</td>
</tr>
<tr>
<td>8 Budapesti Erőmű Zrt. - Újpesti erőmű</td>
<td>1045 Tő u.7.</td>
<td>tüzelőanyagok égetése legalább 50 MWth hőteljesítménnyel</td>
</tr>
<tr>
<td>9 XiMo Hungary Kft. - katalizátorgyár</td>
<td>1045 Berlini u. 47-49.</td>
<td>katalizátorok gyártása</td>
</tr>
<tr>
<td>10 Vinyl Vegyipari Kft. - Szervetlen vegyi alapanyag gyártó üzem</td>
<td>1097 Illatos út 19-23.</td>
<td>szervetlen vegyi alapanyag gyártás</td>
</tr>
<tr>
<td>11 CF Pharma Kft. - Gyógyszerlapanyag és intermedier gyártó üzem</td>
<td>1097 Kén u. 5.</td>
<td>gyógyszer intermedier és gyógyszerlapanyag előállítása</td>
</tr>
<tr>
<td>12 Richter Gedeon Nyr. - budapesti telephely</td>
<td>1103 Győmrői út 19-21.</td>
<td>gyógyszerlapanyag és gyógyszerkészítmény gyártás</td>
</tr>
<tr>
<td>13 Egis Gyógyszergyár Zrt. - központi telephely</td>
<td>1106 Keresztúti út 30-38.</td>
<td>gyógyszerhatóanyag és gyógyszerkészítmény gyártás</td>
</tr>
<tr>
<td>14 Dreher Sörgyárak Zrt. - sörgyár</td>
<td>1106 Dreher Antal út 3.</td>
<td>sörgyártás</td>
</tr>
<tr>
<td>15 RATH Hungária Kft. - telephely</td>
<td>1106 Porcelán u. 1.</td>
<td>tűzálló termék gyártása</td>
</tr>
<tr>
<td>16 CEVA-Phylaxia Oltányagtermelő Zrt.- állati oltányaggyártó üzem</td>
<td>1107 Szállás u. 5.</td>
<td>állatgyógyszati oltányag készítmények előállítása</td>
</tr>
<tr>
<td>17 Xellia Kft. - Xellia Gyógyszerhelyszeti Gyár</td>
<td>1107 Szállás u. 3.</td>
<td>gyógyszerlapanyag-gyártás</td>
</tr>
<tr>
<td>18 Bábolna Környezetbiológiai Központ Kft.</td>
<td>1107 Szállás u. 6.</td>
<td>mezőgazdasági vegyi termékek gyártása</td>
</tr>
<tr>
<td>19 Köbányahó Kft. - köbánnyal kogenerációs erőmű</td>
<td>1107 Fertő u. 2.</td>
<td>villamos- és hőenergia termelés</td>
</tr>
<tr>
<td>Létesítmény</td>
<td>Cím</td>
<td>PRTR tevékenység</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>-----------------</td>
</tr>
<tr>
<td>20</td>
<td>Budapesti Erőmű Zrt. - kelenföldi erőmű</td>
<td>1117 Budafoki út 52.</td>
</tr>
<tr>
<td>21</td>
<td>BKM Zrt. - Füredi úti fűtőmű</td>
<td>1144 Füredi u. 53-63</td>
</tr>
<tr>
<td>22</td>
<td>BKM Zrt. - Hulladékhasznosító mű</td>
<td>1151 Mélyfüró u. 10-12.</td>
</tr>
<tr>
<td>23</td>
<td>Palota Környezetvédelmi Kft. - telephely</td>
<td>1151 Szántóföld u. 2/a., 4/a.</td>
</tr>
<tr>
<td>24</td>
<td>SEPTOX Kft. - telephely</td>
<td>1152 Szántóföld u. 2/a.</td>
</tr>
<tr>
<td>25</td>
<td>BKM Zrt.- Újpalotai Fűtőmű</td>
<td>1158 Késmárk u. 2-4</td>
</tr>
<tr>
<td>26</td>
<td>CHP- ERŐMŰ Kft.- Újpalotai Gázmotoros Erőmű</td>
<td>1158 Késmárk u. 2-4</td>
</tr>
<tr>
<td>27</td>
<td>RAUCH Hungária Gyümölcsfeldolgozó és Kereskedelmi Kft.</td>
<td>1171 Kiskároshid u. 2.</td>
</tr>
<tr>
<td>28</td>
<td>Budapesti Erőmű Zrt. - Kispesti erőmű</td>
<td>1183 Bp. Nefejeics u. 2.</td>
</tr>
<tr>
<td>29</td>
<td>HÚSIPARI VÁLLALAT Zrt.</td>
<td>1186 Budapest, Besence utca 1.</td>
</tr>
<tr>
<td>30</td>
<td>Alpiq Csepel Kft. - CSEPHEL II. erőmű</td>
<td>1211 Hőerőmű u. 3.</td>
</tr>
<tr>
<td>31</td>
<td>Csepeli Erőmű Kft. - csepeli erőmű</td>
<td>1211 Színesfém u. 1-3.</td>
</tr>
<tr>
<td>32</td>
<td>FÉMALK Zrt. - alumínium öntőde</td>
<td>1211 Öntöde u. 2-12.</td>
</tr>
<tr>
<td>33</td>
<td>SONEAS Vegyipari Kft. - telephely</td>
<td>1221 Bányalág u. 47-59.</td>
</tr>
<tr>
<td>34</td>
<td>LUMINOCHEM Kft. - szerves pigment gyártó üzem</td>
<td>1222 Háros u. 7.</td>
</tr>
<tr>
<td>35</td>
<td>Agro-Chemie Gyártó Kft. - telephely - Kémia I. szintézis üzem</td>
<td>1225 Bányalág 47-59.</td>
</tr>
<tr>
<td>36</td>
<td>Táborplaszt Kft. - veszélyes hulladék kezelő telep</td>
<td>1237 Mezők utca 47.</td>
</tr>
<tr>
<td>37</td>
<td>PPG Trilak Kft. - Festékgyártó üzem</td>
<td>1238 Grassalkovich út 4.</td>
</tr>
<tr>
<td>38</td>
<td>Első Vegyi Industria Zrt.</td>
<td>1238 Helsinki út 138-146.</td>
</tr>
<tr>
<td>39</td>
<td>Ipox Chemicals Kft. - budapesti gyár</td>
<td>1238 Helsinki út 114.</td>
</tr>
<tr>
<td>40</td>
<td>Materiál Vegyiipari Szövetkezet - vegypipari alapanyagggyártó üzem</td>
<td>1239 Öcsai út 10.</td>
</tr>
<tr>
<td>41</td>
<td>Fővárosi Csatornázási Művek Zrt. - Dél-pesti szennyvítszűritő telep</td>
<td>1239 Meddőhányó u. 1.</td>
</tr>
</tbody>
</table>
F.2. Veszélyes anyagokkal foglalkozó üzemek

<table>
<thead>
<tr>
<th>Létesítmény</th>
<th>Cím (székhely)</th>
<th>Tevékenység</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 EUROAPI Hungary Kft.</td>
<td>1045 Bp. Tó u. 1-5</td>
<td>gyógyszer-hatóanyagok és intermedierek előállítása</td>
</tr>
<tr>
<td>2 BERT Erőmű Zrt. Újpesti Erőmű</td>
<td>1119 Bp. Budafoki út 52.</td>
<td>villamos-, illetve hőenergia előállítás</td>
</tr>
<tr>
<td>3 Messer Hungarogáz Kft.</td>
<td>1044 Bp. Váci út 117.</td>
<td>ipari gázok előállítása, forgalmazása nitrogén, oxigén, hidrogén, argon, széndioxid, acetilén különböző összetételű gázkeverék</td>
</tr>
<tr>
<td>4 Palota Környezetvédelmi Kft.</td>
<td>1151 Bp. Szántóföld út 4/a</td>
<td>veszélyes hulladékok, szennyvizek átvétele komplex szolgáltatás keretében</td>
</tr>
<tr>
<td>5 Bagi Kft.</td>
<td>1158 Bp. Készmárk utca 11-13.</td>
<td>növényvédő szer, vegyiáru nagykereskedelem</td>
</tr>
<tr>
<td>6 FCSM Észak-pesti Szennyvíztisztító</td>
<td>1087 Bp. Asztalos Sándor u. 4.</td>
<td>szennyvíztisztító telephely</td>
</tr>
<tr>
<td>7 Messer Hungarogáz Kft., Váci út 77.</td>
<td>1044 Bp. Váci út 177.</td>
<td>nagytisztaságú hidrogéngáz előállítása földgázbontással.</td>
</tr>
<tr>
<td>9 Városligeti Műjégpálya (Budapesti Sportszolgáltató Központ)</td>
<td>1146 Bp. Olof Palme sétány 5.</td>
<td>sportlétesítmény üzemeltetése</td>
</tr>
<tr>
<td>10 EGIS Gyógyszergyár Nyrt.</td>
<td>1106 Bp. Keresztúri út 30-38.</td>
<td>gyógyszer-hatóanyagok, gyógyszer előállítás</td>
</tr>
<tr>
<td>11 Variachem Kft.</td>
<td>1097 Bp. Kén utca 8.</td>
<td>kereskedelmi tevékenység, (raktorozó, kiszerelő és forgalmazó) alapvetően veszélyes anyagokat tárol és forgalmaz</td>
</tr>
<tr>
<td>12 Vinyl Vegyipari Kft.</td>
<td>1097 Bp. Illatos u. 19-23.</td>
<td>cseppfolyós klór lefejtése, tárolása, kiszerelése, jód és a hipó gyártása</td>
</tr>
<tr>
<td>13 CF Pharma Kft.</td>
<td>1097 Bp. Kén u. 5.</td>
<td>gyógyszer-hatóanyagok, gyógyszer előállítás</td>
</tr>
<tr>
<td>14 Linde Gáz Magyarország Zrt.</td>
<td>9653 Répcelak, Carl von Linde út 1.</td>
<td>műszaki gázai – oxigén, nitrogén (az ügynevezett levegőgázok), továbbá hűtőgáz, széndioxid, hidrogén, acetilén és hegesztési védőgázok, valamint az egyéb nemegázok, előállítása, tárolása</td>
</tr>
<tr>
<td>16 Ereco Zrt.</td>
<td>1106 Bp. Gránátos u. 1-3.</td>
<td>acélhulladék, színesfém hulladék, akkumulátor hulladék begyűjtése, előkezelése és hasznosítókhoz való eljuttatása, kommunális hulladék begyűjtése, kiselejtett járművek kezelése</td>
</tr>
<tr>
<td>17 Xellia Gyógyszervegyszeti Kft.</td>
<td>1107 Bp. Szállás utca 3.</td>
<td>gyógyszer-hatóanyagok, gyógyszer előállítás</td>
</tr>
<tr>
<td>Létesítmény</td>
<td>Cím</td>
<td>Tevékenység</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>18 Altox-Chem Kft.</td>
<td>1097 Bp. Illatos út 19-23.</td>
<td>vegyi áruk és anyagok, valamint készítmények kereskedelme, forgalmazása, tárolása</td>
</tr>
<tr>
<td>19 Bábolna Környezetbiológiai Központ Kft.</td>
<td>1107 Bp. Szállás u. 6.</td>
<td>S-metoprin gyártása, továbbá rágcsálóirtószer, rovarirtó szerek, környezetbarát rovarirtó termékek, háztartási tisztítószerek raktározása</td>
</tr>
<tr>
<td>20 Dreher Sörgyárak Zrt.</td>
<td>1106 Bp. Játszberényi út 7-11.</td>
<td>sörgyár</td>
</tr>
<tr>
<td>21 Kallos Cosmetics Kft.</td>
<td>1025 Bp. Muraközi út 28.</td>
<td>kozmetikai termékek, samponok, tusfürdők, hajszínező, kézkrémek, testápolók gyártása raktározása</td>
</tr>
<tr>
<td>22 Pénzjegynyomda Zrt.</td>
<td>1055 Bp. Markó utca 13-17.</td>
<td>magyar fizető eszköz (nyomdai eszközökkel, spec. festék anyagokkal) előállítása</td>
</tr>
<tr>
<td>23 NKM Földgázhálózati Kft. a Földgázsállító Zrt. átadó állomásától az MVM Északbudi Fűtőerőmű Kft.-hez gázst szállító elosztóvezeték-szakasz</td>
<td>1081 Bp. II. János Pál pápa tér 20.</td>
<td>veszélyes anyag csőhálózaton történő szállítása</td>
</tr>
<tr>
<td>24 NKM Földgázhálózati Kft. a Földgázsállító Zrt. átadó állomásától a Budapest Airport Zrt.-hez gázst szállító elosztóvezeték-szakasz</td>
<td>1081 Bp. II. János Pál pápa tér 20.</td>
<td>veszélyes anyag csőhálózaton történő szállítása</td>
</tr>
<tr>
<td>25 NKM Földgázhálózati Kft. a Földgázsállító Zrt. átadó állomásától a BERT Zrt. Újpesti Erőműhöz gázst szállító elosztóvezeték-szakasz</td>
<td>1081 Bp. II. János Pál pápa tér 20.</td>
<td>veszélyes anyag csőhálózaton történő szállítása</td>
</tr>
<tr>
<td>26 NKM Földgázhálózati Kft. a Földgázsállító Zrt. átadó állomásától a BERT Zrt. Kispesti Erőművéhez gázst szállító elosztóvezeték-szakasz</td>
<td>1081 Bp. II. János Pál pápa tér 20.</td>
<td>veszélyes anyag csőhálózaton történő szállítása</td>
</tr>
<tr>
<td>27 NKM Földgázhálózati Kft. a Földgázsállító Zrt. átadó állomásától a BERT Zrt. Kelenföldi Erőműhöz gázst szállító elosztóvezeték-szakasz</td>
<td>1081 Bp. II. János Pál pápa tér 20.</td>
<td>veszélyes anyag csőhálózaton történő szállítása</td>
</tr>
<tr>
<td>28 Agro-Chemie Kereskedő és Gyártó Kft.</td>
<td>1225 Bp. Bányalég u. 47-59.</td>
<td>növényvédőszerek, alapanyag és készítmény előállítása, raktározása</td>
</tr>
<tr>
<td>29 Brenntag Hungária Kft.</td>
<td>1225 Bp. Bányalég utca 45.</td>
<td>vegyi alapanyag raktározás, továbbá kereskedelem, kiszerelő, forgalmazó, raktározó, tároló tevékenység végzése</td>
</tr>
<tr>
<td>30 MOL Nyrt. Csepel Telep</td>
<td>1117 Bp. Október Huszonharmadika u. 18.</td>
<td>különböző CH-termékek tárolása és forgalmazása</td>
</tr>
<tr>
<td>31 Donauchem Kft.</td>
<td>1225 Bp. Vegyszer utca 3.</td>
<td>vegyi anyagok raktározásával, ill. értékesítésével foglalkozik, a telephelyen hígítás és keverés történik, kémiai folyamatokkal járó tevékenységet nem folytat</td>
</tr>
<tr>
<td>Létesítmény</td>
<td>Cím</td>
<td>Tevékenység</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>32</td>
<td>Metrans Konténer Raktározó és Átrakó Kft.</td>
<td>1211 Bp. Salak utca 1-39.</td>
</tr>
<tr>
<td>33</td>
<td>Silver Forest Logisticsystem Kft.</td>
<td>2030 Érd Szarka u. 1/A.</td>
</tr>
<tr>
<td>34</td>
<td>SONEAS Vegyipari Kft.</td>
<td>1097 Bp. Illatos út 33.</td>
</tr>
<tr>
<td>35</td>
<td>Alpiq Csepeli Szolgáltató Kft.</td>
<td>1211 Bp. Hőerőmű utca 3.</td>
</tr>
<tr>
<td>37</td>
<td>Dunatár Kölojtermelő és Kereskedelmi Kft.</td>
<td>1211 Bp. Budafoki út (hrs. 210035)</td>
</tr>
<tr>
<td>38</td>
<td>Oiltanking Hungary Kft.</td>
<td>1211 Bp. Gáz utca 1.</td>
</tr>
<tr>
<td>39</td>
<td>AQUALING Ipari, Fővállalkozói, Kereskedelmi és Szolgáltató Kft.</td>
<td>1117 Bp. Hunyadi János út 4.</td>
</tr>
<tr>
<td>40</td>
<td>Fővárosi Vízművek Zrt.</td>
<td>1138 Bp. Váci út 182.</td>
</tr>
<tr>
<td>41</td>
<td>Den Braven Magyarország Kft.</td>
<td>1225 Bp. Campona u. 1. DC8. épület</td>
</tr>
<tr>
<td>42</td>
<td>Pyro-Bán Pyrotechnikai Kft.</td>
<td>1088 Bp. Gutenberg tér 3.</td>
</tr>
<tr>
<td>43</td>
<td>Csepeli Erőmű Kft.</td>
<td>1211 Bp. Színesfém utca 1-3.</td>
</tr>
<tr>
<td>44</td>
<td>MOL Nyrt. Tiszaújváros-Százhalomomba DN200 termék-szállítővezeték (BT)</td>
<td>1117 Bp. Október Huszonharmadika u. 18.</td>
</tr>
<tr>
<td>45</td>
<td>MOL Nyrt. TERMÉK-SZÁLLÍTÓVEZETÉKÉK</td>
<td>1117 Bp. Október Huszonharmadika u. 18.</td>
</tr>
<tr>
<td>46</td>
<td>MOL Nyrt. KÖOLAJ TÁVVEZETÉKÉK</td>
<td>1117 Bp. Október Huszonharmadika u. 18.</td>
</tr>
<tr>
<td>Létesítmény</td>
<td>Cím</td>
<td>Tevékenység</td>
</tr>
<tr>
<td>-------------</td>
<td>-----</td>
<td>-------------</td>
</tr>
<tr>
<td>47</td>
<td>MOL Fényeslitke üzemeltetés, Barátság II. kőolajvezeték 2021-TÖL KÖOLÁJ TÁVVEZETÉKEK (egyben)</td>
<td>1117 Bp. Október Huszonharmadika u. 18.</td>
</tr>
<tr>
<td>48</td>
<td>Waberer's-Szemerey Logisztika Kft.</td>
<td>3527 Miskolc, Fonoda u. 1.</td>
</tr>
<tr>
<td>50</td>
<td>Material Vegyipari Szövetkezet</td>
<td>1239 Bp. Öcsai út 10.</td>
</tr>
<tr>
<td>51</td>
<td>RÜK Repülőtéri Üzemanyag Kiszolgáló Kft.</td>
<td>1185 Bp. BUD Nemzetközi Repülőtér</td>
</tr>
<tr>
<td>53</td>
<td>Budapest Airport Zrt.</td>
<td>1185 Bp. BUD Nemzetközi Repülőtér</td>
</tr>
<tr>
<td>54</td>
<td>FCSM Dél-pesti Szennyvíztisztító Kft.</td>
<td>1087 Bp. Asztalos Sándor u. 4.</td>
</tr>
<tr>
<td>55</td>
<td>Főtáv Zrt. Rákoskeresztúri Fűtőmű</td>
<td>1116 Bp. Kalotaszig u. 31</td>
</tr>
<tr>
<td>56</td>
<td>Ipox Chemicals Kft.</td>
<td>1238 Bp. Helsinki u. 114</td>
</tr>
<tr>
<td>57</td>
<td>PPG Trilak Kft.</td>
<td>1238 Bp. Grassalkovich utca 4.</td>
</tr>
<tr>
<td>58</td>
<td>Rauch Hungária Kft.</td>
<td>1171 Bp. Kiskároshíd u. 2.</td>
</tr>
<tr>
<td>59</td>
<td>Soroksár M0 Projekt Kft.</td>
<td>1239 Bp. Öcsai út 7.</td>
</tr>
<tr>
<td>60</td>
<td>Vegyspeed Kereskedelmi és Szolgáltató Kft.</td>
<td>2336 Dunavarsány, Bethlen Gábor utca 5.</td>
</tr>
</tbody>
</table>
A fejezet hivatkozásai

1. A Tanács 96/61/EK Irányelve (1996. szeptember 24.) a környezetszennyezés integrált megelőzéséről és csökkentéséről
2. 314/2005. (XII. 25.) Korm. rendelet a környezeti hatásvizsgálati és az egységes környezetszennyezési engedélyezési eljárásról
5. AZ EURÓPAI PARLAMENT ÉS A TANÁCS 166/2006/EK RENDELETE (2006. január 18.) az Európai Szennyezőanyag-kibocsátási és -szállítási Nyilvántartás létrehozásáról és 91/689/EGK és a 96/61/EK tanácsi irányelv módosításáról
6. 219/2011. (X. 20.) Korm. rendelet a veszélyes anyagokkal kapcsolatos súlyos balesetek elleni védekezésről 1. §
9. a környezetvédelmi vezetési és hitelesítési rendszerben (EMAS) részt vevő szervezetek nyilvántartásáról szóló 308/2010. (XII. 23.) Korm. rendelet 1. § (1) bekezdés
10. https://www.kormanyhivatal.hu/download/2/7c/78000/Regisztr%C3%A1nt%20EMAS
11. azonos szervezetek
12. a környezeti hatásvizsgálati és az egységes környezetszennyezési engedélyezési eljárásról szóló 314/2005. (XII. 25.) Korm. rendelet 6. § (1b)
13. 219/2011. (X. 20.) Korm. rendelet a veszélyes anyagokkal kapcsolatos súlyos balesetek elleni védekezésről
15. a környezeti hatásvizsgálati és az egységes környezetszennyezési engedélyezési eljárásról szóló 314/2005. (XII. 25.) Korm. rendelet 6. § (1b)
17. felső küszöbértékű veszélyes anyagokkal foglalkozó üzem üzemeltetőjének bizottsági jelentést kell készítenie a 219/2011. (X.20.) Korm. rendelet 3. mellékletben meghatározott tartalmi és formai követelményeknek megfelelően
18. alsó küszöbértékű veszélyes anyagokkal foglalkozó üzem üzemeltetőjének bizottsági elemzést kell készítenie a 219/2011. (X.20.) Korm. rendelet 4. mellékletben meghatározott tartalmi és formai követelményeknek megfelelően
20. Kat. tv. 32. § (2) bekezdés
22. https://www.katasztrofavedelem.hu/49/molari-rendszer

https://xn--knyezetvedem-jkb3r.hu/onkentes-minosito-rendszerek-emas
II.5. Árvízvédelem, ivóvízellátás, szennyvízkezelés és csapadékvíz-gazdálkodás

Vízjárás, árvízvédelem

Budapest környezeti problémái közül az egyik legjelentősebb a mértékadó árvízszint megváltozásából eredő helyzetre való felkészülés, illetve az ahhoz történő alkalmazkodás, továbbá az ebből következő tervezési és kivitelezési folyamat lezárása.

Ivóvízellátás

Budapest ivóvízellátását a Duna mentén telepített parti szűrésű csáposkutak biztosítják. A hálózat 2022 során havonta átlagosan mintegy 14,0 millió m³ ivóvizet táplált be, amellyel nemcsak Budapest, hanem a környező települések ivóvízellátását is biztosították. A Budapesten felhasznált ivóvíz mennyisége az utóbbi években 112 - 116 millió m³/év között változott, beleértve a nem lakossági ivóvízmennyiséget is.

A szolgáltatott ivóvíz minősége Budapest területén minden vizsgált paraméter tekintetében közel 99%-ban határérték alatti volt.

Szennyvízkezelés

Budapesten a naponta keletkező mintegy 350-435 ezer m³ szennyvíz közel 100%-át biológiai tisztítás után vezetik be a Dunába, illetve a Ráckevei (Soroksári)-Duna ágba. Az üzemelő három szennyvíztisztító teljes biológiai tisztítási rendszerrel, valamint jó tisztítási hatásfokkal rendelkezik. A Budapesti Központi Szennyvíztisztító Telepen az érkező szennyvíz magas lebõegyanyag tartalmának tüfkerrel és biológiai tisztítás után a Dunába vezetik be. Az üzemelő három szennyvíztisztító teljes biológiai tisztítási rendszerrel, valamint jó tisztítási hatásfokkal rendelkezik. A Budapesti Központi Szennyvíztisztító Telepen az érkező szennyvíz magas lebõegyanyag tartalmának tüfkerrel és biológiai tisztítás után a Dunába vezetik be.

Csapadékvíz-gazdálkodás

A főváros területén egységes, központilag szabályozott, vagy kezelt csapadékvíz-gazdálkodásról gyakorlatilag nem beszélhetünk. A külső – elválasztott rendszerben csatornázott – kerületekben rendkívüli fontosságú a hiányzó csapadékvíz-elvezető művek kiépítése. Emellett megoldást nyújthat a csapadékvíz-vízgazdálkodás meghatározása is, mely nem csak a vízvezető rendszerben, hanem a többi területen is érvényes felfogásokban.

Az üzemelő három szennyvíztisztító teljes biológiai tisztítási rendszerrel, valamint jó tisztítási hatásfokkal rendelkezik. A Budapesti Központi Szennyvíztisztító Telepen az érkező szennyvíz magas lebõegyanyag tartalmának tüfkerrel és biológiai tisztítás után a Dunába vezetik be.

Az üzemelő három szennyvíztisztító teljes biológiai tisztítási rendszerrel, valamint jó tisztítási hatásfokkal rendelkezik. A Budapesti Központi Szennyvíztisztító Telepen az érkező szennyvíz magas lebõegyanyag tartalmának tüfkerrel és biológiai tisztítás után a Dunába vezetik be.

A főváros területén egységes, központilag szabályozott, vagy kezelt csapadékvíz-gazdálkodásra is felfogásokban.
Vízjárás, árvízvédelem

A főváros vízbázisán és a felszíni vizek természetes befogadóján túl a Duna, mint városközpontjában is fontos szerepet tölt be. A folyó középvízi vízhozama kb. 2,400 m³/s, mely árvízkor akár a 9,000 m³/s-ot is elérheti. Az eddig legnagyobb árvízszenzét 1838. március 15-én regisztrálták, amelynek rekonstruált vízállása a mai 1.030 cm-nek felel meg. Ez a vízállás – tekintve, hogy jégtorlasz okozta – egyedi volt; a rendkívüli ok, amely kiváltotta – a folyamszabályozási munkálatok eredményeképp – már megszűnt. (A jelentősebb dunai árhullámok tetőzéséről szóló ábrát, ami a jeges és a jégmentes árvizeket külön-külön szemlélteti, e fejezet Függelékének ábrája tartalmazza.)

A Duna-Budapest állomást 1823. január 1-jén létesítették; az országos szintű egységes vízrajzi szolgálat 1886-tól, majd az előrejelzést is végző Vízjelző Szolgálat 1892-től működik.

Az 1838-as jeges árvíz idejében a vízmérce nullpontja 95,98 mBf-nek (balti alapszínhez képest) felelt meg (1943. február 28-ig), melyet 1943. március 1-jén 94,97 mBf-re helyeztek át – ennek figyelembevételével a vízmérce korábbi adatai is összehasonlíthatóak.

Maximum közelítő 800 cm feletti érték az utóbbi mintegy 190 évben összesen (2002-ig) – a jégmentes árvizek esetében, továbbá tekintettel a vízmérce fenti összehasonlíthatósági feltételeire – háromszor alakult ki: 1876-ban (827 cm), 1954-ben (805 cm) és 1965-ben (845 cm). (lásd Függelék 22. ábra.)
hátszer jelent meg: 2011-ben (62 cm), 2015-2018 minden évében (33-65 cm között), majd 2021-2022-ben (64 és 80 cm) is.

A Duna vízhozamának elemzése az éves, illetve az évszakos átlagok alapján történt. Éves átlagértékek alapján a vízhozam hosszú távon alapvetően csökkenő (2. ábra). Nagyobb kilengések figyelhetők meg 1941-ben és 1965-ben, amikor a vízhozam meghaladta a 3.100 m³/s-t, míg az 1934, 1969, 1971 és 1972-es években 1.700 m³/s alá csökkent.

Míg az őszi, téli és tavaszi átlagok változása csaknem 100 év alatt nem mutatott szignifikáns különbséget, ezzel szemben markáns csökkenés a nyári időszakok vízhozamában figyelhető meg.

Árvízvédelem, ivóvízellátás, szennyvízkezelés és csapadékvíz-gazdálkodás
Míg 1926, 1965 és 1966-ban a nyári vízhozam átlaga még kiemelkedő is volt (meghaladta 4.000 m³/s-t), addig 2003, 2018 és 2022-ben a vízhozam csupán 1.500-1.600 m³/s körüli volt.

A 2002 óta mért budapesti dunai vízhasomok évi átlagos mértékét, illetve az egyes években előforduló minimum és maximum értékeket, továbbá a mederfenék közévbén mért vízhőfok átlagos értékeit részletesen a 4. ábra szemlélteti, trendként látható, hogy egyre emelkedő vízhőfok mellett egyre kisebb vízhozam alakul ki. Ez a tendencia a jövő nyári időszakaiban várhatóan még fokozottnabban, illetve gyakrabban fog bekövetkezni.

Az operatív védekezési feladatokat Budapesten – a Fővárosi Önkormányzat megbízásából – a Fővárosi Csatornázási Művek Zrt. (a továbbiakban: FCSM Zrt.) látja el. A vonatkozó kormányrendeletek és miniszereti rendeletek mellett továbbá az árvíz- és belvíz-védekezésről szóló önkormányzati rendelet\(^6\) is szabályozza a védekezés ellátásával, a hatósági felügyeletével összefüggő, a védekezési készültség beállítása előtti, a tényles védekezéssel kapcsolatos és a védekezés megszűnése utáni feladatokat.

A budapesti árvízi védekezés szempontjából mértékkadó árvízszinteket (MÁSZ) a vonatkozó miniszteri rendelet\(^6\) 2014. december 31-ével módosította úgy, hogy a korábbi szintnél – a nagyvízi vízállások statisztikai (továbbiakban hatévenként ismétlődő) feldolgozása eredményeképp – magasabb értéket határozott meg.

Ivóvízellátás, szennyvízkezelés és csapadékvíz-gazdálkodás leírása, jellemzése

Vízszolgáltatás

A budapesti ivóvízellátás kezdeti időszakát\(^8\) több évtizedes szakmai vita előzte meg, illetve kísérte, amely során a természetes szűrés támogató – Wein János vezetésével – vitatkoztak a mesterséges szűrés akkori híveivel (Európa nagyobb városainak a szavaibain általánosan alkalmazott módszerek).

Ivóvízellátás, szennyvízkezelés és csapadékvíz-gazdálkodás leírása, jellemzése

Vízszolgáltatás

A budapesti ivóvízellátás kezdeti időszakát\(^8\) több évtizedes szakmai vita előzte meg, illetve kísérte, amely során a természetes szűrés támogató – Wein János vezetésével – vitatkoztak a mesterséges szűrés akkori híveivel (Európa nagyobb városainak a szavaibain általánosan alkalmazott módszerek).

Ivóvízellátás, szennyvízkezelés és csapadékvíz-gazdálkodás leírása, jellemzése

Vízszolgáltatás

A budapesti ivóvízellátás kezdeti időszakát\(^8\) több évtizedes szakmai vita előzte meg, illetve kísérte, amely során a természetes szűrés támogató – Wein János vezetésével – vitatkoztak a mesterséges szűrés akkori híveivel (Európa nagyobb városainak a szavaibain általánosan alkalmazott módszerek).

Ivóvízellátás, szennyvízkezelés és csapadékvíz-gazdálkodás leírása, jellemzése

Vízszolgáltatás

A budapesti ivóvízellátás kezdeti időszakát\(^8\) több évtizedes szakmai vita előzte meg, illetve kísérte, amely során a természetes szűrés támogató – Wein János vezetésével – vitatkoztak a mesterséges szűrés akkori híveivel (Európa nagyobb városainak a szavaibain általánosan alkalmazott módszerek).

magas (>450 cm), sem pedig az alacsony (<120 cm) vízállás nem kedvez a kutak üzemeltetésének.

A magas vízállás idején egyes kutakat ki kell zární a termelésből, míg alacsony vízállásnál vannak olyan kutak, amelyek ilyenkor alig képesek termelni. A Duna alacsony vízállású időszaka – a mennyiségén túl – fokozott minőségi problémát is jelent. Az ivóvíz szolgáltatást korlátozó alacsony és magas vízállások éves alakulását, a kisvízes és árvízterhes napok évenkénti arányát a 6. ábra szemlélteti.

A kutak több, mint 75%-a alacsony vízállások területén helyezkedik el, ezért a létesítmények előtis elleni védelmét a jövőben fokozni kell, ugyanakkor a következő évtizedekben fel kell készülni a szélsőségesen alacsony vízállási időszakok gyakoriságának növekedésére is.

A budapesti rendszer jelenleg a szélsőséges kisvízi időszakot képes kezelni, azonban a jövőben a klimaváltozás helyi hatásait úgy is indokolt részletesen vizsgálni és értékelni, hogy az milyen mértékű ellátásbiztonság kockázatnövekedést eredményezhet. Mivel Budapesten kívül az agglomeráció településeit is a Duna parti szűrésű vízkészleteit használják, így a klimatikus helyi hatásoknak az agglomeráció teljes vízellátása is nagyon kiszolgáltatott. Alapvető célkitűzés, hogy a tartósan kialakuló szélsőségesen alacsony Duna vízsint mellett is biztonságosan kitermelhető legyen a szélsőséges és megfelelő minőségű vízmennyiség.

Az utóbbi években szolgáltatott víz mennyisége viszonylag egyenletes képet mutat – 112-116 millió m³ között változik, míg a csak lakossági ivóvízfogyasztás 81-85 millió m³ között ingadozik (7. ábra).

A budapesti rendszer jelenleg a szélsőséges kisvízi időszakot képes kezelni, azonban a jövőben a klimaváltozás helyi hatásait úgy is indokolt részletesen vizsgálni és értékelni, hogy az milyen mértékű ellátásbiztonság kockázatnövekedést eredményezhet. Mivel Budapesten kívül az agglomeráció településeit is a Duna parti szűrésű vízkészleteit használják, így a klimatikus helyi hatásoknak az agglomeráció teljes vízellátása is nagyon kiszolgáltatott. Alapvető célkitűzés, hogy a tartósan kialakuló szélsőségesen alacsony Duna vízsint mellett is biztonságosan kitermelhető legyen a szélsőséges és megfelelő minőségű vízmennyiség.

Az utóbbi években szolgáltatott víz mennyisége viszonylag egyenletes képet mutat – 112-116 millió m³ között változik, míg a csak lakossági ivóvízfogyasztás 81-85 millió m³ között ingadozik (7. ábra).
Budapest ivóvízfogyasztását összehasonlítva az egyes európai nagyvárosokéval elmondható, hogy a fővárosban az egy főre eső napi ivóvízfogyasztás körülielül a varsói és a grazi ivóvíz felhasználással megegyező (8. ábra).

A kutakból az ivóvíz a gravitációs/alacsony nyomású gyűjtőcsatorna csőhálózaton, gépházakon, víztároló medencéken és onnan csővezetékeken keresztül jut el a fogyasztókhoz. A **hálózatba táplált** és az **értékesített víz különbözetére az értékesítési különbözet** (ÉK) gyűjtő megnevezés használatos. Az ÉK alapvetően valódi és látszólagos veszteségekből tevődik össze.

Valódi veszteség az a víztérfogat, amely az elosztó berendezésekben azok hiányosságai és a hibahelyek miatt hasznosítatlanul elvész. Ilyenek a **hálózati veszteségek** (pl. rejtett vízelfolyás, csősérülés, csőtörés), illetve az **üzemeltetési hibák** (pl. medencetúlfolyás, gondatlan zárás, egyéb szabályozási hiba).

Látszólagos veszteség az a vízmennyiség, amely a következő tényezők összességéből származik: mérési hibák (pl. leolvásási és egyéb adminisztrációs hibák, mérési hibák mérési bizonytalansága), **nem mért fogyasztások** becsleséi hibái, bizonytalansága, az **illegális fogyasztások** (pl. vízlopás) és az ivóvízellátás saját felhasználása (pl. üzemesszerű karbantartás, technológia-pótó beavatkozás).

Ugyancsak a veszteségek közé sorolható a **technológiai veszteség**, amely a **termelt víz** és a **hálózatba táplált** víz különbsége.

A víziközű-rendszerben keletkező szivárgások környezetre gyakorolt hatása a vízkészletterhelés, a talajvízszint emelkedése, előre nem kiszámítható változások az épített környezet állapotában (pl. pincefalak vízesedése).
A termelt víz a fogyasztókhoz az 1868 óta folyamatosan épülő többféle csőanyagból álló hálózaton keresztül jut el, melynek hossza 2022 végén mintegy 4.582 km volt (az ipari víz, valamint termelési gravitációs és alacsonynyomású hálózat nélkül). A hálózat több kockázatos eleme – Sentab és azbesztceme – folyamatosan cserére szorul.

A Nemzeti Népegészségügyi Központ „Egészségügyi ellátórendszer szakmai módosztani fejlesztése” elnevezésű komplex népegészségügyi projektje vizsgálta az ivóvíz általi ólom bevitelét. A projekt többek között megállapította, hogy a csapvíz ólomtartalma szempontjából a fővárosi épületek 8%-a nagyon magas kockázatú, 17%-a magas kockázatú, 64%-a közepes kockázatú és csak 7%-a alacsony vagy 3%-a nagyon alacsony kockázatú (10. ábra).

A fővárosban mintegy 620.000 fő él 50.000 olyan épületben, amely legalább magas kockázatú épülettömbként meghatározott.

A fővárosi épületek

10. ábra: A fővárosi épületek csapvíz ólomtartalmának kockázati értékelése (2020., NNK adatok alapján)
- nagyon magas kockázat
- magas kockázat
- közepes kockázat
- alacsony kockázat
- nagyon alacsony kockázat
A másik jelentős feladat az életciklusuk végéhez ért azbeszt cement csövek cseréje, amelyek az utóbbi hét évben alig változa – az ívővízhálózat közel felét (43,6%) teszik ki. Az azbeszt cement vezetékek cseréjét a Fővárosi Vízművek Zrt. folyamatosan végzi: 2022-ben mintegy 6,2 km-t, 2009 óta pedig már 102 km-t váltottak ki.

A szolgáltatott ívővíz minőségét akkreditált laboratóriumban folyamatosan ellenőrizik, a Budapest Főváros Kormányhivatala Népegészségügyi Főosztálya által jóváhagyott mintavételi terv és az ívővíz minőségi követelményeit meghatározó vonatkozó jogszabály9 alapján (utóbbi 2023. július 1-jétől nem hatályos).

A részletes – kerületi bontású, konkrét értékeket tartalmazó – adatok a Függelék 1. táblázatában találhatók.

Indikátor paraméterek

11. ábra: Kötelezően mért ívővízminőségi paraméterek – kémiai vízminőségi jellemzők a vonatkozó határértékek százalékában, 2022. (Adatforrás: Fővárosi Vízművek Zrt.)

A 2023. július 1-jén hatályba lépett új jogszabály meghatározza azokat a megfelelőségi pontokat, ahol a vett ivóvízmintáknak meg kell felelniük a határértékeknél, többek között:

- a víziközmű-rendszerből szolgáltatott ivóvíz esetén az épített létesítményen vagy épületen belül – a további jogszabály által megállapított ivóvízvételi helyen;
- a közösségi ivóvízellátást biztosító saját célú ivóvízműből hálózaton szolgáltatott ivóvíz esetén azon a ponton, ahol a víz az ivóvíz vételezéséhez rendszerint használt csapokból ki lép.

Csatornázás

Budapest csatornázásának történetét a Budapest Környezeti Állapotértékelése – 2015 részletezi.

A Függelék 2. táblázata tartalmazza az FCSM Zrt. adatszolgáltatása alapján a hiányzó szenny- és egyesített rendszerű gyűjtőcsatornákat.

Szennyvízkezelés

Budapest csatornahálózatát, az Észak-pesti Szennyvíztisztító Telepet és a Dél-pesti Szennyvíztisztító Telepet az FCSM Zrt. üzemelteti, míg a Csepel-szigeti Budapesti Központi Szennyvíztisztító Telep (a továbbiakban: BKSZTT) üzemeltetésével a Fővárosi Önkormányzat 2013 júniusától a Fővárosi Vízművek Zrt.-t bízta meg.

A BKSZTT – amely az FCSM Zrt. szennyvízhálózatához műszakilag közvetlenül kapcsolódik – mechanikai és biológiai úton történő szennyvíztisztítást végez, továbbá már az ún. III. tisztítási fokozat is működik. Utóbbi a nitrogén- és foszfor (P) eltávolítását jelenti, amelynek hatásfoka eléri az összes nitrogén (TN) esetében a 80%–os, összes foszfor (TP) esetében pedig a 70-80%-os hatásfokot.

Megjegyzézzük, hogy míg a nitrogén- és foszforvegyületek felszíni vízbe való jutása – annak mértéktől függően – környezetre káros, így határértékként is szabályozott folyamat, addig a szennyvíziszapba kerülő nitrogén- és foszforvegyületek mezőgazdasági hasznosítása – illetve e műszaki lehetőség feltételeinek hosszú távú megőrzése – stratégiai jelentőségű érdek, feladat.

A tisztított szenny- és csapadékvizek befogadója a domborzati adottságok miatt a Duna, illetve a Ráckevei (Soroksári)-Duna ág. Budapesten naponta átlagosan mintegy 400-550 ezer m³ szennyvíz érkezik a három szennyvíztisztító telepre. A BKSZTT a 2010-es üzembevételü működése óta a fővárosi szennyvizek fele helyett már szinte a teljes mennyiség tisztítottan kerül a Dunába.

Az egyes szennyvíztisztító telepekre érkező szennyvizek mennyiségét 2022-ben a 13. ábra mutatja.
Látható, hogy az összesen kezelt mintegy 142 millió m³ szennyvíz több, mint fele a Budapesti Központi Szennyvíztisztító Telepen, közel harmada az Észak-pesti Szennyvíztisztító Telepen és kicsivel több, mint 12%-a a Déli-pesti Szennyvíztisztító Telepen kerül megítélésekre.

A 2020 decemberében befejeződött Budapest Komplex Integrált Szennyvízelvezetése (BKISZ) projekt eredményeképp – a BKSZTT üzembe helyezésével – a főváros szennyvizeinek közel 100%-a már tisztítottá vált.

Mindhárom telep jó hatásfokkai működik – a szennyvíztisztító telepek befolyó és elfolyó vízminőségi adatait a Függelék 3. táblázata és 4. táblázata részletezi.

Budapesti Központi Szennyvíztisztító Telep

A BKSZTT üzembe helyezése előtti tisztítatlan vízbevezetés olyan hatású volt a Duna öntiszuló képességére, hogy az már több halfaj kipusztulásának veszélyével is fenyegetett. A BKSZTT jelenlegi működtetésével ezek a kockázatok megszűntek, a Duna élővilága már képes megújulni.

A BKSZTT Magyarország legnagyobb olyan szennyvíztisztítást végző létesítménye, amely több egyedi, környezetbarát műszaki megoldást alkalmaz (a fizikai, kémiai, biológiai tisztítás elemeit ötvöző zárt, tetővel fedett technológiája révén). Ugyanakkor az esős hónapokban – az egyesített rendszerű csatornahálózat miatt – nagy mennyiségű szilárd lebegőanyag mosódik a hálózatba, ami jelentősebb (hidraulikai) terhelést és energiafogyásst, illetve egyéb költség növekedést eredményezhet.

A BKSZTT hidraulikai kapacitása – előmechanikai tisztítás esetén – 900.000 m³/nap, előülepítés esetén 630.000 m³/nap, biológiai tisztítás esetén 525.000 m³/nap.

A lebegőanyag tekintetében a telep kapacitásai kihasználtsága 100% feletti, ami azt jelenti, hogy több lebegőanyag érkezik a telepre (kb. 77 t/nap), mint amennyit a telep tisztítási kapacitásának tervezésénél (60 t/nap) vettek figyelembe. A trendszerű lebegőanyag túlterhelés az üzemeltetési idő előrehaladtával súlyos problémák kialakulásához vezethet:

- iszapvonalai berendezések esetében élettartam csökkenés, melynek hatására fokozódó rekonstrukcióigény, felújítási és pótlási igény lép fel;
- növekvő primer iszapot adódó biogáz-termelésnövekedés, melynek következménye lehet a teljes biogáz rendszer fejlesztési igénye;
- rothasztási kapacitás bővítésének szükségessége.

A fentiekből az következik, hogy a problémák megoldásához komplex beruházásokra és fejlesztésekre lehet szükség az iszap- és biogáz vonalon. Ez ugyanakkor az iszapelvételtől a gázhasznosításig a teljes technológia szinkronizálását jelenti az új igényekhez igazítva.

Függelék F.4.
A tisztítótelep átlagos tisztítási hatásfokát a 14. ábra mutatja.

14. ábra: A BKSZTT átlagos tisztítási hatásfoka 2022-ben (Adatforrás: Fővárosi Vízművek Zrt.)

Fentieken túl fontos hangsúlyozni, hogy a szennyvíztisztító telep folyamatos üzemének biztosítása érdekében az üzemeltető (Fővárosi Vízművek Zrt.) az elmúlt években – a Fővárosi Önkormányzat pénzügyi közreműködésével – számos olyan felújítást végzett, amelyek havária jellegűek, azaz csak halaszthatatlan felújítások voltak.13

Ezzel szemben a folyamatos üzemű, és így folyamatos amortizációjú telepen nem havária jellegű, hanem folyamatos és – a beérkező szennyezőanyagok változását követő, gazdaságosabb működtetést elősegítő – tervezett beruházások megvalósítására, valamint fenntartható finanszírozás biztosítására lenne szükség.

Észak-Pesti Szennyvíztisztító Telep

A keletkező szennyvíziszap kezelésére egy – könyezetvédelmi és bioenergetikai beruházás eredményeképp – biogáz üzem is épült, amely biztosítja a telephely elektromos és hőnergia szükségletét. A telepen 2022-ben az elfolyó tisztított víz mozgási energiáját visszanyerő (rekuperációs) vizerőmű is üzembe helyezésére került.

A telepen folyamatosan történnek fejlesztések és korszerűsítések. 2022-ben megtörtént a Biológia - "A" vonal levőgőtő rendszer korszerűsítésének I. üteme, a Biológia - "B" vonal levőgőtő membránok cseréje, illetve a Biológia gépészeti felújítások.

Table:

<table>
<thead>
<tr>
<th>Paraméter</th>
<th>mennyiség [mg/l]</th>
</tr>
</thead>
<tbody>
<tr>
<td>KOI</td>
<td>51</td>
</tr>
<tr>
<td>BOI</td>
<td>125</td>
</tr>
<tr>
<td>TSS</td>
<td>21,8</td>
</tr>
<tr>
<td>NH4N</td>
<td>25</td>
</tr>
<tr>
<td>TN</td>
<td>47,2</td>
</tr>
<tr>
<td>TP</td>
<td>64,2</td>
</tr>
<tr>
<td>KOI</td>
<td>14,3</td>
</tr>
<tr>
<td>BOI</td>
<td>7,8</td>
</tr>
<tr>
<td>TSS</td>
<td>1,5</td>
</tr>
</tbody>
</table>

Diagram:

- **KOI**: 51
- **BOI**: 125
- **TSS**: 21,8
- **NH4N**: 25
- **TN**: 47,2
- **TP**: 64,2
- **KOI**: 14,3
- **BOI**: 7,8
- **TSS**: 1,5
Dél-Pesti Szennyvíztisztító Telep

Szennyvíziszap

A szennyvíztisztítás során folyamatosan jelentős mennyiségű szennyvíziszap keletkezik, aminek hasznosítása, illetve kezelése után annak ártalommentes elhelyezéséről gondoskodni kell. A vizek hasznosítását, védelmét és kártételeinek elhárítását szolgáló tevékenységekre vonatkozó általános szabályok 14, a Szennyvíziszap kezelési és hasznosítási stratégia 2018-2023 17 alapján törekedni kell a biológiai lebomló szervesanyag-tartalmú hulladékok (szennyvíziszap) lerakókban történő elhelyezésének, illetve deponálásának fokozatos csökkentésére.

A fővárosi szennyvíziszapok lebontási folyamata után a stabilabb állapotúvá vált szennyvíziszapot a további felhasználás megkönnyítése érdekében vízeltelenítik, és jelenleg hulladéklarókban helyezik el, vagy komposztálás után hasznosítják, vagy deponálják. Budapesten mindhárom szennyvíztisztító telepen biogázt is előállítanak, a keletkező villamos- és/vagy hőenergiát a telepen használják fel, illetve az FCSM Zrt. részéről (Észak-Pesti Szennyvíztisztító Telep) a Budapesti Elektromos Művek Nyrt. hálózatára is van lehetőség kitáplálásra, melyet más FCSM Zrt. által üzemeltett fogyasztóhelyen kivételeznek.

A három fővárosi szennyvíztisztító telepen folyamatosan keletkező jelentős mennyiségű szennyvíziszap átmeneti elhelyezésén és kezelésén túl Budapest – és ezért azonosan Magyarország – alapvető érdeke a hosszú távú, műszaki szempontokból is optimális hasznosítás. Az optimális hasznosítási körülményt a keletkezés helyszínéhez minél közelebb kialakított és minél magasabb környezeti haszonnal járó (például a stratégiai jelentőségű foszforvégyületek további hasznosítási lehetőségét biztosító), minél kisebb költséggel működtethető – akár középtávon megtérülő – beruházás jelentheti. A telepek szennyvíziszap minőségi adatait a Függelék 5. táblázata tartalmazza.

Nem közművel összegyűjtött háztartási szennyvíz

A nem közművel összegyűjtött háztartási szennyvíz (a települési folyékony hulladék) olyan háztartási szennyvíz, amelyet ártalmatlanítás céljából a keletkezés helyéről vagy átmeneti tárolóból – közcsoportára való beköltés, vagy a helyben történő tisztítás és befogadóba vezetés lehetőségének hiányában – gépjárművel szállítanak el. A nem közművel összegyűjtött háztartási szennyvíz döntő mennyisége a vezetékes vízzel ellátott, de nem csatornázott, vagy gerincvezetékre rá nem csatlakozott területeken képződik.

A KSH adatok alapján – az ivóvízellátásba bekapcsolt lakások számához képest – Budapest csatornázottságának mértéke 2021-ben 97,2 %-os volt.
A Fővárosi Településtisztasági és Környezetvédelmi Kft. – amely a nem közművel összegyűjtött háztartási szennyvíz begyűjtésére kizárólagos köszolgáltatói jogosultsággal rendelkezik – 2022-ben összesen mintegy 177 ezer m³-t gyűjtött be (lakossági 123,65 ezer m³, közületi 53,27 ezer m³), ami kevesebb, mint az előző években volt.

Csökkent a lakosságtól beszállított szennyvíz mennyisége (2021-hez képest mintegy 15 %-kal) és jelentősen csökkent a gazdasági szereplőktől beszállított szennyvizek mennyisége (2021-hez képest 40 %-kal). A begyűjtött háztartási szennyvizeket a Fővárosi Katasztrolavédelmi Igazgatóság által engedélyezett leeresztőhelyeken – részben az FCSM Zrt. által üzemeltetett csatornaaknákba, részben közvetlenül a BKSTT leeresztőhelyén – engedik le, majd az így a közművel összegyűjtött szennyvíz ként kerül a szennyvíztisztító telepekre.

Csapadékvíz-gazdálkodás

A csapadékvizek visszatartása, az összegyűjtött vizek hasznosítása, kezelése – amelyek egyénileg megalakulóan családi házakhoz, vagy nagyobb irodaparkokhoz kapcsolhatók – összességükben Budapesten elenyésző mértékűek.

A főváros területén egységes, központilag szabályozott, vagy kezelt csapadékvíz-gazdálkodásról – tekintettel a jelenlegi szabályozási környezet hiányosságaira – gyakorlatilag nem beszélhetünk.

A budapesti kisvízfolyások és az ütvízeltenlő árkok egy része a Fővárosi Önkormányzat tulajdonában vannak, azok üzemeltetését közzelőtt szervezetei (FCSM Zrt. és Budapest Közút Zrt.) végzik, azonban jelentős hosszúságú hálózat van kerületi önkormányzati tulajdonban, kezelésben és üzemeltetésben is. A hálózat tulajdoni és kezelői megosztottsága, valamint a kerületi önkormányzatok tulajdonában lévő zárt csapadékcatorna-hálózatok nyilvántartásának hiányossága a főváros csapadékvíz-gazdálkodásának fejlesztése során problémákat okoz.

A fejlesztés első lépésében mindenképen átfogó felmérés szükséges. Továbbá a jelenlegi szabályozási környezet felülvizsgálata szükséges, ugyanis a Magyarország helyi önkormányzatairól szóló törvény alapján a fővárosi önkormányzat feladata a vízgazdálkodás, a vízkárelhárítás biztosítása, valamint a vízgazdálkodásról szóló törvény szerint a település belterületén a csapadékvízzel történő gazdálkodást
szintén a fővárosi önkormányzat feladatának jelöli meg, ugyanakkor a szabályozások a feladat ellátáshoz nem rendelnek állami költségvetési forrást.

További probléma, hogy a víziközmű-szolgáltatásról szóló törvény20 értelmében a csapadékcsatorna hálózat nem minősül víziközműnek, így szolgáltatási díj nem vethető ki, bár a diárendszer meghatározása ebben az esetben jóval bonyolultabb, és kevésbé egzakt, mint például az ivóvíz szolgáltatásnál.

Budapest csatornázásának kezdete óta a települési vízzáró felületek arányának növekedése, a felületi érdesség csökkenése tapasztalható, ami a felületem rejtett csapadék lefolyási arányának (lefolyási hányad) növekedését, és így a magasabb vízhozam-csúcsok kialakulását okozzák.

A nagy intenzitású csapadékesemények okozta károk okozhatók a csapadékvíz hasznosítását és hasznosulását helyezi előttérbe, aminek számos további környezeti előnye van. A 2017-ben, 2019-ben és 2021-ben megtartott Országos Települési Csapadékvíz-gazdálkodási Konferencia több ajánlást is megfogalmazott a témával kapcsolatban21.

A csapadékvízekerkezél történő gazdálkodás jellemzően nem is a vízelvezető rendszerben, hanem inkább a keletkezés helyén kellene, hogy megvalósuljon. Az összegyűjtött vizek locsolásra, szürke vízként történő hasznosulást (például WC öblítésére), a burkol felületek tisztítására történő felhasználás, nem csak a vízelvezető rendszer terhelését csökkenti, hanem az ivóvizek felhasználását is.

A csapadékvíz gondozását szempontjából kiemelkedően fontos lehet, hogy már a tervezés során vegyünk figyelembe, illetve tervezzük meg a zöld és kék infrastruktúra, összhangban a szürke infrastruktúra – a közlekedés és a közműellátotság-
biztosítás (az utak, a vasutak, a víz- és szennyvízhatlózat, az elektromos és egyéb távvezetékek mellett a termékvezetékek) tartoznak utóbbi fogalomkörbe – elemeivel.

A főváros területén található záportározók adatait az F.6 Függelék részletezi.

A felszíni vízfolyások esetén megvalósult vízhozam szabályozási módszerek (pl. a Naplás-tó esetében) jellemzően csak az időszakos vízmennyiség különbségek kiegyenlítését, mintsem azok hasznosítását céllozzák meg. Azonban a záportározók kialakítása vagy a vízfolyások mentén történő vízvisszatartás elsősorban ökológiai és komplex szemléletű vízgazdálkodási beruházás kell, hogy legyen, amely mind a környezeti állapot javítását, mind a lakosság egyéb igényeinek (horgászat, zöldfelület iránti igény, öntözés, természet-közi tanösvény stb.) kielégítését szolgáljon. Budapest területén kevés állóvíz található, ezek számának növelésében a rekreációs funkció től esetenként szerepet kaphatna az árvízcsúcs csökkentési funkciót is betöltő víztározók sora.

A budapestiek véleménye a vízfogyasztással és a csapadékvízé képesítésével kapcsolatban

A felmérés szerint a budapestiek közel kétharmada általában csapvizet iszik, egyharmada a palackos vízet részesíti előnyben, 4 százaléknak pedig nincs jellegzetes szokása.

<table>
<thead>
<tr>
<th>Általában csapvizet iszik</th>
<th>63</th>
</tr>
</thead>
<tbody>
<tr>
<td>Palackozott vízet részesít előnyben</td>
<td>33</td>
</tr>
<tr>
<td>Nincs jellegzetes fogyasztási szokása</td>
<td>4</td>
</tr>
</tbody>
</table>

[16. ábra: Csapviz és palackozott vízfogyasztás százalékos megoszlása Budapesten, % (2021)]

Szintén a MEDIÁN Közvélemény- és Piackutató Kft. közreműködésével 2022-ben végzett telefonos, reprezentatív közvélemény-kutatást a manapság nagy problémát jelentő intenzív csapadékeseményekkel, illetve a csapadékvíz visszatartásával kapcsolatban.

A budapestiek többsége szerint gyakoriibb váltak a nagy esőzéseket az elmúlt tíz évben.
A csapadékvíz-visszatartás lehetőségéről a budapestiek bő harmada hallott; a családi házban élők jellemzőbben, mint a lakásban lakók.

18. ábra: A csapadékvíz-visszatartás lehetőségének ismertsége, % (2022)

A lakosság egyharmadának van lehetősége gyűjteni az esővizet, de csak 25 százaléka gyűjti.

19. ábra: A csapadékvíz gyűjtők aránya, % (2022)

A csapadékvíz-gazdálkodás
A lakásban élők jóval kevésbé látnak lehetőséget az esővíz gyűjtésére, mint a családi házban (sorházban, ikerházban) lakók, de az utóbbi csoportban is csupán 27 százalék azok aránya, akik úgy gondolják, nem tudják gyűjteni az esővizet.

Az intenzív esőzések következtében a válaszadók közel egyharmadának keletkezett már anyagi kára és több, mint kétharmaduk tapasztalt közlekedési fennakadásokat.

A MEDIÁN Közvélemény- és Piackutató Kft. közreműködésével 2023-ben végzett telefonos, reprezentatív közvélemény-kutatása alapján az intenzív esőzések következtében a válaszadók már csak közel egynegyedének (28%) keletkezett anyagi kára.

A családi házban, ikerházban vagy sorházban élők 41 %-a alkalmazna saját ingatlanán szikkasztási megoldást a csapadékvíz helyben tartásának érdekében. Kimagasló arányban nyitottak erre a 30-39 évesek, azonban az életkor előrehaladával folyamatosan csökkent az alkalmazók aránya.
Intézkedések

Vízjárás, árvízvédelem

A Duna mértékadó árvízszintjét 2015. január 1-jei hatályba lépéssel módosította a vonatkozó BM rendelet, amelynek eredményeképp a korábbi mértékadó árvízszintek a főváros középső és északi részén átlagosan 81 cm-rel – de van ahol 120 cm-rel – lettek magasabbak, míg a déli szakaszon csökkentették azokat. A mértékadó árvízszintek felülvizsgálata a belügyminiszter hatévenként ismétlődő feladata23.

Ivóvízellátás

A budapesti ivóvízellátó-hálózat és a kapcsolódó létesítmények fejlesztését a Fővárosi Vízművek Zrt. – a vonatkozó törvényi előírás szerint víziközmű-rendszereként tizenöt éves időtávra készült – gördülő fejlesztési terv alapján végez, amelyet a Magyar Energetikai és Közmű-szabályozási Hivatal (MEKH) hagy jóvá. A tervezés célja, hogy a víziközmű-szolgáltatási ágazat közmű-vagyonának műszaki állapota megfelelő színvonalú legyen ahhoz, hogy a víziközmű-szolgáltatás folyamatosan és költséghatékonyan biztosítható legyen.

A Fővárosi Önkormányzat víziközmű vagyonelemeit – vagyonkezelési szerződés alapján – a Fővárosi Vízművek Zrt. üzemelteti, így Budapest ivóvízellátó rendszere vonatkozó Görödülő fejlesztési terv felújítási és pótlási tervét a Fővárosi Vízművek Zrt.-nek kell benyújtania, míg a beruházási tervet az ellátásért felelős Fővárosi Önkormányzat készíti el és nyújtja be a MEKH-nek.

Szennyvízkezelés

A 2013-ban indított Budapest Komplex Integrált Szennyvízelvezetése (BKISZ) projekt – ami 16 fővárosi kerületet, továbbá Budárszót érintette – 2020 decemberében lezárult. A projekt keretében közel 270 km csatorna, 23 darab átemelő telep, továbbá 15 ezer darab lakossági bekötés épült, ezzel 42 ezer fővárosi lakos élete vált
komfortosabbá. A további tervezett fejlesztések listáját a Görülıő Fejlesztési Terv (2023-2037) tartalmazza.

A Fővárosi Önkormányzat tulajdonát képező szennyvízelvezető és -tiszítő rendszert a Fővárosi Csatornázási Művek Zrt. bérleti és üzemeltetési (keret)szerződés alapján üzemelteti (kivéve a BKSZTT-t; lásd később). Így Budapest szennyvízelvezető és -tiszítő rendszerére vonatkozó Görülıő fejlesztési terv felüjítási és pótlási tervét a Fővárosi Csatornázási Művek Zrt., míg a beruházási tervet az ellátásért felelős Fővárosi Önkormányzat készíti el és nyújtja be a MEKH-nek. Tekintettel arra, hogy Budapest Főváros szennyvízelvezető és -tiszítő víziközmű rendszerének tulajdonjoga megoszlik az ellátásért felelős Fővárosi Önkormányzat és a Fővárosi Csatornázási Művek Zrt. között, így a felújítási és pótlási terv a tulajdonjogi állapotnak megfelelő bontásban készül el.

A Fővárosi Közgyűlés 2022. szeptember 28-i ülésén határozott a 2023-2037 időszakra szóló szennyvízelvezetéssel és -tiszítással kapcsolatos Görülıő fejlesztési tervt MEKH-nek történő benyújtásáról.

Cspadékvíz-gazdálkodás

Az EU Víz Keretirányelveben (VKI) megfogalmazott célkitűzések elérése, megvalósítása érdekében stratégiai tervet, intézkedési programot kell készíteni. A VKI végrehajtásának első lépéseiként Magyarország első vízgyűjtő-gazdálkodási teve (VGT1) 2010 áprilisában készült el, amelynek kormányhatározattal történő elfogadása 2012-ben történt meg.

A Nemzeti Vízstratégia – ami konzultációs vitaanyagként 2013-ban került közzétételere – vízpolitikai célkitűzései között szerepel a települési és lakossági nem ivóvíz célú vízfelhasználás, valamint a csapadékvíz helyben tartásának, hasznosításának elősegítése.

A 2015. július 16-án hatályba lépő törvénymódosítás eredménye a települési önkormányzatok kötelező feladatai a csapadékvíz-gazdálkodást a település belterületén.

A csapadékvíz-gazdálkodás intézményi rendszerére és a díjmegállapítás szabályozására a 2022 áprilisában elfogadott Magyarország 2021. évi vízgyűjtő-gazdálkodási teve (VGT3) tartalmaz – a gazdaság-szabályozási koncepciójában – javaslatot. A projekt vezető partnere a XII. kerületi önkormányzat, a Fővárosi Önkormányzat mellett projektpartnerként vesz részt az együttműködésben a VII. és XVIII. kerületi önkormányzat is.
További javasolt feladatok

- Árvízvédelmi védvonalak magassági, keresztmetszeti és geotechnikai megerősítése a hatályos rendeletnek megfelelően;
- vízelvezető csatornák, kisvízfolyások revitalizációja;
- csapadékelvezetés jogszabályi hátterének kidolgozása;
- települési és lakossági csapadékvíz-hasznosítás, -visszatartás, -elvezetés és -kezelés (csapadékvíz-gazdálkodás) stratégiai tervezése és támogatási rendszerének kidolgozása;
- a tervezéshez, méretekéshez alkalmazott csapadékfüggvények felülvizsgálata;
- ivóvízcső-hálózat fejlesztési programjának folytatása;
- a szélsőségesen alacsony, illetve magas dunai vízállás mellett is megfelelő mennyiségű és minőségű vízmennyiség biztonságos kitermelése érdekében a Fővárosi Vízművek Zrt. által kidolgozott külfelüjlítési program támogatásáról gondoskodni és az árvíznek kitett területen elhelyezkedő víztermelő kutak előírás-elleni védelmét a jövőben fokozni kell;
- a vezetékes ivóvízzel ellátott, de még csatornarákötéssel nem rendelkező ingatlanok esetében a rákötés ösztönzése, vagy a csatornahálózat kiépítése;
- szennyvízkezelés korszerűsítésének folytatása mindhárom budapesti telepen, különös tekintettel arra, hogy a Budapesti Központi Szennyvíztisztító Telepen az érkező szennyvíz magas lebegőanyag tartalmának túlterhelése miatt komplex beruházásokra és fejlesztésekre lenne szükség az iszap- és biogáz vonalon. Ez egyben az iszapelvételből a gázhasznosításig a teljes technológia szinkronizálását jelentené az új igényekhez igazítva
Függelék

F. 1.

22. ábra: Jelentősebb dunai árhullámok tetőzése Budapesten
(Forrás: http://www.kdvizig.hu/index.php/vizrjz/vizrjz-helyzetkep)

1. táblázat: 2022. évi átlagos vízminőségi adatok kerületenként fogyasztói csapokon (Forrás: Fővárosi Vízművek Zrt.)

<table>
<thead>
<tr>
<th>Kerület</th>
<th>I.</th>
<th>II.</th>
<th>III.</th>
<th>IV.</th>
<th>V.</th>
<th>VI.</th>
<th>VII.</th>
<th>VIII.</th>
<th>IX.</th>
<th>X.</th>
<th>XI.</th>
<th>XII.</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. kerület</td>
<td>5.05</td>
<td>3.05</td>
<td>4.05</td>
<td>6.05</td>
<td>7.05</td>
<td>8.05</td>
<td>9.05</td>
<td>10.05</td>
<td>11.05</td>
<td>12.05</td>
<td>13.05</td>
<td>14.05</td>
</tr>
<tr>
<td>II. kerület</td>
<td>5.03</td>
<td>3.03</td>
<td>4.03</td>
<td>6.03</td>
<td>7.03</td>
<td>8.03</td>
<td>9.03</td>
<td>10.03</td>
<td>11.03</td>
<td>12.03</td>
<td>13.03</td>
<td>14.03</td>
</tr>
<tr>
<td>III. kerület</td>
<td>5.01</td>
<td>3.01</td>
<td>4.01</td>
<td>6.01</td>
<td>7.01</td>
<td>8.01</td>
<td>9.01</td>
<td>10.01</td>
<td>11.01</td>
<td>12.01</td>
<td>13.01</td>
<td>14.01</td>
</tr>
<tr>
<td>IV. kerület</td>
<td>5.09</td>
<td>3.09</td>
<td>4.09</td>
<td>6.09</td>
<td>7.09</td>
<td>8.09</td>
<td>9.09</td>
<td>10.09</td>
<td>11.09</td>
<td>12.09</td>
<td>13.09</td>
<td>14.09</td>
</tr>
</tbody>
</table>

(Vezetéki paraméter: pH, alkalinitas, oxydant, reduktant, klorid, amoniac, fénymolékulák, darabkezű anyagok, klorzworld, szennyezőanyagok, mesterséges anyagok, sókoncentráció, foszfórikum, magneszium, kalcium, potyvalog, vízhőmérséklet, vízfőlépés, víziadag, ásványi anyagok, vízminőség.)
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Árvízvédelem, ivóvízellátás, szennyvízkezelés és csapadékvíz-gegyűjtés</td>
<td>8</td>
</tr>
<tr>
<td>Függelék</td>
<td>310</td>
</tr>
</tbody>
</table>

Megjegyzés:
- A számok az országos szinten kerültek összegzésre.
- Az adatok forint alapú.
- A forint átváltása az eurára való értékesítésre nem vonatkozik.

Feltételek:
- A számok a védett árnyék alapján kerültek összegzésre.
- Az euró átváltása a forintra való értékesítésre nem vonatkozik.

Az adatok forint alapúak:
- Az euró átváltása a forintra való értékesítésre nem vonatkozik.

Az euró átváltása a forintra való értékesítésre nem vonatkozik.

Az adatok forint alapúak:
- Az euró átváltása a forintra való értékesítésre nem vonatkozik.

Az euró átváltása a forintra való értékesítésre nem vonatkozik.

Az adatok forint alapúak:
- Az euró átváltása a forintra való értékesítésre nem vonatkozik.
<table>
<thead>
<tr>
<th>Kerület</th>
<th>Utca</th>
<th>Szakaszhatár</th>
<th>Méret (cm)</th>
<th>Hossz (fm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Ortág-árok megsapárolás kölmlő csatorna létesítése</td>
<td>I. Dőbreterei tér út mezőnyen kívül helyezett ideiglenes záporkömlő</td>
<td>Ø80</td>
<td>489</td>
</tr>
<tr>
<td>II.</td>
<td>Szépvölgyi út</td>
<td>Kolosy tér - Csejtei u.</td>
<td>Ø60-80</td>
<td>166 és 196</td>
</tr>
<tr>
<td>III.</td>
<td>Sarkadi u. – Királyok utja</td>
<td>Hatvany u. – Barát patakok</td>
<td>Ø140-150</td>
<td>248 és 311</td>
</tr>
<tr>
<td>IV.</td>
<td>Püspököfürdő u. – Királyok utja</td>
<td>Napfény út – Bivalyos u.</td>
<td>Ø100-1050</td>
<td>311 és 410</td>
</tr>
<tr>
<td>V.</td>
<td>Vécsey utca</td>
<td>Szent l. u. – Mikés u.</td>
<td>Ø60-800</td>
<td>166 és 196</td>
</tr>
<tr>
<td>VI.</td>
<td>Vécsey köz</td>
<td>Vécsey u. 101. – Dessewffy u.</td>
<td>Ø50</td>
<td>75</td>
</tr>
<tr>
<td>VII.</td>
<td>Vécsey utca</td>
<td>Vécsey u. – Mikszáth u. – Vécsey u.</td>
<td>Ø160</td>
<td>1475</td>
</tr>
<tr>
<td>VIII.</td>
<td>Fő utca</td>
<td>Attila u. – Káposztásmegyeri u.</td>
<td>Ø100-1050</td>
<td>225</td>
</tr>
<tr>
<td>IX.</td>
<td>Káposztásmegyeri utca</td>
<td>Fő u. – Fénycső u.</td>
<td>Ø80-8100</td>
<td>97 és 120</td>
</tr>
<tr>
<td>X.</td>
<td>Nádor utca</td>
<td>Deák F. u. – Türk u.</td>
<td>Ø136</td>
<td>590</td>
</tr>
<tr>
<td>XI.</td>
<td>Vécsey utca</td>
<td>Nádor u. – Attila u.</td>
<td>Ø80</td>
<td>150</td>
</tr>
<tr>
<td>XII.</td>
<td>Türk I. utca</td>
<td>Nádor u. – Türk u.</td>
<td>Ø136</td>
<td>167</td>
</tr>
<tr>
<td>XII.</td>
<td>Klára utca</td>
<td>Tél u. – Ösz u.</td>
<td>Ø40</td>
<td>131</td>
</tr>
<tr>
<td>XIV.</td>
<td>Pintér József utca</td>
<td>Váci u. – Megyeri u.</td>
<td>Ø50</td>
<td>396</td>
</tr>
<tr>
<td>XV.</td>
<td>Berni utca</td>
<td>Gyapjaszóvó u. – Madári u.</td>
<td>Ø80</td>
<td>503</td>
</tr>
<tr>
<td>XVI.</td>
<td>Madári utca</td>
<td>Berni u. – Berlini u.</td>
<td>Ø60-80</td>
<td>525</td>
</tr>
<tr>
<td>XVII.</td>
<td>Berda J. utca</td>
<td>Aradi u. – Pozsonyi u.</td>
<td>Ø160</td>
<td>1475</td>
</tr>
<tr>
<td>XVIII.</td>
<td>Pozsonyi utca</td>
<td>Berda J. u. – Erzsébet u.</td>
<td>Ø140</td>
<td>444</td>
</tr>
<tr>
<td>XIX.</td>
<td>Garam utca</td>
<td>Duna sor – Váci u.</td>
<td>Ø40</td>
<td>135</td>
</tr>
<tr>
<td>XX.</td>
<td>Lővő I. utca</td>
<td>József u. – Árpád u.</td>
<td>Ø100</td>
<td>124</td>
</tr>
<tr>
<td>XXI.</td>
<td>Liszt Ferenc tér</td>
<td>Andrásy u. – Király u.</td>
<td>Ø120</td>
<td>254</td>
</tr>
<tr>
<td>XXII.</td>
<td>Király utca</td>
<td>Király tér – Király utca</td>
<td>Ø120</td>
<td>103</td>
</tr>
<tr>
<td>XXIII.</td>
<td>Akácfa utca</td>
<td>Dohány u. – Rákóczi út</td>
<td>Ø200</td>
<td>150</td>
</tr>
<tr>
<td>XXIV.</td>
<td>Dohány utca</td>
<td>Király tér – Erzsébet krt.</td>
<td>Ø160</td>
<td>42</td>
</tr>
<tr>
<td>XXV.</td>
<td>Dohány utca</td>
<td>Akácia u. – Kertész u.</td>
<td>Ø200</td>
<td>102</td>
</tr>
<tr>
<td>XXVI.</td>
<td>Kertész utca</td>
<td>Kertész utca – Weszelyi út</td>
<td>Ø120</td>
<td>430</td>
</tr>
<tr>
<td>XXVII.</td>
<td>Király utca</td>
<td>Kertész utca – Weszelyi út</td>
<td>Ø160</td>
<td>261</td>
</tr>
<tr>
<td>XXVIII.</td>
<td>Wesselényi út</td>
<td>Király tér – Erzsébet krt.</td>
<td>Ø120</td>
<td>103</td>
</tr>
<tr>
<td>XXIX.</td>
<td>Dózsa György út</td>
<td>Jobbágy u. – Látvánameze u.</td>
<td>Ø120</td>
<td>63</td>
</tr>
<tr>
<td>XXX.</td>
<td>Jobbágy út</td>
<td>Murányi u. – Dózsa György út</td>
<td>Ø120</td>
<td>251</td>
</tr>
<tr>
<td>XXXI.</td>
<td>Verseny utca</td>
<td>Baross tér – Jobbágy u.</td>
<td>Ø136</td>
<td>138</td>
</tr>
<tr>
<td>XXXII.</td>
<td>Golgota utca</td>
<td>Golgota u. – Bláthy Öttő u.</td>
<td>Ø50</td>
<td>562</td>
</tr>
<tr>
<td>XXXIII.</td>
<td>Mária utca</td>
<td>Gutenberg tér – Baross u.</td>
<td>Ø200</td>
<td>414</td>
</tr>
<tr>
<td>XXXIV.</td>
<td>Somogyi Béla utca</td>
<td>Blaha Luža tér – Gutenberg tér</td>
<td>Ø200</td>
<td>340</td>
</tr>
<tr>
<td>XXXV.</td>
<td>Gutenberg tér</td>
<td>Somogyi Béla u. – Mária u.</td>
<td>Ø200</td>
<td>70</td>
</tr>
<tr>
<td>XXXVI.</td>
<td>Stróbl Alajos utca</td>
<td>Asztalos S. u. - Lovarda</td>
<td>Ø180</td>
<td>855</td>
</tr>
<tr>
<td>XXXVII.</td>
<td>Jászberényi út</td>
<td>Kolozsvári u. – Maglódi út</td>
<td>Ø180</td>
<td>795</td>
</tr>
<tr>
<td>XXXVIII</td>
<td>Maglódi út</td>
<td>Jászberényi út – Téglalető u.</td>
<td>Ø165</td>
<td>701</td>
</tr>
<tr>
<td>XXXIX.</td>
<td>Maglódi út</td>
<td>Téglalető u. – Kocka u.</td>
<td>Ø136</td>
<td>185</td>
</tr>
<tr>
<td>XL.</td>
<td>Maglódi út</td>
<td>Kocka u. – Németvölgyi út</td>
<td>Ø80</td>
<td>371</td>
</tr>
<tr>
<td>XLI.</td>
<td>Bolgár utca</td>
<td>Cserkez u. – Gergely u.</td>
<td>Ø120</td>
<td>147</td>
</tr>
<tr>
<td>XLI.</td>
<td>Maglódi út</td>
<td>Akna u. – Szintimrey u.</td>
<td>Ø80</td>
<td>371</td>
</tr>
<tr>
<td>XLI.</td>
<td>Maglódi út</td>
<td>Szintimrey u. – Sibrók M. út</td>
<td>Ø40</td>
<td>145</td>
</tr>
<tr>
<td>XLI.</td>
<td>Kada utca</td>
<td>Sörgyár u. – Mádi u.</td>
<td>Ø120</td>
<td>142</td>
</tr>
<tr>
<td>XLI.</td>
<td>Budai Duna-parti főgyűjtő tehermentesítése</td>
<td>XI. Szent Gellért tér csatorna mentesítő leválasztás, XI. Hamrszabágyi út csatadékvíz szivattyútelep</td>
<td></td>
<td></td>
</tr>
<tr>
<td>XLI.</td>
<td>Máték király út</td>
<td>Kőbánya u. – Vilma u.</td>
<td>Ø50</td>
<td>438</td>
</tr>
<tr>
<td>XLI.</td>
<td>Hollók út</td>
<td>Ótvíz u. – Máték király út</td>
<td>Ø30</td>
<td>168</td>
</tr>
<tr>
<td>XLI.</td>
<td>Normafa út</td>
<td>Ótvíz u. – Alkony út</td>
<td>Ø50</td>
<td>320</td>
</tr>
<tr>
<td>XLI.</td>
<td>Németvölgyi út</td>
<td>Németvölgyi út 22. – Órbánehgyi út</td>
<td>Ø80</td>
<td>34</td>
</tr>
<tr>
<td>XLI.</td>
<td>Normafa út</td>
<td>Alkony út – Vilma u.</td>
<td>Ø80-100</td>
<td>776 és 452</td>
</tr>
<tr>
<td>XLI.</td>
<td>Németvölgyi út</td>
<td>Órbánehgyi út – Nagyenyed út</td>
<td>Ø100</td>
<td>291</td>
</tr>
<tr>
<td>XLI.</td>
<td>Diós árok utca</td>
<td>Susogó út – Béla király u.</td>
<td>Ø50</td>
<td>657</td>
</tr>
<tr>
<td>XLI.</td>
<td>Béke utca projekt III. ütem</td>
<td>Rákos-patak menti tehermentesítő gyűjtő építése</td>
<td>Ø250</td>
<td></td>
</tr>
<tr>
<td>Kerület</td>
<td>Utca</td>
<td>Szakaszhatár</td>
<td>Méret (cm)</td>
<td>Hossz (fm)</td>
</tr>
<tr>
<td>---------</td>
<td>------</td>
<td>--------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>XIII.</td>
<td>Lehet utca - Béke utcai gyűjtő felőlvétel</td>
<td>Frangepán utca – Róbert Károly krt. között</td>
<td>80/120</td>
<td>73</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Szemsey A. utca</td>
<td>Stefánia út – Ilka u.</td>
<td>80/120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Szemsey A. utca</td>
<td>Ilka u. – Gizella út</td>
<td>70/105</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Istvánmezői út</td>
<td>Dózsa György út – Szabó J. u.</td>
<td>Ø120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Szabó József utca</td>
<td>Istvánmezői út – Szabó J. köz</td>
<td>Ø120</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Szabó József köz</td>
<td>80/120</td>
<td>164</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nyírpalota utca</td>
<td>Madách ú. – Gergő u.</td>
<td>Ø180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Szerencs utca</td>
<td>Pattogos u. – Bánk u.</td>
<td>Ø50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Damjanich utca</td>
<td>Szerencs ú. – Arany J. u.</td>
<td>Ø60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fő út</td>
<td>Szőlőliget u. – Bem u.</td>
<td>Ø50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Bem utca</td>
<td>Fő út – Batthyány u.</td>
<td>Ø60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Károly S. utca</td>
<td>Anyácska u. – Pozsony u.</td>
<td>Ø100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pozsony utca</td>
<td>Károlyi S. u. – Rákóczi u.</td>
<td>Ø100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Erdőkerítő utca</td>
<td>Szentmihályi út – Zsókavár u.</td>
<td>Ø40-50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Csatornafejlesztések</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Üllői út</td>
<td>József u. – Tinodi u.</td>
<td>Ø60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Üllői út</td>
<td>kerülethatár – József u.</td>
<td>Ø60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Üllői út</td>
<td>Vas Gereben u. – Lenkei u.</td>
<td>Ø60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vas Gereben utca</td>
<td>Tartsay ú. – Üllői út</td>
<td>Ø60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Jahn F. utca</td>
<td>János F. u.54. – Üllői út</td>
<td>Ø60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aran utca</td>
<td>Üllői út – Móncz Zs. u.</td>
<td>Ø60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wekerletelep komplex fejlesztése</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>János utca</td>
<td>Helsinki út – Széchenyi u.</td>
<td>Ø60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>János utca</td>
<td>Helsinki út</td>
<td>Ø100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kossuth Lajos utca</td>
<td>Kende u. – Hosszú u.</td>
<td>Ø100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tunstád u. – Vasút sor</td>
<td>Brassó u. – Lázár u.</td>
<td>Ø100</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dél-pesti Szennyvízfisztó bevezető, Torontál utcai fogyút csatlakozás áramlástan felülvizsgálata, fejlesztése</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dunaparti fogyút tehermentesítése</td>
<td>I. Halász utca, I. Dobrentei tér, II. Bem tér, műtárgyak átépítése</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Budapest, egyesített rendszerű, kedvezőtlen lefolyású csatornáinak hidraulikai fejlesztése/javítása</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vegyszeradagoló állomások kiépítése – II. ütem</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Budapesti csatornahálózaton monitoring rendszer kiépítése</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Csatormalázat mérőrendszerének kialakítása</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3. táblázat: Észak-pesti

Szennyvíztisztító Telep befolyó és elfolyó vízminőségi adatai 2017. január 1. és 2022. december 31. közötti időszakban
(Adatforrás: FCSM Zrt.)

4. táblázat: Dél-pesti

Szennyvíztisztító Telep befolyó és elfolyó vízminőségi adatai 2017. január 1. és 2022. december 31. közötti időszakban
(Adatforrás: FCSM Zrt.)
5. táblázat: Az Észak-pesti, a Délpести és a Budapesti Központi Szennyvíziszap minőségi adatainak átlaga 2017-2021-ben (Forrás: Fővárosi Vízművek, FCSM Zrt.)

<table>
<thead>
<tr>
<th>Név</th>
<th>Észak-pesti Szennyvíztisztító Telep</th>
<th>Délpести szennyvíziszap</th>
<th>Budapesti Központi Szennyvíztisztító Telep</th>
</tr>
</thead>
<tbody>
<tr>
<td>As</td>
<td>mg/kg sz.a.</td>
<td>7.5</td>
<td>7.7</td>
</tr>
<tr>
<td>Cr</td>
<td>mg/kg sz.a.</td>
<td>30</td>
<td>28</td>
</tr>
<tr>
<td>Cu</td>
<td>mg/kg sz.a.</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Hg</td>
<td>mg/kg sz.a.</td>
<td>10</td>
<td>0.9</td>
</tr>
<tr>
<td>K</td>
<td>mg/kg sz.a.</td>
<td>20</td>
<td>13.2</td>
</tr>
<tr>
<td>Na</td>
<td>mg/kg sz.a.</td>
<td>20</td>
<td>13.2</td>
</tr>
<tr>
<td>Mg</td>
<td>mg/kg sz.a.</td>
<td>20</td>
<td>13.2</td>
</tr>
<tr>
<td>Mn</td>
<td>mg/kg sz.a.</td>
<td>20</td>
<td>13.2</td>
</tr>
<tr>
<td>Pb</td>
<td>mg/kg sz.a.</td>
<td>75</td>
<td>75</td>
</tr>
<tr>
<td>Se</td>
<td>mg/kg sz.a.</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>pH</td>
<td></td>
<td>8.7</td>
<td>8.9</td>
</tr>
<tr>
<td>ószenes koncepció</td>
<td></td>
<td>281</td>
<td>291</td>
</tr>
<tr>
<td>ószenes amennyi</td>
<td></td>
<td>281</td>
<td>291</td>
</tr>
<tr>
<td>ószenes nitrogén</td>
<td></td>
<td>281</td>
<td>291</td>
</tr>
<tr>
<td>ószenes foszfor</td>
<td></td>
<td>281</td>
<td>291</td>
</tr>
<tr>
<td>ószenes félig</td>
<td></td>
<td>281</td>
<td>291</td>
</tr>
<tr>
<td>ószenes szennyeződés</td>
<td></td>
<td>281</td>
<td>291</td>
</tr>
<tr>
<td>ószenes anyag</td>
<td></td>
<td>281</td>
<td>291</td>
</tr>
<tr>
<td>ószenes szennyeződés</td>
<td></td>
<td>281</td>
<td>291</td>
</tr>
<tr>
<td>ószenes anyag</td>
<td></td>
<td>281</td>
<td>291</td>
</tr>
<tr>
<td>ószenes szennyeződés</td>
<td></td>
<td>281</td>
<td>291</td>
</tr>
</tbody>
</table>

Forrás: Fővárosi Vízművek, FCSM Zrt.
F.6. A főváros területén található záportározók

- A III. kerületi Péterhegyi záportározó időszakos csapadékvíz visszatartásra épült. Hasznos térfogata: 10.000 m³.
- A III. kerület Kőbánya utcái árok mentén időszakos vízvisszatartású kisebb méretű záportározó. Hasznos térfogata kb. 1.600 m³.
- A III. kerület Péterhegyi lejtőnél a Remetehegyi áron található záportározó. Hasznos térképfaja 2.580 m³.
- A III. kerület Testvérhegyi záportározó zárt szelvényű (Bécsi út – Gölöncsér utca között a TESCO áruház mögött), a Testvérhegyi árok vízeit vezető késleltetve a Bécsi úti befogadóba. Hasznos térképfaja: 1.500 m³.
- A XI. kerületi Határ-árok záportározó, mely csak kritikus zápor esetén tart vissza csapadékvízet, állandóan nyitott (nyitott zsilipű árvízcsöcs-csőkkentő tározó), de méretezett fenékleűrítővel rendelkezik. Hasznos térképfaja 74.000 m³.
- A XI. kerület Kapocs utcá záportározó a lakópark környezete csapadékvizeinek visszatartására képes a Hosszútéri patakba csatlakozás előtt. Hasznos térképfaja kb. 2.500 m³.
- A XVI. kerületi Zúgó-patak záportározó maximálisan tározott víztérfogata: 693 m³.
- A XVI. kerületi Naplás-tó a Szilies-patak felső folyásának csapadékból származó ár hullámait képes csökkenteni az alsóbb szakaszok védelme érdekében. Ár felülete 16 ha, átlagmélysége: 2 m, folyamatos túlfolyással üzemelő mesterséges tó. Árvízi térképfaja 397.000 m³.

A Dél-pesti Szennyvíztisztító Telepen a Fővárosi Önkormányzat beruházásában 2019-ben elkészült a 2021-ben átadott záportározó kapacitásbővítése. A bruttó 3600 m³-es záporvíztározó medence 7000 m³-re történő felbővítésével a záporok esetén a csapadékkal hígított szennyvízből a szárazidei szennyvíz háromszorosa és a biológiai maximális tisztítási kapacitás különbsége a kibővített záportározóba vezethető. Az újonnal épített medencékbe ugyanolyan típusú szivattyúk kerültek beépítésre, mint a meglévőkben üzemelők, sőt a nagyobb üzembiztonság érdekében tartalék szivattyút is gondoskodott a vállalkozó. A záportározó, bővítése során polikarbonát lefedést kapott, így lehetővé vált a medencék légterének tisztításának összesen 4000 m³ buzzen szennyezett levegő elszivására. Az elszívott levegő ventilátor továbbítja a kőfogó épületbe, onnan pedig az előemelt szagátlanító biofilterbe.

- A terület elrendezéséből adódóan záportározónak tekinthető a XVIII. kerületi Flór Ferenc utcánál a Vedres Márk utcával szemben található záportározó.

Záportározók kialakítása várható a Tégla utcai árokknál a Váradi út – Kiscelli út közúti fejlesztéssel kapcsolatban. Az itt kialakítandó három záportározó össztérfogata 1.700 m³.
További tervezett záportározók:

- Az Észak-pesti Szennyvíztisztító Telepen az előmechanikai egységtől északra 7.000 m³ tározó tervezett, mely bővíthető II. ütemben saját előmechanikai kapacitással. Ez a III. ütemre összesen 14.000 m³ tározóval bővül fel.

- A Dél-pesti Szennyvíztisztító Telepen a Népjóléti árokban rácsmutatógyár beépítése tervezett a túlfolyó kevert szennyvizekből az undort keltő darabos szennyeződések eltávolítása céljából, valamint egy 35.000 m³/s tőrfgató új záporvíz tározó-üleptető létesítése is tervben van, amelyben az összegyűjtött kevert szennyvíz tisztítása természetközeli eljárásokkal történne.

Annak érdekében, hogy a szélsőséges csapadékok ne terheljék túl az elvezető hálózatot, helyi előntéseket okozva, új közterületi záportározók létesítése szükséges az arra alkalmas völgyfenéki helyszíneken. Ezek a területek sok esetben beépítésre kevésbé alkalmasak, kedvezőtlen adottságúak. A FCSM Zrt. a befogadói nyilatkozatok kiadása során az ingatanokon (magán és közintézményi ingatanokon) belüli tározás-kísérletet előírásával a lefolyás intenzitásának csökkentését igyekszik előmozdítani. Ugyanakkor megfelelő jogkör hiányában a magánterületen megépülő rendszerek ellenőrzésére nincs lehetőség.

A záportározók kialakítása komplex szemléletű vízgazdálkodási beruházás is lehet, amely mind a környezeti állapot javítását, mind a lakosság egyéb igényeinek (horgászat, zöldfelület iránti igény, természetközeli tanösvény stb.) kielégítését is szolgálhatja. Budapest területén meglehetősen kevés állóvíz található, ezek számának növelésében is szerepet kaphatna az árvízcsúcs csökkentési funkciót is betöltő víztározók létesítése.

A fejezet hivatkozásai

3. https://www.vizugy.hu/?mapData=Idosor#mapData
4. 18/2003. (XII. 9.) KvVM-BM együttes rendelet a települések ár- és belvíz veszélyeztetettségi alapon történő besorolásáról
6. a folyók mértékadó árvízszintjeiről szóló 74/2014. (XII. 23.) BM rendelet
7. Árvízi kockázati térképezés és stratégiai kockázatkezelési terv készítése (VIZITERV Environ Kft.)
10. Az ivóvíz minőségi követelményeiről és az ellenőrzés rendjéről szóló 5/2023. (I. 12.) Korm. rendelet 5. § (1) bekezdés
13 2022-ben a szennyvíztisztító telepen többek között az alábbi fejlesztések történtek meg: Saniter levegőztető rendszer felújítása, gázmotorok 20.000 üzemórás gépkönyv szerinti felújítássai, fölöslegesszűkítő kiváljítások felújítása (III. ütem), kisfeszültségű nagyáramú megszakítók cseréi (II. ütem), finomács felújítása, biológiai osztócsatorna (II. ütem), késes toltózárak cseréi (II. ütem), biológiai vonalakon daruk, darupályák villamos felújítása, SEDIPAC osztócsatorna betonfelületeinek felújítása, optikai kábel szerkezeti változtatásai, sűrűtő asztalok kapacitás bővítése (II. ütem), B1 jelű homokos csurgalékvíz visszavezetés kiépítése.

14 147/2010. (IV. 29.) Korm. rendelet a vizek hasznosítását, védelmét és kártételeinek elhárítását szolgáló tevékenységekre és létesítményekre vonatkozó általános szabályokról

16 1403/2017. (VI. 28.) Korm. határozat a “Szennyvíziszap Kezelési és Hasznosítási Stratégia (2018-2023)” elfogadásáról

18 Magyarország helyi önkormányzatairól szóló 2011. évi CLXXXIX törvény 23 § (4) bekezdése

19 a vízgazdálkodásról szóló 1995. évi LVII törvény 4. § (1) b) pontja

20 2011. évi CCIX. törvény a víziközmű-szolgáltatásról

22 A csapadékvizek keletkezésének helyén történő szabályozására alapvetően két módszer lehetséges. Az egyik a csapadékvíz talajba történő elszivárogtatása (gyepes, bokros területen, nyílt árokban, vízáteresztő burkolattal stb.), amivel a talajvíz utánpótlása biztosítható, illetve csökkenthető az elvezetendő csapadékvíz mennyisége. A másik megoldás a vizek ideiglenes tározókban való visszatartása (csatornahálózatban történő tározás, záportározók, ciszternák stb.), és késleltetett bevezetése a csatornahálózatba, amivel a hálózat túlerheltsége, a kialakuló árhullámok csúcsai csökkenthetők. Jellemző megoldások lehetnek: beszivárogtató cellák, zöldtetők, esőkertek, beszivárogtató kavicsdrének, fűborítású árkok és rézsűk, ideiglenes elöntési területek, állandó vízborítású, vizes élőhelyek (wetland-ek), szilárd, de áteresztő burkolatok, tetővizek és burkolt felületi vizek visszatartása felszín alatti tárolókkal.

23 A folyók mértékadó árvízszintjeiről szóló 74/2014. (XII. 23.) BM rendelet 1. § (2) bekezdése

24 A víziközmű-szolgáltatásról szóló 2011. évi CCIX. törvény 11. § (1) bekezdése

26 417/2023. (V. 24.) Főv. Kgy. határozat

27 A korszerű szennyvízelvezetés- és tisztítás megvalósításával és a Budaiörsi Szennyvíztisztító Telep kiváltásával további 29 ezer budaiörsi lakost is érintett. http://www.bpcsatornazas.hu/

29 L.: MEKH 5260/2015 számú határozat

30 Magyarország vízgyűjtő-gazdálkodási tervéről szóló 411/2012. (II. 23.) Korm. határozat

32 A vízgazdálkodásról szóló 1995. évi LVII. törvény 4.§ (1) bekezdés b) pontja szerint.

33 A vízgazdálkodásról szóló 1995. évi LVII. törvény 4.§ (1) bekezdés b) pontja szerint.

34 A folyók mértékadó árvízszintjeiről szóló 74/2014. (XII. 23.) BM rendelet 1. § (2) bekezdése

35 A víziközmű-szolgáltatásról szóló 2011. évi CCIX. törvény 11. § (1) bekezdése

37 417/2023. (V. 24.) Főv. Kgy. határozat

Budapesten az elmúlt években átlagosan 1,8 millió tonna hulladék keletkezett. A nem veszélyes hulladékmennyiség 60%-a – évenként nagy ingadozással, de –építész-bontási hulladék, a fennmaradó rész minden további hulladékcsoportot tartalmaz, így a lakosságtól gyűjtött szilárd hulladékot is. A veszélyes hulladékok mennyisége az elmúlt években átlagosan 80-90 ezer tonna között alakult.

Hulladékgyűjtés

Budapesten a rendszeres hulladékgyűjtésbe bevont lakások aránya közel 100%. A Fővárosi Önkormányzat a BKM Budapesti Közművek Nonprofit Zrt-vel (a továbbiakban: BKM), az FKF Hulladékgazdálkodási Divízión (a továbbiakban: FKF) keresztül 2023. június 30-ig biztosította a hulladékgazdálkodási kölcsönhatást (vagyis a települési hulladék rendszeres gyűjtését, elszállítását és kezelését). Azután az ügyfélszolgálati ügyféltárgyak változását követően a MOHÚ MOL Hulladékgazdálkodási Zrt. a felelős. A közkölcsönhatásítási szolgálat 2023. július 1-jét követően az a közkölcsönhatásítási szolgálatot hozta létre.

Az FKF a főváros területén átlagosan 600 ezer tonna hulladék összegyűjtését végzi el évente. A közkölcsönhatásítási keretében szelektíven gyűjtött hulladék 2022-ben megközelítette a 89 ezer tonnát, amely a fenti összes hulladék 16%-át teszi ki. Az összes szelektíven gyűjtött hulladék 38%-át a kertvárosias lakóterületeken gyűjtött kerti biohulladék adta.

Bár az elmúlt évtizedekben jelentős infrastruktúra fejlesztést hajtottak végre a szelektív hulladékgyűjtés területén, az így begyűjtött, hasznosítható hulladékok aránya elég teljesen stagnált. A jelentős égetőművízi kapacitás mellett is magas (2022-ben 32%-os) az előkezelés, válogatás nélkül lerakott települési hulladékok aránya. A kifeléves és hulladékgyűjtés területén szerzett tapasztalatai alapján a közkölcsönhatásítási szolgálat elkötelezett a hulladékkörnyezet védésére, és ellenőrizésére.’

Az ügyfélszolgálat 2016-ban létesítette az első hulladékgyűjtő központot a Budapest nyugati kerületében, s nem sokkal később (2022-ben) néhány más helyen is létesített.”
Hulladékgazdálkodás leírása, jellemzése

A hulladékgazdálkodás a hulladék gyűjtése, szállítása, kezelése, az ilyen műveletek felügyelete, a kereskedőként, közvetítőként vagy közvetítő szervezetként végzett tevékenység, a hulladékgazdálkodási létesítmények és berendezések üzemeltetése, valamint a hulladékkezelő létesítmények utógondozása 1.

A keletkező hulladék eredet szerint megoszlik kommunális hulladékra, termelési hulladékra, irodai hulladékra, csomagolási hulladékra, szerves (kerti) hulladékra, valamint építési-bontási (inert) hulladékra. További fontos szempont a veszélyes és nem veszélyes hulladékok megkülönböztetése. A hazai hulladékgazdálkodás a hulladékkról szóló törvényen 2 (a továbbiakban: Ht.) alapul, az ágazat jelenleg az energiaügyi miniszter hatáskörébe tartozik 3, aki többek között a hulladékgazdálkodásért, a hulladékgazdálkodási közszolgáltatási és szolgáltatási díj megállapításáért, valamint a körforogás gazdasághoz és a hulladékgazdálkodáshoz kapcsolódó feladatok összehangolásáért felel. Budapesten a hulladékgazdálkodási közszolgáltatást 2023. június 30-ig a Fővárosi Önkormányzat biztosította, a közszolgáltatóval, azaz az FKF-fei kötött hulladékgazdálkodási közszolgáltatási szerződés útján 4.

Mondható, hogy e „koncessziós társaság feladatköre csak a hulladékgazdálkodási résztevékenységre és a hulladékgazdálkodási intézményi résztevékenységre terjed ki”, ugyanakkor ezt jelenti, hogy a települési önkormányzatok minden olyan vagyonelemük, amelyek a korábbi évtizedekben e kötelező önkormányzati feladatok ellátásához szükségesek, az exportált koncesszió alapján, azon belül a települési önkormányzatok, nemzeti és nemzetközi szinten, a közszolgáltatási, közvetítő és közvetítő szervezetek számára az új koncessziós szervezetnek, a MOHU MOL Hulladékgazdálkodási Zrt néven, Állami koncessziós szervezet néven, nemzeti és nemzetközi szinten, a közszolgáltatási intézmények érintettei közé eső hulladék gyűjtését és kezelését köteles végezni, a települési önkormányzatok révén ugyan annak termékek, műhelyek és épületeik készletében keletkezett hulladék gyűjtését és kezelését köteles végezni. Ez a közszolgáltatási feladat az országos – az újbóli koncessziós feladatkör alapján, az új koncessziós szervezetnek – egységesen, egy és ugyanazon koncesszor részére koncessziós szerződéssel 2023. július 1-től 35 évre” átengedte a MOL-csoport tagjának, a MOHU MOL Hulladékgazdálkodási Zrt-nek.

Budapesten keletkező hulladékmennyiség

Hazánkban a hulladékgazdálkodás jellemző adatainak összegyűjtése az Elektronikus Hulladékgazdálkodási Információs Rendszermodul7 (EHIR) keretein belül történik. (A rendszer adattartalmáról bővebb információkat lásd az EHIR honlapján, valamint a BKÁÉ 2021-ben 8.) Az EHIR adatai szerint 2014-2021 között Budapesten évente keletkezett hulladékok mennyisége 1,3-2,5 millió tonna között alakult, azaz átlagosan 1,8 millió tonna hulladék keletkezett. Az elmúlt nyolc évben átlagosan a nem veszélyes hulladék-mennyiség 60%-a, azaz évente 1,2 millió tonna építési-bontási eredetű hulladék, de 2019-2021-es időszakban már az összes keletkezett hulladék 80-90%-át az építési-bontási hulladékok adták. A fennmaradó rész tartalmazza az egyéb hulladékokat, így a lakosságtól begyűjtött települési hulladéket is. A veszélyes hulladékok mennyisége az elmúlt években átlagosan 80-90 ezer tonna között alakult (1. ábra).
A Budapesten regisztrált begyűjtött és előkezelésre átvett hulladékok összes mennyisége 2022-ben meghaladta a 3,8 millió tonnát (ez a mennyiség tartalmazza a közszolgáltatás keretében begyűjtött települési hulladékaromot is).

Országos szinten 2004-2009 között folyamatosan csökkent a keletkező hulladékok mennyisége, majd hosszabb stagnálást követően 2017-től növekvő tendencia regisztrálható, az építési-bontási hulladéktermelésben jelentkező folyamatos növekedés miatt.

A 2021-ben Magyarországon kezelt 26,6 millió tonna összes hulladéktermelés 10%-a Budapesten regisztrált (2. ábra). A Budapesten kezelt hulladékok összes mennyisége a 2009-2016 közötti időszakban átlagosan 1,6 millió tonna körüli alakult, majd 2017 óta évi évvel évi növekvő tendencia mellett 2021-ben 2,2 millió tonna hulladék kezelését rögzítették az EHIR adatbázisában. A növekedés ez esetben is elsősorban az építéssel-bontással összefüggésben keletkező hulladékfajtákhoz („föld és kövek”, „kevert építési-bontási hulladék”) köthető.

A keletkező hulladék mennyisége, illetve fajlagos mértéke jelentős eltéréseket mutat különböző társadalmi-gazdasági jellemzőkkel bíró térségekben (jellemzően az alacsonyabb fejlettségű területeken az egy főre jutó keletkező hulladék mennyisége alacsonyabb). A HGR régiók közül fővárosi régióban az átlagot
meghaladó (de nem a legmagasabb), 366 kg/fő volt az éves begyűjtött hulladékmennyiség a legfrissebb, 2019-es adatok szerint.

A közszolgáltatók által 2019-ben gyűjtött összes hulladék mennyiségét és azon belül a szelektíven gyűjtött (papír, műanyag, fém, üveg, rövidítve: PMFÜ) hulladék mennyiségét HGR régióként az alábbi táblázat tartalmazza. Az országban a közszolgáltatók összesen 3,2 millió tonna hulladékot gyűjtöttek be, ennek 21%-át (lakosság arányosan) a fővárosi régióban. Az országban az összes begyűjtött hulladék átlagosan 7%-át szelektív módon gyűjtik, ennél Budapest kis mértékben jobb aránnyal (9%) rendelkezik.

Közszolgáltatás keretében gyűjtött hulladékmennyiségek

A települési hulladékok Budapesten begyűjtött mennyisége az elmúlt években fokozatosan csökkent 600 ezer tonna körüli értékre. A gyűjtött hulladékok döntő hányadát továbbra is a lakosságtól, valamint a gazdálkodó szervezetektől gyűjtött vegyes hulladék adja. Ezek pontos aránya nem ismert, a közszolgáltató becsülésén alapul.

3. ábra: Az egyes hulladékgazdálkodási régiókban begyűjtött hulladék fajlagos mennyisége, 2019 (forrás: NHKV)

4. ábra: Az összes begyűjtött hulladékmennyiség adatai, a szelektíven gyűjtött hulladékok mennyisége szerint csökkenő sorba rendezve 2019 (forrás: NHKV)
A szelektíven begyűjtött hulladékok mennyisége az infrastruktúra fejlesztésével párhuzamosan növekedett 2020-ig (97.8 ezer tonna), majd az elmúlt két évben csökkent, 2022-ben 88,7 ezer tonnáig. A különböző hulladékfajták és gyűjtés mód szerinti megoszlásokat az alábbiakban részletezzük.

*A „lakossági” és „gazdálkodói szervezetek, intézmények” adatok m3-ből becsült értékek

A közszolgáltatás keretében 2022-ben az előző évhez képest a szelektíven gyűjtött hulladékok mennyisége összességében 6%-kal csökkent – a begyűjtött települési hulladékokhoz viszonyított aránya évek óta 16%-os (ez az arány 2007-ben még csak 3% körüli volt).

A 2003 óta megvalósuló lakossági szelektív (elkülönített) hulladékgyűjtés eleinte a szelektív gyűjtőszigeteken és hulladékudvarokon történ, ezt fokozatosan kiegészítette a házhoz menő gyűjtési rendszer, 2014 végére elérve a 100%-os területi lefedettséget. A szelektíven gyűjtött különböző hulladékáramok mennyiségét mutatja a 6. ábra.

![6. ábra: Közszolgáltatás keretében lakosságtól szelektíven begyűjtött hulladékok mennyisége, hulladékáramok szerint, 2007-2022. (Forrás: PKF)](image)
Az összes mennyiség 38%-át a zöldhulladék adta 2022-ben, majd mennyiség szerint csökkenő sorrendben a papírhulladék (31%), a műanyag- (18%), az üveg- (6%), fém- (4%), majd az építési-bontási és egyéb hasznosítható hulladékok (2-2%) következnek.
Az elektronikai és veszélyes hulladékok szelektíven gyűjtött aránya összesen kb. 0,5%-ot tett ki. Az elmúlt években a gyűjtés mértéke egyik hulladék frakció tekinetében sem növekedett érdemben: a műanyag, az építési-bontási és a veszélyes hulladékok aránya kis mértékben növekedett, de utóbbiak még mindig elmaradnak a 2019-ben begyűjtött mennyiségektől. A többi frakció esetében 10%-on belüli csökkenés volt mérhető.

Az Országos Hulladékgazdálkodási Közszolgáltatási Terv15 (a továbbiakban: OHKT) olyan követelményeket határoz meg, amelyeket a hulladékgazdálkodási közszolgáltatás keretében Budapesten is biztosítani szükséges. A köszolgáltatás keretében gyűjtött csomagolási hulladékokból kinyerendő haszonanyagok egy évre és egy főre vonatkozó Bíróságos mennyiségét a rendelkezésre álló fővárosi adatokkal összevetve az 1. táblázat tartalmazza. A 2020-2022-es évekre vonatkozó OHKT16 a korábbinál lényegesen szigorúbb (de Budapest területénél nagyobb, több települést magában foglaló ún. „HGR Régióra” meghatározott) céltételei Budapesten nem teljesültek, attól még 2022-ben is elmaradt a közszolgáltatói visszagyűjtési arány.

<table>
<thead>
<tr>
<th>Év</th>
<th>A Fővárosi HGR régióra egy évre előírt OHKT előirányzat (elkülönített gyűjtendő papír, műanyag, fém és üveg frakciók mennyisége összesen) (kg/fő)</th>
<th>Tényadatok Budapesten (kg/fő)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2020</td>
<td>52</td>
<td>31</td>
</tr>
<tr>
<td>2021</td>
<td>75</td>
<td>31</td>
</tr>
<tr>
<td>2022</td>
<td>33,79</td>
<td>25,05</td>
</tr>
</tbody>
</table>

A házhoz menő szelektív gyűjtés keretében három hulladékfrakció (papír, műanyag, fém) gyűjtése valósul meg, gazdaságossági okokból a műanyag- és fémfrakció gyűjtése ugyanabban az edényzetben, majd különválasztásuk válogatóműben történik. A jellemzően lakótelepi, belvárosi és társasházas övezetekben heti egyszer, a jellemzően kertes házas övezetekben havonta egyszer üríti az edényzetet. 2022-ben 45.233 tonna hulladékot szállítottak el ilyen módon, amely 4%-os csökkenést jelent, a 2021. évi mennyiséghez viszonyítva. Az így összegyűjtött papír, műanyag és fémhulladék a közszolgáltatás keretében gyűjtött hulladékmennyiség 8%-át jelenti.
A fővárosban 2006 óta végzik a kerti biohulladékok elszállítását a kertvárosias lakóterületeken, mára összesen 19 kerületben, március elejétől november végéig. A 2022-ben elszállított zöldhulladék mennyisége 33.835 tonna volt, ami számottevő, 9%-os visszaesést jelent a 2021-es mennyiségéhez képest. (A zöldhulladék mennyisége erősen összefügg az aktuális időjárási viszonyoktól, így pl. az időben csökken a kaszállék mennyisége.)

Budapest parkfenntartási hulladékeit a települési zöldfelület-gazdálkodást végző társaságok kezelik, így a fővárosi jelentőségű zöldfelületek hulladékeit a FŐKERT komposztálja saját komposztelepén.

2022-ben az FKF a XVIII. kerületi Ipcafsa utcában egy új hulladékgyűjtő udvar nyílt meg, így az FKF működtetésében már 18 hulladékgyűjtő udvar üzemel, ahol a lakosság nagyrészt dijmentesen leadhatja a szelektíven gyűjtött hulladékokat (papír, műanyag, üveg, fém stb.), beleértve a házatartási veszélyes hulladékokat is (pl. elektronikai hulladékok, féncsövek és világítószigetek, szárazolaj, fáradt olaj, használt akkumulátor stb.). A zsákos építési törmeléket egyelőre a nagytéren, a két pestszentlőrinci és a XV. kerületi Károlyi Sándor úti udvarokban lehet leadni. A hulladékudvarok közül kettő a 2016 júniusában átadott újrahasználati központokkal egy ingatlanon helyezkednek el. A hulladékgyűjtő udvarok elhelyezkedését a 8. ábra mutatja, címüket a Függelék 2. táblázata tartalmazza, további információk az FKF honlapján találhatók.

a beszámított lom mennyiségének azóta is tartó alacsonyabb szintje az időpontfoglalási rendszer bevezetésével magyarázható, illetve a visszaesését okozhatja még, hogy a pandémia óta a gazdasági társaságoktól nem vesznek át hulladékot hulladékudvarok útján.

Az FKF által üzemeltetett két újrahasználati központban leadott és értékesített tárgyak száma évről-évre növekszik. 2022-ben több, mint 65 ezer tárgyat adtak le, emellett meghaladta a 92 ezret az értékesített darabok száma.

A lakosságnál keletkező veszélyes hulladékok közül a legnagyobb mennyiséget a használt elemelek és akkumulátorok jelentik, továbbá a festék és oldószer, illetve a gyógyszermaradványok. Ezek az anyagok sokszor a vegyes háztartási hulladék közé kerünek, noha nem volna szabad azzal együtt kezelni őket. A háztartásokban keletkező kis mennyiségű veszélyes hulladékokértésmentesen le lehet adni az FKF által működtetett lakossági hulladékudvarokban. Az elektromos/elektronikus hulladékokat, fénycsöveket, szárazelemeket, akkumulátorokat, gyógyszereket pedig általában átveszik az árusítás helyén is. A lakossági veszélyes hulladékok külön gyűjtése 2021-ig a lomtalanítás keretében is biztosított volt.

A közszolgáltató évente egyszer biztosítja a lakosság számára a háztartásoknál keletkezett lomok ingyenes, házhoz menő begyűjtését. Az elszállított lom éves mennyisége 2013 óta átlagosan 30 ezer tonna körül alakul, 2022-ben a lomtalanítás során begyűjtött hulladék mennyisége 33.812 tonna volt, ami 15%-kal kevesebb az előző évhez képest. A lomtalanítás hatékonyságát elősegíthette a közterületre kihelyezett hulladék tulajdonviszonyát rendező jogszabályi változás, továbbá a gyűjtési gyakorlat fejlesztése.

A szárazelem gyűjtésére az FKF a hulladékudvarokon biztosít lehetőséget a budapesti lakosoknak, továbbá számos oktatási és közintézményben is rendelkezésre áll kihelyezett gyűjtőpont, az íté leadott hulladékokat további piaci szereplők kezelik.

A hulladékgazdálkodás „jóságának mértéke” az anyagok minél nagyobb arányban történő hasznosítása – ideális esetben újrahasználat, vagy újrafeldolgozás révén – az ú. n. hulladékhierarchiának megfelelően.
A 10. ábra az elmúlt 16 év települési hulladék összetételének alakulását mutatja, a Pusztazámori Regionális Hulladékkezelő Központban (PRHK) végzett vizsgálatok alapján. A műanyaghulladékok aránya a lerakott hulladékban 2013-tól jelentősen csökkent, ami elsősorban a házhoz menő gyűjtési rendszer elterjedésének itt jelentkező hatásával magyarázható. A többi hasznosítható frakció esetében nem mutatható ki ilyen egyértelmű változás, ugyanakkor az egymást követő években is nagy eltérések mutatkoznak. 2021-ben a korábbi évekhez képest jelentősen alacsonyabb (30,9 helyett 12,6 m/m%) arányú biológiaiág lebomló hulladéket regisztráltak, a „kis szemcseméretű hulladékok” növekedésével párhuzamosan, de 2022-ben ismét 30%-os arány mutatkozott. Az eltérést elsősorban statisztikai elemzés módszertani jellege okozhatja, mivel a pandémia miatt 2021 I. negyedévében nem történt mérés, így a 2021-es évi statisztikában szezonális eltérés sem jelenik meg (jellemzően az I. negyedévében magasabb a biológiaiág lebomló hulladékok begyűjtött aránya). Ezen felül jelentősen megváltoztak a lakossági szokások a pandémia alatt, különös tekintettel a home office intézmények tömeges bevezetésével, ami kihatással van hulladéktermelésre, annak összetételére is. Az előző évhez képest 2022-ben számottevően növekedett továbbá a papírok, textíliák, higiéniai hulladékok, műanyagok és üvegek lerakott aránya.

Hulladékkezelés

A hulladékkezelés alatt a hasznosítási és ártalmatlanítási műveleteket értjük, amelyek magukban foglalják a hasznosítást és az ártalmatlanítást megelőző tevékenységeket is.

Az FKF által begyűjtött települési hulladék jelentős részét (50-55%-át) a raktospalotai Hulladékhasznosító Műben előkezelés nélkül égetik el, úgy mond energetikailag hasznosítják. A fennmaradó rész a PRHK-ban ártalmatlanítják, továbbá az energetikai hasznosításból visszamaradt salak is oda kerül, ami az égetett hulladék átlagosan 23%-át teszi ki – az égetés és lerakás közös halmazaként. A 12. ábra alapján jól látható, hogy a 2008 és 2012 közötti időszakban a kezelt hulladékmennyiségek gyors, majd lassuló mértékű, de hosszabb távon folyamatosnak mondható csökkenése (az égetőmű állandó kapacitása és a szelektív gyűjtés bővülése mellett) a hulladéklerakók igénybevételét mérsékelt.
A korábbi években 200-250 ezer tonna körül alakult a lerakott vegyes települési hulladék mennyisége, de 2019 óta ennél egyre kevesebb vegyes hulladékot raktak le. 2022-ben 177,7 ezer tonnát, ami az összes kezelt hulladék mennyiségének 32,2%-a. Ehhez adódik az égetésből visszamaradó, átlagosan 80-85 ezer tonna salakanyag, amely szintén lerakásra kerül. A szelektíven gyűjtött műanyag-, papír-, fém-, üveg-, elektronikai hulladékokat és használt akkumulátorokat alvállalkozónak adja át az FKF válogatás, hasznosítás céljára, ami 2022-ben a kezelt összes hulladékmennyiség 10,7%-át tette ki. A lakosságtól begyűjtött kerti biohulladék jelentős hányadát a PRHK 30.000 t/év kapacitású telepén komposztálják, a komposztot az FKF részben értékesíti, részben a lerakó előírás szerint szükséges, rendszeres takarásánál hasznosítja (a kompostált kerti biohulladék a kezelt hulladékmennyiség 4%-át adta 2022-ben).

Az építési-bontási hulladékok hasznosítása különböző módokon történik. Budapesten több magáncég foglalkozik az így keletkező hulladékok gyűjtésével, kezelésével és hasznosításával. A közszolgáltató által kezelt (ami az összes mennyiséghez képest elhanyagolható mennyiségű) inert, építési-bontási hulladékokat a lerakók üzemeltetésének technológiájához hasznosítják.

Az alábbi ábrák az elmúlt 16 évben az FKF üzemeltetésében lévő két hulladéklerakó (Dunakeszi és PRHK) által ártalmatlanított összes hulladékmennyiségeket mutatják, a lerakóhely és beszállítók szerinti megoszlásban. Jól látható, hogy a két lerakó
korábban jelentős részben fogadott nem közszolgáltatásból származó hulladékokat is. A lerakott hulladék mennyiségének csökkenése nagyrészt az összegyűjtött hulladékok (lakossági fogyasztás) mennyiségének mérséklozódésével magyarázható.

A 15. ábra az FKF központi hulladéklérakójának – az elmúlt évtizedben ártalmatlanított hulladékmennyiségek alakulásából becsült – 2022 végéig felhasznált (sárgával jelölve), és szabad kapacitását (zölddel jelölve) szemlélteti.

Nemzetközi kitekintés

A Magyarországon keletkező települési hulladék (azaz háztartási és a háztartási hulladékhoz hasonló szilárd hulladék) lakosságszármra vetített mennyisége kedvező módon jelentősen alatt marad az EU 28 tagállamának átlagos (502 kg/fő) mennyiségeitől. A fajlagos hulladékmennyiség 1997 és 2011 között mintegy 100 kg/mal csökkent országos szinten, így az elmúlt években 400 kg/fő/év alatt alakult.

Az EUROSTAT adatai alapján a fővárosban keletkezett települési hulladék mennyisége átlagosnak mondható más – Budapestablett összehasonlító léptékű – uniós nagyvároséhoz képest. Ugyanakkor a szelektíven gyűjtött és az anyagában
A budapestiek véleménye a hulladékgazdálkodásról

A budapestiek a közepesnél valamivel elégedettebbek a szelektív hulladékgyűjtés hatékonyságával (2020). Azok, akik tájékozottabbnak érzik magukat a hulladék városi kezeléséről, elégedettebbek a kialakított gyakorlattal, mint azok, akik nem érzik magukat tájékozottnak. Emellett elégedettebbek az idősebbek, mint a fiatalabbak, a családi házakban lakók, mint a társasházakban élők, és ezzel átfedésben a kertvárosok lakói, mint a belsőbb övezetekben élők.
Hulladékgazdálkodás

18. ábra: A szelektív hulladékgyűjtés hatékonyságának megítélése néhány csoportban (százfokú skála, 100=nagyon elégedett, 0=egyáltalán nem elégedett) (2020)

2021-ben a kérdés a szelektív hulladékgyűjtéssel kapcsolatban annak gyakoriságára vonatkozott. A hatékonysággal szemben a Budapesten élők a gyakoriságával legalább azonos mértékben, de inkább jobban elégedettek. Leginkább szemben az összes méretű lakásban a 30-39 éves korosztályban (51<61), az egyéb többszintes lakástípusban (53<63) és a lakótelepi övezetben (50<60) láthatók.

19. ábra: A szelektív hulladékgyűjtés gyakoriságának megítélése néhány csoportban (százfokú skála, 100=nagyon elégedett, 0=egyáltalán nem elégedett) (2021)

Annak tényeiben, hogy 15 év múlva gyakori a települési hulladékok lerakását, és lenne is erre a célra külön gyűjtőedény, a budapestiek szinte mindegyiké hajlandó lenne külön gyűjteni a háztartási szerves, biológiai lebomló hulladékt. Valamelyest kisebb arányban vállalkoznának erre a családi házakban, illetve a pesti kertvárosokban lakók, de az ő
A következő kérdés a keletkező zöldhulladék kezelésének módját érintette. A budapestiek legnagyobb arányban (40%) a kukába dobják azt, pedig komposztálással értékes termőközeghez juthatnának (ezt a tevékenységet 19%-végzi). Jellemző még (25%) a zöldhulladék FKF-es gyűjtőzsákba helyezése is. A válaszadók elhanyagolható aránya (2%) számolt be arról, hogy közterületre teszi ki a zöldhulladékot, míg a hulladékégetést egy válaszadó sem vállalta fel.

A lomtalanítás gyakorlatával a Budapesten élők fele inkább elégedett, 13% elégedetlen. A lomtalanítás gyakorlatával leginkább a fiatalabb korosztály elégedetlen, míg a 60 évesek vagy annál idősebbek 70%-a elégedett. (bővebben lásd BKÁÉ 2021

A felmérés két kérdése a feleslegessé vált, de még használható tárgyak, illetve a háztartásokban keletkező veszélyes hulladékok kezelésének módjait érintette. A legtöbb budapesti az előbbieket elajándékozza, utóbbiakat pedig külön gyűjti és leadja. Az információhiány és a szállítás nehézsége jelent leginkább problémát azok számára, akik nem adják le rendszeresen a megfelelő helyen a veszélyes
Hulladékgazdálkodás

Hulladéket. Nehézséget okoz, hogy nem tudják, hol lehet leadni, de az is sokaknak probléma, hogy nem tudják, mi számít pontosan veszélyes hulladéknak.

![Diagram](image)

- rendszeresen külön gyűjtik és a kijelölt helyen adják le
- nem mindig, de általában igen
- előfordul, de általában nem
- soha nem adják le az erre kijelölt helyen
- nem tudja/nem válaszolt

Intézkedések

Az Európai Bizottság 2020 márciusában kiadta a kör forgásos gazdaságra vonatkozó új cselekvési tervet, amely “menetrendet biztosít a tisztább és versenyképesebb Európa megvalósításához a gazdasági szereplőkkel, a fogyasztókkal, a polgárokkal és a civil társadalmi szervezetekkel közösen. Célja, hogy folygatylissza az európai föld megállapodás által megkötött átalakulást, miközben a kör forgásos gazdaságra vonatkozó 2015 óta végrehajtott fellépésekre épít. Ez a terv biztosítani fogja a szabályozási keret racionalizálását és a fenntartható jövőhöz való igazítását, valamint az átmenetből adódó új lehetőségek maximalizálását, miközben minimálisra csökkenti az emberekre és a vállalkozásokra nehezedő terheket”.

A kör forgásos gazdaság egyfajta rendszergondolkodás, melynek célja a hulladékeketkezés tervezett és tudatos megszüntetése, így a jelenlegi lineáris lefolyású hulladéktermelő szemléletmód (”vedd meg – használd – dob ki – vegyél újat”) helyett az anyagfelhasználás ciklikusságára helyezi hangsúlyt; miszerint az anyag teljes életciklusát már előre tervezik, és ehvez igazítják a termelési folyamatot.

Az Európai Unió tagállamaiban a hulladékgazdálkodás átfogó szabályozását a 2008 végén hatályba lépett Hulladék Keretirányelv (a továbbiakban: HKI) biztosítja. A kör forgásos gazdaság elveinek előmozdítására szigorú értéknél az EU-s irányelvek, célkitűzésként megfogalmazva, hogy a hulladékgazdálkodást a jövőben fenntartható anyaggazdálkodással kell alakítani. A Hulladék Keretirányelv 2018-as szigorításából adódó új alapkövetelmények:
Az EU hulladékgazdálkodási stratégiájához köthető irányelvek, és azok célkitűzéseit a Függelék 3. táblázata tartalmazza.

Az új, szigorúbb európai követelményeknek történő hazai és fővárosi megfelelést a műszaki helyzet és a jelenlegi hulladékezelési arányokon túl tovább nehezíti a magyarországi hulladékgazdálkodás korábbi jelentős, többszöri átszervezése, ami a budapesti közszolgáltatásban okozott jelentős finanszírozási bizonytalanságon túl a hulladékgazdálkodási célkitűzések megvalósítását is nehezebbé tette.

A hulladékgazdálkodás állami szervezetének 2012 óta elvégzett többszöri átszervezését követően 2016-ban megalakult a Nemzeti Hulladékgazdálkodási Koordináló és Vagyonkezelő Zrt (NHKV). (Az NHKV-val kapcsolatos hatásköri változások l. BKÁÉ 2021.33)

A jelenleg működő rendszerrel kapcsolatban alapvető probléma, hogy a hulladékezeléssel összefüggésben keletkező állami bevételek csak részben és nem arányosan kerülnek visszaforgatásra a hulladékgazdálkodási ágazat, a közszolgáltatást végző társaságok számára.

Mindezektől függetlenül az uniós kötelezettségvállalások teljesítése érdekében elfogadott és jelenleg is hatályos Országos Hulladékgazdálkodási Terv (OHT) és a legutolsó Országos Hulladékgazdálkodási Közszolgálati Terv (OHKT) egyértelműen kiállított az energiahatékonynak, környezetbarát hulladékgazdálkodás megvalósítása mellett, amelynek alapját – az alapelvek től – továbbra is a hulladékhierarchia rendszere képezi.

eladóterű üzlettel rendelkező olyan kiskereskedelmi egységek, amelyek tevékenységében az élelmiszer és italok értékesítése a meghatározó.\footnote{42}

A hulladékgazdálkodási közszolgáltatásnak a központi régióban való ellátását végző régiókoordinátori szereppel összefüggésben a MOL Nyrt. – mint a koncesszor/ koncessziós társaság (együtt a továbbiakban: koncesszor) – megkereste a BKM-et, hogy a közszolgáltatási feladat 2023. július 1-ét követő ellátására a Budapesti Közösségi Közöszövett ki a javaslatat a Fővárosi Közgyűlés 2022 szeptemberében tárgyalta meg, és elvi egyetértését fejezte ki a javaslat alatt kapcsolatban, majd 2022 novemberében a két vállalat is közös szándéknak nyitottatot írt alá, amely alapján a közös (50-50%-os részesedésű) vállalat kialakítása 2023. középe megkért. A fővárosi hulladékgazdálkodást ellátó eszközpark az új gazdasági társaság tulajdonába, illetve kezelésébe került.\footnote{43}

A csomagolási hulladékok közül a legkedvezőtlenebb visszagyűjtési aránnyal bíró üveghulladékok hasznosítási arányának növelését segíti a Ht. új rendelkezése, amely kötelezővé teszi a nagyobb üzletek számára az általuk forgalmazott üveghulladékok átvételét.\footnote{44}

Jelentős változás a hulladékgazdálkodás hazai viszonyaiban, hogy az EU egyszer használatos műanyag irányelveivel összhangban, illetve attól szigorúbb szabályozást lefektetve, 2021. július 1-jétől lépett hatályba az egyes egyszer használatos műanyagok forgalomba hozatalának betiltás áról szóló törvény.\footnote{45}

A Fővárosi Önkormányzat az EU-s kötelezettségek (és egyúttal a hazai szabályozás) teljesítése érdekében az elmúlt években számos intézkedést tett, azok részletes megjegyzése a 2010-es évekre visszamenően a BKÁÉ 2021 tartalmazza.\footnote{46}

Az elmúlt egy-két évben a hulladékgazdálkodási közszolgáltatás terén alábbi intézkedések, fejlesztések valósultak meg, megvalósításaiban vagy további kifejtését l. BKÁÉ 2021.\footnote{47}

- 2022 szeptemberében átadásra került a XVIII. kerület Ipacsfa utcai Logisztikai Központ, amelynek elsődleges célja a dél-pesti kerületek hulladékgyűjtésből adódó szállítási szükségleteket és ez által egy hatékony hulladékgyűjtő járművek károsanyag kibocsátásának megsértése mellett és lefektetve, 2021. július 1-jétől lépett hatályba az egyes egyszer használatos műanyagok forgalomba hozatalának betiltásáról szóló törvény.\footnote{48}

- 2023 márciusában megkezdte működését a X. kerületi Hulladékválogató Mű, ami évi 15 ezer tonnában a lakossági házhoz menő szelektív gyűjtésből származó – elsősorban műanyag és fém – hulladék további választását teszi lehetővé. A bérvállalati rendszerre történő átállásával, illetve a saját válogató üzembe helyezésével (2022. II. félév) a kevert csomagolási hulladék tekintetében a hasznosítási arány: 40% anyagában hasznosításra előkészítés mellett 60% energetikai hasznosítás.

- Újrahasználati konténerek elhelyezése tervezett további, folyamatos nyitvatartású helyszínen.

- 2021-ben kezdődött meg a közösségi komposztáló kialakításának programja. Az év végére már 5 komposztáló működött a főváros nagyobb parkjaiban, melyek gondozását helyi civil szervezetek látják el.

- Veszélyes hulladékgyűjtés egész évben elérhető a lakosság számára a hulladékudvarokban. 2022. II. félévétől már öt nagy kiemelt hulladékudvar már vasárnap is a lakosok rendelkezésére áll.

- Mobil hulladékudvar szolgáltatási előkészítése zajlik (pilot program lezárult) a hulladékudvarral nem rendelkező vagy gyáren ellátott kerületekben, területeken.

- Üveg gyűjtőhálózat - szelektív hulladékgyűjtő sziget - bővítése egyeztetés alatt.

- Elkészült a PRHK középtávú fejlesztési koncepcióterve, amely megoldásokat kínál a lerakó melletti területek fejlesztésében a hulladéklerakás csökkentése irányában.
A PRHK komposzteleptének gépparkjának megújítása tervezett. A zöldhulladék kezelő rendszer további fejlesztése tervezett, melyhez folyamatban van az alkalmas telephely megtalálása Budapest keleti felében.

A biológiai lebomló háztartási hulladékok házhoz menő rendszerben történő szelektív gyűjtése több milliárdos beruházást (továbbá a megfelelő hulladékek kezelő végpontok létesítését) feltételezi. A hulladékgazdálkodási közszolgáltatási feladatok államosítása (majd koncesszióban adása miatt) 2023 júliusáig felülről korlátozó a fejlesztések megvalósítása. Amennyiben a leendő koncesszor feladatai - illetve a BKM (Hulladékgazdálkodási Divízió) szerepe a hulladékgazdálkodási közszolgáltatást illetően - tisztázódnak, újra tervezhető lesz a hulladékgazdálkodási rendszer fejlesztése.

A lakossági tájékoztatást és szemléletformálást az alábbi fórumokon végzi a közszolgáltató:

- ügyfélszolgálati iroda és telefonközpont (call center);
- honlap, és közösségi oldalak által biztosított személyes kommunikáció (pl. Facebook);
- szórólapok, kiadványok, hirdetések;
- részvétel fórumok és rendezvényeken (pl. Nyílt Közműnap, TeSzedd! mozgalom);
- környezetvédelmi oktatási programok diákjai és pedagógusai számára;
- a szelektív házhoz menő hulladékgyűjtés kommunikációs kampánya részeként lakossági fórumok, hirdetések, pályázatok megrendezése.

Az FKF által végzett szemléletformálási tevékenységeket részletesebben a Függelék tartalmazza.

További javasolt feladatok

A települési hulladékok minél nagyobban arányú hasznosítása, és a lerakótól való eltérítés érdekében további erőfeszítések szükségesek a szakpolitikai alapelvéken és a hulladékhierrarchia elvi szempontja szerint az alábbiaknak megfelelően (Bővebben lásd BKP 202649), amelyekre a környezettvédelmi hatóság is felhívta a Fővárosi Önkormányzat figyelmét.

A hulladékgyűjtés területén:

- vizsgálni kell a szelektíven gyűjtés arányának további növelési lehetőségeit, a szelektíven gyűjthető hulladékkárok körének bővítését, különös tekintettel az üveg- és a biológiai lebomló háztartási hulladékokra, első lépésként pilótakísérlet területének kialakítása;
- további komplex (újrahasználó és szemléletformáló központként is funkcionáló) hulladékdíszítés kialakítása szükséges, a már kialkított gyűjtőpontok bővítése mellett;
- a városképi szemponttól tarthatatlan lomtalanítást fokozatosan át kell állítani call centeren keresztül egyeztetett ún. házhozmenő lomtalanítására;
- a 2024. január 1-jével bevezetésre kerülő betétdíjas rendszer miatt a „három kukás” házhozmenő gyűjtés felülvizsgálandó, hiszen a hasznosítható műanyag és aluminíum csomagolások jelentős része kikerül a közszolgáltatás rendszeréből;
- frekventált közterületi szelektív hulladékgyűjtés: a szelektív hulladékgyűjtés hatékonyságának növelése érdekében a jelentős forgalommal érintett, elsősorban belvárosi közterületeken fejleszteni szükséges az elkülönített hulladékgyűjtés infrastruktúráját, további gyűjtőedények kihelyezésével.
A hulladékkezelés területén:
● saját szelektív hulladék(elő)válogató és -kezelő kapacitások fejlesztése, indokolt esetben további növelése; az anyagában hasznosítás arányának növelésére, hangsúlyozva, hogy mindezek csak akkor lesznek megtérülő beruházások, ha a végtermékek felvévőpiaci oldala megfelelő módon, állami koordináció mellett (a piaci folyamatokba nem beavatkozva) kiépül;
● a biohulladékok fermentációs feldolgozása érdekében – a biológiailag lebomló hulladék hasznosítási elvének megfelelően – egy biogázüzem létesítés lehetőségének előzetes vizsgálata;
● indokolt megvizsgálni, hogy az FKF a FŐKERT-tel együttműködve az általuk kezelt zöldhulladéket együtt, vagy egy városon belüli komposztelepen komposztálják, és megvalósítsák annak értékesítését;
● a házi komposztálás minél nagyobb arányú elterjedését is támogatni kell, a közszolgáltatás keretein belül működő zöldhulladék-gyűjtés mellett;
● vizsgálni szükséges a szennyvíztelepeken képződő szennyvíziszapok égetésének olyan módon történő megvalósítását, amely technológia biztosítja az iszaphamu foszfortartalmának – nem csak országos stratégiai jelentőségű – visszanyerését, illetve a jövőben nem teszi lehetetlenné annak lehetőségét;
● a hulladékétő salakjának elhelyezésére megoldást kell találni a keleti szektorban, Amennyiben megvalósul, jelentősen csökkenthetne a szállítási távolságok, amely a kibocsátások csökkentésével fog járni.

További szemléletformáló tevékenységek folytatása szükséges a lakosságnál keletkező hulladékok (különösen a nagy arányban kidobott élelmiszer hulladékok) megelőzése és a szelektíven gyűjtött hulladékok tisztaságának fokozása érdekében.

Meg kell jegyezni, hogy a fenti intézkedések, projektjavaslatok megvalósítása a hulladékgyűjtési feladatok felülvizsgálására szükséges, majd koncesszióban adása miatt 2023. június 30-ig erősen korlátozott, az átmeneti időszakban jelentősebb beruházások megvalósítása nem várható.
Függelék

F.1. Lakossági hulladékudvarok

<table>
<thead>
<tr>
<th>Sz.</th>
<th>Cím</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>III. Testvérhegyi út 10/a.</td>
</tr>
<tr>
<td>2.</td>
<td>IV. Ugró Gyula sor 1-3.</td>
</tr>
<tr>
<td>3.</td>
<td>IV. Zichy Mihály utca – Istvántelki út sarok</td>
</tr>
<tr>
<td>4.</td>
<td>VIII. Sárkány utca 5.</td>
</tr>
<tr>
<td>5.</td>
<td>IX. Ecséri út 9.</td>
</tr>
<tr>
<td>6.</td>
<td>X. Fehér köz 2.</td>
</tr>
<tr>
<td>7.</td>
<td>XI. Bánk bán utca 8-10.</td>
</tr>
<tr>
<td>8.</td>
<td>XIII. Tatai út 96.</td>
</tr>
<tr>
<td>9.</td>
<td>XIV. Füredi út 74.</td>
</tr>
<tr>
<td>10.</td>
<td>XV. Zsákavár utca vége</td>
</tr>
<tr>
<td>11.</td>
<td>XV. Károlyi Sándor út 166. (SZÜK)</td>
</tr>
<tr>
<td>12.</td>
<td>XVI. Csömöri út 2-4.</td>
</tr>
<tr>
<td>14.</td>
<td>XVIII. Jegenye fasor 15. mellett</td>
</tr>
<tr>
<td>15.</td>
<td>XVIII. Besence utca 1/a. (SZÜK)</td>
</tr>
<tr>
<td>16.</td>
<td>XVIII. Ipacsfa utca 14.</td>
</tr>
<tr>
<td>17.</td>
<td>XXI. Mansfeld Péter utca 86.</td>
</tr>
<tr>
<td>18.</td>
<td>XXII. Nagyítétemy út 335.</td>
</tr>
</tbody>
</table>

F.2. Az EU hulladékgazdálkodási célkitűzései

<table>
<thead>
<tr>
<th>Hulladék típus / indikátor</th>
<th>Tevékenység</th>
<th>Célérték</th>
<th>Célév</th>
<th>Jogszabály</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hulladékgyűjtés</td>
<td>gyűjtés</td>
<td>min. 77%</td>
<td>2025</td>
<td></td>
</tr>
<tr>
<td>Legfeljebb három liter űrtartalmú egyszer használatos műanyag italpalackok</td>
<td>gyűjtés</td>
<td>min. 90%</td>
<td>2029</td>
<td>Egyéb használatos műanyag irányelv 2019</td>
</tr>
<tr>
<td>települési hulladék</td>
<td>újrahasználatra való előkészítés és újrafeldolgozás</td>
<td>min. 55%</td>
<td>2025</td>
<td>HKI 2018 (mód.)</td>
</tr>
<tr>
<td>települési hulladék</td>
<td>újrahasználatra való előkészítés és újrafeldolgozás</td>
<td>min. 60%</td>
<td>2030</td>
<td>HKI 2018 (mód.)</td>
</tr>
<tr>
<td>települési hulladék</td>
<td>újrahasználatra való előkészítés és újrafeldolgozás</td>
<td>min. 65%</td>
<td>2035</td>
<td>HKI 2018 (mód.)</td>
</tr>
<tr>
<td>csomagolási hulladék</td>
<td>újrafeldolgozás</td>
<td>min. 65%</td>
<td>2025</td>
<td>Csomagolási hulladék irányelv 2018 (mód)</td>
</tr>
<tr>
<td>csomagolási hulladékbak lévő műanyagok</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>műanyagok</td>
<td>újrafeldolgozás</td>
<td>min. 50%</td>
<td>2025</td>
<td>Csomagolási hulladék irányelv 2018 (mód)</td>
</tr>
<tr>
<td>fa</td>
<td>újrafeldolgozás</td>
<td>min. 25%</td>
<td>2025</td>
<td></td>
</tr>
<tr>
<td>vasfémek</td>
<td>újrafeldolgozás</td>
<td>min. 70%</td>
<td>2025</td>
<td></td>
</tr>
<tr>
<td>aluminium</td>
<td>újrafeldolgozás</td>
<td>min. 50%</td>
<td>2025</td>
<td></td>
</tr>
<tr>
<td>üveg</td>
<td>újrafeldolgozás</td>
<td>min. 70%</td>
<td>2025</td>
<td></td>
</tr>
<tr>
<td>papír és karton</td>
<td>újrafeldolgozás</td>
<td>min. 75%</td>
<td>2025</td>
<td></td>
</tr>
</tbody>
</table>

3. táblázat: Az EU hulladékgazdálkodási stratégiajához köthető fontosabb irányelvek, és azok célkitűzései
F.3. Szemléletformálás

- Környezetvédelmi Oktatóprogram – 2010 óta működik, napi szintű oktatás a budapesti és agglomerációs nevelési-oktatási intézményekben és 2016 óta a SZÜK-okban is (tavaly óta online távoktatásban is);
- Webinárium-sorozat – egy külsős és egy FKF-es szakember előadása előre meghirdetett témában, moderátorral „Szakértői esték” címmel (az elsőt a Nestlével tartottuk a csomagolási hulladékokkal, szelektív gyűjtéssel kapcsolatban, 2021 májusában);
- Uzsonnásdoboz-projekt – 2013 óta zajlik, lényege: minden tanévben a fővárosi általános iskolák elsős kisdiákjai FKF-es uzsonnás dobozt kapnak ajándékba, a projekt célja és üzenete: újrahasználat, a csomagolási hulladékok mennyiségének csökkentése, hulladékmegelőzés;
- Pedagógus tájékoztató napok – 2015 óta zajlik; minden tanévben kétszer egynapos program a budapesti pedagógusok részére, külsős-belsős előadókkal, workshoppal, létesítménypadókatással a SZÜK- okban;
- Könyvespolc-projekt – új projekt: a SZÜK-ok használtkonyv-állományának egy része megjelenik a fővárosi fenntartási intézmények lakosok által érintett helyiségeiben (ügyfélváró, jegypénztár stb.), egyelőre pilot jelleggel (5 helyszínen).
- 2022-ben kiemelt kommunikációs témák voltak:
 - Italoskarton átkerült a sárga (kevert csomagolási hulladék) tartályba - korábbi kommunikáció erősítése, a tudás szinten tartása.
 - Szelektív hulladékgyűjtés és a gyűjtési szabályok népszerűsítése, a gyűjtés értelmének kommunikációja (”Mit, hova dobjuk?” kampány).
 - Hulladékdudorok népszerűsítése.
 - Szelektív hulladékgyűjtő-szigetek népszerűsítése.
 - Szemléletformáló és Újrahasználati Központok ismertségének növelése, az újrahasználat népszerűsítése.
 - BKM könyvespolc projekt népszerűsítése.
A fejezet hivatkozásai

1 2012. évi CLXXXV. törvény a hulladékról 2 § 26. pontja
2 2012. évi CLXXXV. törvény a hulladékról
3 A Kormány tagjainak feladat- és hatásköréről szóló 182/2022. (V. 24.) Korm. rendelet 160. §
5 Egyes energetikai és hulladékgazdálkodási tárgyú törvények módosításáról szóló 2021. évi II. törvény 22. § és 27-91. §
7 http://web.okir.hu/ehir
8 Budapest környezeti állapotértékelése 2021. II. 6. Hulladékgazdálkodás, 2. oldal
9 Összesített hulladékképződési adatok régiók szerint (http://web.okir.hu)
10 https://www.ksh.hu/statad_files/kor/hu/kor0029.html
11 Kezelt hulladékmennyiségek régiók szerint (http://web.okir.hu)
13 Országos Hulladékgazdálkodási Közszolgáltatási Terv 2021., 15. oldal, 2. táblázat
14 Országos Hulladékgazdálkodási Közszolgáltatási Tervre vonatkozó részletes szabályokról
15 Országos Hulladékgazdálkodási Közszolgáltatási Terv 2021., 34-35. oldal és Országos Hulladékgazdálkodási Közszolgáltatási Terv 2022. 11. oldal
16 https://www.fkf.hu/kerti-zoldhulladek-gyujtes
17 https://www.fokert.hu/komposztalas-arusitas/
18 https://www.fkf.hu/szelektiv-hulladekgyujto-szigetek
19 Lakossági hulladégyűjtő szigetek adatai https://www.fkf.hu/szelektiv-hulladekgyujto-szigetek
20 Lakossági hulladégyűjtő udvarok adatai https://www.fkf.hu/letesitmenyeinkhulladekudvar
21 A veszélyes hulladékok az élővilágra, az emberre, a környezeti elemekre közvetlenül vagy potenciálisan fokozott veszélyt jelentenek. Veszélyes hulladéknak minősül a Ht-ben meghatározott veszélyességi jellemzők legalább egyikével rendelkező hulladék.
22 a lakossági gyógyugszerellátás során képződött gyógyuszhulladékkal kapcsolatos hulladékgazdálkodási tevékenységekről szóló 11/2017. (VI. 12.) EMMI rendelet alapján
23 445/2012. (XII. 29.) Korm. rendelet az elem- és akkumulátorhulladékkal kapcsolatos hulladékgazdálkodási tevékenységekről, valamint az 197/2014. (VIII. 1.) Korm. rendelet az elektromos és elektronikus berendezésekkel kapcsolatos hulladékgazdálkodási tevékenységekről alapján
25 a hulladékról szóló 2012. évi CLXXXV. törvény 43. § (2) alapján „A lomtalanítás során közterületre helyezett hulladék a Koordináló szerv tulajdonát képezi és egyben a közszolgáltató birtokába kerül.”
26 26/2013. (IV. 18.) Főv. Kgy. rendelet a Budapest főváros területén végzett hulladékgazdálkodási közszolgáltatásról 6. § k) pontja és 15. § (1) bekezdés b) pontja alapján
32 Az Európai Parlament és a Tanács 2008/98/EK irányelvbe (2008. november 19.) a hulladékokról és egyes irányelvek hatályon kívül helyezéséről

33 Budapest környezeti állapotértékelése 2021, II. 6. Hulladékgazdálkodás, 18. o. 2. táblázat
34 Az Európai Parlament és a Tanács 2008/98/EK irányelve (2008. november 19.) a hulladékokról és egyes irányelvek hatályon kívül helyezéséről
35 Országos Hulladékgazdálkodási Terv 2021-2027 - 1704/2021. (X. 6.) Korm. határozattal elfogadva
38 Ht. 3. § és 7. §
39 Országos Hulladékgazdálkodási Közszolgáltatási Terv 2021-2027 - 1704/2021. (X. 6.) Korm. határozattal elfogadva
40 https://einfoszab.budapest.hu/list/fovarosi-kozgyules-nyilvanos-ulesei;id=117507;type=5;parentid=14287;parenttype=2
42 https://einfoszab.budapest.hu/list/fovarosi-kozgyules-nyilvanos-ulesei;id=117507;type=3;parentid=14287;parenttype=2
43 Ht. 3. § és 7. §
44 az egyes energetikai és hulladékgazdálkodási tárgyú törvények módosításáról szóló 2021. évi II. törvény (Módtv.) jelentősen módosította a Magyarország helyi önkormányzatairől 2011. évi CLXXXIX. törvényt (Mótv.), valamint a hulladékról szóló 2012. évi CLXXXII. törvényt (Ht.),ls
45 Módtv. 29.§ (9)-(10)
46 Ht. 53/E.§ (8)
48 https://mohu.hu/visszaváltasi-rendszer
49 a hulladékról szóló 2012. évi CLXXXV. törvény 12. § (2b): „A legalább 300 m² alapterületű üzlettel rendelkező forgalmazó a forgalmazás helyén köteles az általa forgalmazott termékcsoporthóból származó termékből, és a termék csomagolásából származó szennyeződésmentes, nem veszélyes, elkülönített gyűjtött csomagolási üveghulladék hulladékbirtokostól történő átvételére, elkülönített gyűjtésére.”
50 2020. évi XCI. törvény egyes egyszer használatos műanyagok forgalomba hozatalának betéttsáról
51 Budapest környezeti állapotértékelése 2021, II. 6. Hulladékgazdálkodás, Függelék F.3.
56 AZ EURÓPAI PARLAMENT ÉS A TANÁCS (EU) 2019/904 IRÁNYELVÉL (2019. június 5.) egyes műanyagtartalékok környezetre gyakorolt hatásának csökkentéséről
57 AZ EURÓPAI PARLAMENT ÉS A TANÁCS (EU) 2018/852 IRÁNYELVÉL (2018. május 30.) a csomagolásról és a csomagolási hulladékról szóló 94/62/EK irányelv módosításáról
II.7. Zöldfelület-gazdálkodás

Budapest területének kb. 65%-át (34 ezer ha) borítja zöldfelület (növényzettel fedett terület), amelyből 1.000 ha (a főváros területének közel 2%-a) zöldterület (parkterület). A zöldterületek 40%-a a Fővárosi Önkormányzat kezelésében áll (mintegy 400 ha). A többi közkert, közpark jellemzően kerületi önkormányzatok tulajdonában, illetve fenntartásában van.

A főváros területének 11%-a, azaz közel 6 ezer ha erdőterület, amelynek mintegy két harmada (66-67%) állami tulajdonú, vagyonkezelője a Pilisi Parkerdő Zrt. A Fővárosi Önkormányzat, illetve intézményeinek, közműve és közszolgáltató vállalatainak tulajdonában mintegy 309 hektár erdőterület, azaz a fővárosban található erdőterület 5%-a lehet.

Az említett zöld- és erdőterületeken kívül a Fővárosi Önkormányzat látja el a kijelölt közlekedési útvonalak menti zöldsávok (510 ha) és a helyi jelentőségű természetvédelmi területek (969 ha) kezelését is.

Budapesten becslesek szerint 8,8 millió faegyed található, melyből 6 millió üzemtervezett erdőterületen, 2 millió pedig egyéb, nem közterületen (jellemzően magánterületen) található. A kerületi önkormányzatok kezelésében megközelítőleg 785 ezer faegyed áll. A Fővárosi Önkormányzat kezelésében mintegy 176 ezer faegyed áll, amelyből 47 ezer db a kiemelt közcelő zöldterületeken (parkokban), 129 ezer db a közutak mentén található.

Bár a Fővárosi Önkormányzat kezelésében lévő közcelő zöldfelületek fenntartására szolgáló pénzügyi keret emelkedő tendenciát mutat, még mindig elmarad az optimális ráfordítástól, így a szakfeladat éveken át tartó alulfinszírozása visszaszoríthatatlan károkat okoz a fővárosi kiemelt zöldfelületi rendszerében.

A zöldfelületekre sok esetben jellemző, hogy a tulajdonosa és kezelője elválik egymástól, ami szintén megnehezíti a zöldfelületekkel való hatékony gazdálkodást.
Zöldfelület-gazdálkodás leírása, jellemzése

A zöldfelület-gazdálkodás a települések zöldfelületeivel kapcsolatos olyan állami, önkormányzati és vállalkozói tevékenységeket jelenti, mint például a zöldfelületek létesítése, fejlesztése és nem utolsó sorban fenntartása, kezelése, védelme, használatának szabályozása (korlátozása), valamint a zöldfelületi vagyonnal való gazdálkodás.

A zöldfelületekre sok esetben jellemző, hogy a tulajdonosa és kezelője elválik egymástól, ami megnehezíti a zöldfelületekkel való hatékony gazdálkodást. Budapest parkterületének 40%-a a Fővárosi Önkormányzat kezelésében áll, melyet a FŐKERT tart fenn. A többi parkterület (a parkterületek 60 %-a) kezelői alapvetően a kerületi önkormányzatok, de más szervezetek is lehetnek (pl. a Magyar Katolikus Egyház, a Városliget 2014-ben a Városliget Zrt. vagyonkezelésébe került).

2009-től kezdve a Fővárosi Önkormányzat kezelésébe tartozó közparkok, közkertek (zöldterületek), közlekedési útvonalak menti zöldsávok és fasorok, továbbá a fővárosi tulajdonú ingatlanok zöldfelületeinek fenntartásán kívül a fővárosi önkormányzati tulajdonú erdőterületek és a budapesti helyi jelentőségű természetvédelmi területek fenntartását is a FŐKERT végzi. A társaság a közszolgáltatási tevékenységet mintegy 2.303 hektáron végzi (1. ábra).

1. ábra: A FŐKERT által fenntartott területek nagysága típusuk szerint 2023-ban (Adatforrás: FŐKERT)

Közkertek, közparkok

Budapest Főváros Önkormányzata a kiemelt közcelú zöldterületekről szóló rendeletében kijelölte a fővárosi jelentőségű, ún. kiemelt közparkok és fasorok körét. Ezek a városképi és idegenforgalmi szempontból a legfontosabb területek, amelyek a főváros arculatának kialakításában meghatározó jelentőségűek. A kiemelt zöldterületek többek között a Margitsziget, Városliget (a Városliget a Városliget Zrt.
A kerületi önkormányzatok által kezelt zöldterületek elemzése kerületi adatszolgáltatások felhasználásával készült. A II., IV., V., XVII., XIX. és a XXI. kerületektől nem érkezett adatszolgáltatás. (A hiányzó adatok a diagramokon feltüntetésre kerültek.)

A közparkokban (vagy legalábbis azokat érintve) évről-évre egyre több rendezvényi bonyolultanak le. A látogatók tömege, mozgása, a kihelyezett berendezési tárgyak (sátrak, pavilonok, színpadok stb.) és ezek szállítása olyan terhelést jelent a parkra nézve, amelyet az nem tud elviselni károsodás nélkül. Fokozza ezt a hatást az, amikor a rendezvények sűrűn követik egymást ugyanazon a területen, ezért az érintett terület nem tud regenerálódni. A károsodás elsősorban a gyepek felületét terheli. A nagymértékű tosaposítás miatt a talaj betömörödik, vízháztartása és levegőzése a növényzet számára kedvezőtlen módon megváltozik. További gondot jelent a géppel összetartott apró szemét, amely évről-évre beletömörödik a talaj felső rétegébe, továbbá a vanadalizmus okozta károk is fokozzák az amortizációt.

A beérkezett adatszolgáltatások alapján az elmúlt őt évben a budapesti kerületek közül a VIII. kerületi önkormányzat által létesült a legtöbb (5 db) új zöldterület (közpark), mint például a Bláthy park és a Tolnai kert. Emellett a XVI., XVII. és a XXI. kerületekben történt jelentősebb kerületi önkormányzatok által megvalósított zöldterület fejlesztés. Előbbi kerületben 4, míg utóbbi két kerület esetében 3-3 új közpark jött létre, többek között a Tabódy Ida utcai pihenőkert, a Naplás-tó déli partja, a Reformátusok tere és a Brenner park.
Ezen kívül a fővárosban az adott kerületi önkormányzatok által valósult meg a Vízafogó park, az Eötvös Loránd park, a Liget tér és a Százház park is.

Új közparksok létesítésével gyakoribb a meglévő zöldterületek átfogó megújítása. Legnagyobb számban a XIII. kerületben újultak meg a közparksok (18 db), de a XVIII., XV., XX. és a XXII. kerületben is kilencnél több átfogó zöldterület felújítás történt. Az elmúlt öt évben újult meg többek között a Tűzliliom park, a Csörsz park, a Kálvária tér és a Haller park. A legnagyobb arányban a létesítések és a felújítások eredményeként a XIII. és a XX. kerületben nőtt a zöldterületek minősége.

5. ábra: Kerületi önkormányzatok által újraépített vagy átfogóan felújított zöldterületek száma 2017 óta (kerületi önkormányzatok 2023-as adatszolgáltatása alapján)

6. ábra: A budapesti faegyedek megoszlása elhelyezkedésü szempontjából

7. ábra: Kerületek kezelésében álló faegyedek száma (kerületi önkormányzatok 2017-es és 2023-as adatszolgáltatása alapján)

Fák, fásorok

Budapesten – nagyfelbontású műholdfelvételek osztályozott automatizált feldolgozása és kapott adatszolgáltatások alapján – a becslések szerint 8,8 millió faegyed található, amelyek fenntartók szerinti csoportosítását az 6. ábra mutatja.

Jelentős faállomány, mintegy 23 százaléki, a távérzékeléses módszerek alapján készült becslések szerint tőbb mint 2 millió – található a nem közterülektént nyilvántartott, jellemzően magántulajdonban álló területeken is (pl.: mezőgazdasági területek, lakókertek, intézményterületek, gazdasági területek stb.).

A fővárosi faállomány mintegy 9%-a, kb. 785 ezer faegyed a további adatszolgáltatások összesítése szerint a kerületi önkormányzatok kezelésében van (7. ábra). A kerületi önkormányzatok által fenntartott faegyedek száma 2022-ben a XVIII. kerületben volt a legmagasabb, közel 70 000 darab, míg a legalacsonyabb a VI. kerületben volt, alig több, mint 400 fával. 2017-hez képest a legnagyobb mértékben, hozzávetőlegesen 20 000 fával, a XX. kerületben nőtt meg az önkormányzat által kezelt fák száma.

346 Zöldfelület-gazdálkodás
Budapest faállományának mintegy 2%-a (közel 176 ezer faegyed) a Fővárosi Önkormányzat kezelésében áll, amelyből 129 ezer a vonatkozó jogszabályok által meghatározott, a Fővárosi Önkormányzat feladatkörébe tartozó közelítési útvonalak menti zöldsávokban, illetve 47 ezer a kiemelt közcélú zöldterületeken (parkokban) található.

A FŐKERT elmúlt 7 évben jelentős számban, mintegy 13 ezer faegyeddel gyarapította a közterületi fák számát. A 2016-ban meghirdetett „10.000 új fát Budapest felülítetési programot követően is folytatott a fatelepítések (lásd 8. ábra).

A Fővárosi Önkormányzat mellett a kerületi önkormányzatok is jelentős fatelepítéseket végeztek az elmúlt időszakban. A 2017-2022 között vizsgált öt évi időintervallumban a XIII. került a többi kerületi önkormányzathoz képest kimagaslóan teljesített új fák telepítése területén, közel 4.900 új fa került elültetésére. A III., XIV., XVI. és a XVIII. kerület 2.000 darab feletti új fával bővült, míg a XI. kerület több, mint 3.000-el.

A fatelepítéseknek köszönhetően az üres fahelyek a Fővárosi Önkormányzat által kezelt kiemelt fasorokban nagyrészt megszűntek (2016-ban még 7 ezer üres fahely 2022-ben 268-re csökkent) – a többi fasorban 656 db fahely ültethető be jelenleg. Ugyanakkor a megszűnt fahelyek (ahol korábban fahelyeket jelölték, de infrastruktúra elemei érintettsége kapcsán már nem alkalmazkák fák telepítésére) száma magas, jelenleg fasorokban, illetve a parkokban 7.557 db megszűnt fahely szerepel a FŐKERT nyilvántartásában. Az üres és a beültetett fahelyek számát kerületi bontásban a 10. ábra mutatja.

A fővárosi megállósága mintegy 2%-a (közel 176 ezer faegyed) a Fővárosi Önkormányzat kezelésében áll, amelyből 129 ezer a vonatkozó jogszabályok által meghatározott, a Fővárosi Önkormányzat feladatkörébe tartozó közlekedési útvonalak menti zöldsávokban, illetve 47 ezer a kiemelt közcélú zöldterületeken (parkokban) található.

A FŐKERT elmúlt 7 évben jelentős számban, mintegy 13 ezer faegyeddel gyarapította a közterületi fák számát. A 2016-ban meghirdetett „10.000 új fát Budapest felülítetési programot követően is folytatott a fatelepítések (lásd 8. ábra).

A Fővárosi Önkormányzat mellett a kerületi önkormányzatok is jelentős fatelepítéseket végeztek az elmúlt időszakban. A 2017-2022 között vizsgált öt évi időintervallumban a XIII. került a többi kerületi önkormányzathoz képest kimagaslóan teljesített új fák telepítése területén, közel 4.900 új fa került elültetésére. A III., XIV., XVI. és a XVIII. kerület 2.000 darab feletti új fával bővült, míg a XI. kerület több, mint 3.000-el.

A fatelepítéseknek köszönhetően az üres fahelyek a Fővárosi Önkormányzat által kezelt kiemelt fasorokban nagyrészt megszűntek (2016-ban még 7 ezer üres fahely 2022-ben 268-re csökkent) – a többi fasorban 656 db fahely ültethető be jelenleg. Ugyanakkor a megszűnt fahelyek (ahol korábban fahelyeket jelölték, de infrastruktúra elemei érintettsége kapcsán már nem alkalmazkák fák telepítésére) száma magas, jelenleg fasorokban, illetve a parkokban 7.557 db megszűnt fahely szerepel a FŐKERT nyilvántartásában. Az üres és a beültetett fahelyek számát kerületi bontásban a 10. ábra mutatja.

8. ábra: Elültetett famennyiség 2016-2022 közötti időszakban (db)
(Forrás: FŐKERT)

(Forrás: kerületi önkormányzatok 2023-as adatszolgáltatása alapján)

(Forrás: FŐKERT)
* Margitsziget területével együtt
A FŐKERT adatbázisa szerint a parkfák és a kiemelt fasori fák kataszterezeése megtörtént. A 432/2012. (XII. 29.) Korm. rendelet szerint megállapított fasori fák közül a felmért egyedek aránya alacsony, ugyanakkor a legtöbb beültethető fahely is ezeken a területeken jelentkezik.

<table>
<thead>
<tr>
<th></th>
<th>Fák (db)</th>
<th>Üres, beültethető fahely (db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parkfa (14/1993. (IV. 30.) Főv. Kgy. rendelet szerint)</td>
<td>47.039</td>
<td>268</td>
</tr>
<tr>
<td>Fasori fa (432/2012. (XII. 29.) Korm. rendelet 1-2. melléklete)</td>
<td>100.109</td>
<td>656</td>
</tr>
<tr>
<td>Összesen</td>
<td>175.931</td>
<td>1.785</td>
</tr>
</tbody>
</table>

Budapest zöldfelületi rendszerének egyik legérzékenyebb elemei a közterületi faegyedek, fasorok, mivel a város szennyezettebb, és mechanikai hatásoknak inkább kitett területein találhatók. A kedvezőtlen környezeti hatások (pl. sózás, út- és közműépítések, közlekedés, parkolás által okozott mechanikai sérülések, korlátozott benapozottság, behatárolt élettér, légsszennyezettség) miatt városszerte romlik a fák állapota, így egyre több pusztul ki. Emellett számolni kell a fák természetes előregedésével is (lásd 11. ábra). A budapesti sorfák jellemzően idősek már, ezért egyre jelentősebb feladattá válik a fasorok megújítása.

11. ábra: Fák környezeti hasznának, illetve értékének változása (forrás: Zöldinfrastruktúra füzetek 4.)

Ugyanakkor a fatelepítésekkel a mennyiségi szempontokon túl előtérbe kerültek a minőségi szempontok is, ugyanis a fák megfelelő életteret biztosítva jelentősen javítható egészségi állapotuk, növelhető élettartamuk.

Erdőterületek

A fővárosi erdőterületek több mint kétharmada (72%) állami tulajdonú, vagyönkezelője a Plísi Parkerdő Zrt. A fővárosi erdőterületek további tulajdonosai közel 22-23%-os arányban: kerületi önkormányzatok, gazdasági szervezetek és magánszemélyek.

A Fővárosi Önkormányzat saját tulajdonában 309 hektár (5% körüli) erdőterület van, ezen területek kezelési-fenntartási terv6 szerint. A kisebb-nagyobb kiterjedésű (néhány tized hektártól néhány tíz hektárig terjedő) erdőfoltok a főváros területén elszórtan, összesen 42 különálló tömbben fordulnak elő. Budapest főváros saját tulajdonú erdeinek áttekintő térképe a FŐKERT weboldalán8 található. Az érintett erdőterületek 63%-a (196 ha) erdőtervezzett erdő.
A 12. ábra szemlélteti az üzemtervezett erdők tulajdonos szerinti megoszlását. Legnagyobb területet az állami erdők képviselnek (4.026 ha), a közösségi (jellemzően önkormányzati) tulajdonú erdők kiterjedése 1.041 ha, a magántulajdonú erdők kiterjedése 386 ha, a vegyes tulajdonú erdők kiterjedése 97 ha.

A 13. ábra szemlélteti az erdők üzemmódját a legnagobb területen (2.398 ha) a vágásos üzemmód a jellemző, faanyagtermelést nem szolgáló erdők 1.762 ha területet, az örökerdők 918 ha területet foglalnak el. A Budapest erdőtervezési körzet – 2012-2021-re vonatkozó időszakra szóló – körzeti erdőterve szerint a vágásos üzemmódú erdők 3.590 ha, faanyagtermelést nem szolgáló erdők 882 ha, az örökerdők 673 ha területet foglaltak el.
A fővárosi kerületek közül a beérkező adatok alapján a IX., XII., XVI., XVIII. és a XXIII. kerületi önkormányzatok gazdálkodnak erdőterületekkel. A XII. és a XVIII. kerület végéz erdőgazdálkodást számottevő területen, előbbi mintegy 300, utóbbi 500 hektáron. A további három erdőgazdálkodó kerületi önkormányzat összesen kevesebb, mint 24 hektáron folytat erdőgazdálkodást.

Helyi jelentőségű védett természeti területek

A FŐKERT a helyi jelentőségű védett természeti területeken – a feltárt inváziós fajok végleges visszaszorítására – természetvédelmi kezelési munkákat végez, amit a FÖRI által összeállított természetvédelmi szakmai terv alapján a természetvédelmi hatóság (Budapesten a főjegyző) engedélyezett, valamint azok végrehajtásában a fővárosi civil szervezetek is közreműködnek (részletes ismertetés: I.1. Természeti környezet állapota c. fejezetben.).

Temetkezés, temetők

A temetők kultúrtörténeti jelentőségű elsődleges feladata, hogy az elhunytak számára méltó helyet, a hozzátartozók számára pedig megfelelő kegyeleti lehetőséget biztosítsanak. A temetők másodlagos funkciójának, zöldfelületi szerepének értelmezését a területi kiterjedésük és magas zöldfelületi arányuk indokolja.

A természetközeli, de rendezett környezet a gyászolók számára megnyugvást jelent, ugyanakkor a jelentős temetői zöldfelületek részt vesznek a települési környezet kedvezőtlen hatásainak ellensúlyozásában, az ökológiai viszonyok javításában, továbbá bárki számára meghatározó lehet a temetők kultúrtörténeti vonatkozása is. A temetői területek optimális működését többek között azok minél rendezettebb állapota segíti elő.

A működő és lezárt köztemetők, valamint a tartalék és bővítési területek (összesen mintegy 412 ha) fenntartását – az Albertfalvai temetői kívételével, mely jelenleg már magántulajdonban lévő temetkezési emlékhely – a BTI működte, miután a Budapesti Temetkezési Intézet Nonprofit Zrt. a BKM „BTI” Temetkezési Divíziójával (a továbbiakban: BTI) alakult át 2021. szeptember 1-jén. A BTI által működtetett, **valamint a lezárt köztemetők elhelyezkedését a 14. ábra szemléltei. Az egyes temetők zöldfelület-gazdálkodási adatait a működő temetők esetében a 3. táblázat a lezárt temetők esetében pedig a 4. táblázat tartalmazza.**
A BTI tulajdonában tartozik a Csömöri sírkert (umatemető) és hamvasztómű is, amely a XVI. kerületi lakosság ellátására is szerepet játszik. Nagytéren található Budapest egyetlen jelenleg is működő krematóriuma, a magántulajdonban álló Budapesti Hamvasztó, amely a budapesti hamvasztási igények körülből felét képes ellátni.

A fenntartott zöldfelületi arány összevethető az OTÉK10 által meghatározott követelménnyel, a legkisebb zöldfelületi aránnyal (különleges temetőterületekre ennek minimum értéke 40%), azzal a megjegyzéssel, hogy ez az érték a sírhelyek területét is tartalmazza, így az egyes temetők tényleges zöldfelületi aránya ennél véletlenül valamivel kisebb lehet.

Mindemellett a zöldfelületek szempontjából fontos tényező a temetők látogatósságnak mértéke, ezzel együtt pedig a temetői zöldfelületek terhelése is. A budapestiek temetőlátogatási szokásai részletesen a Budapestiek véleménye a zöldfelületekről tartalmazza. Évszinten a temetőkertek látogatói száma eléri a 4 millió főt, illetve különösen kiemelkedő a halottak napja körüli 3 nap, amikor a látogatók száma akár 1-1,5 millió fő is lehet, ami jelentős terhelési csúcst jelent.

A köztemetők zöldfelületi jellemzőiről pontosabb képet kaphatunk, ha figyelembe vesszük a zöldfelületi intenzitási adatokat. Fontos megjegyezni, hogy a zöldfelületi intenzitás nagyságát a temetőkben – ahol a szabad zöldfelület és a burkolt, sírkővel fedett és beépített területek mozaiszerűen helyezkednek el – a fölöttük lévő lombkoronaszint jelentősen befolyásolja. A 2. táblázat adatai alapján megállapítható, hogy a működő köztemetők közül – a zöldfelületi intenzitás tekintetében – az Erzsébeti és a Budafoki temetők személyes hiányt. E területeken különösen későn ismétlődik a zöldfelületi intenzitás növelését megelőző, lehetőség szerint lombkoronaszintet is létrehozni, hogy zöldfelületi (kondicionáló) szerepüket is betöltessék.

2. táblázat: BTI által működtetett köztemetők fontosabb adatok

<table>
<thead>
<tr>
<th>Sorszám</th>
<th>Temető megnevezése – kerület</th>
<th>Terület (ha)</th>
<th>Bővítési terület (ha)</th>
<th>Beeírt mértéke (%)</th>
<th>Fenntartott zöldfelülete (%)</th>
<th>ZFI érték (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Angeli úti umatemető XXII.</td>
<td>2,5</td>
<td>-</td>
<td>1,97</td>
<td>92</td>
<td>75</td>
</tr>
<tr>
<td>2</td>
<td>Budafoki temető XXII.</td>
<td>5,7</td>
<td>-</td>
<td>0,7</td>
<td>91</td>
<td>52</td>
</tr>
<tr>
<td>3</td>
<td>Cinkai temető XVI.</td>
<td>9</td>
<td>-</td>
<td>0,6</td>
<td>89</td>
<td>62</td>
</tr>
<tr>
<td>4</td>
<td>Csepel temető XXI.</td>
<td>11,3</td>
<td>1,2</td>
<td>0,7</td>
<td>81</td>
<td>60</td>
</tr>
<tr>
<td>5</td>
<td>Erzsébeticum temető XX.</td>
<td>23,8</td>
<td>-</td>
<td>0,46</td>
<td>87</td>
<td>55</td>
</tr>
<tr>
<td>6</td>
<td>Farkasréti temető XII.</td>
<td>39,7</td>
<td>-</td>
<td>1,06</td>
<td>86</td>
<td>85</td>
</tr>
<tr>
<td>7</td>
<td>Kispesti öregtemető XIX.</td>
<td>2,6</td>
<td>-</td>
<td>0,77</td>
<td>85</td>
<td>73</td>
</tr>
<tr>
<td>8</td>
<td>Kispesti temető XIX.</td>
<td>15,9</td>
<td>-</td>
<td>0,44</td>
<td>89</td>
<td>75</td>
</tr>
<tr>
<td>9</td>
<td>Lőrinci temető XVIII.</td>
<td>22,2</td>
<td>16,8</td>
<td>0,47</td>
<td>90</td>
<td>84</td>
</tr>
<tr>
<td>10</td>
<td>Megyeri temető IV.</td>
<td>27,0</td>
<td>-</td>
<td>0,37</td>
<td>89</td>
<td>79</td>
</tr>
<tr>
<td>11</td>
<td>Kerepesi temető / Nemzeti Sírkert VIII. (NÖRI)*</td>
<td>62,5</td>
<td>-</td>
<td>1,47</td>
<td>67</td>
<td>85</td>
</tr>
<tr>
<td>12</td>
<td>Óbudai temető III.</td>
<td>25,4</td>
<td>-</td>
<td>0,9</td>
<td>90</td>
<td>87</td>
</tr>
<tr>
<td>13</td>
<td>Rákoskálai temető XV.</td>
<td>19,3</td>
<td>1,3</td>
<td>0,46</td>
<td>86</td>
<td>59</td>
</tr>
<tr>
<td>14</td>
<td>Tamás utcai umatemető III.</td>
<td>1,7</td>
<td>0,2</td>
<td>2,4</td>
<td>82</td>
<td>70</td>
</tr>
<tr>
<td>15</td>
<td>Újtemető X.</td>
<td>207,0</td>
<td>22,7</td>
<td>0,54</td>
<td>96</td>
<td>92</td>
</tr>
<tr>
<td>16</td>
<td>Csömöri sírkert és hamvasztómű</td>
<td>0,9</td>
<td>n.a.</td>
<td>n.a.</td>
<td>67</td>
<td>n.a.</td>
</tr>
</tbody>
</table>

*A Kerepesi temetőt – Nemzeti Sírkertet – 2016. május 1-jétől a Nemzeti Örökség Intézete (NÖRI) vette vagyonykezelésébe és az 58-as parcellában való temetést (csak itt lehetőséges temetni), illetve a harmvásárost is a NÖRI engedélyezi. A sírkertet ettől kezdve nem a BTI üzemelteti, köztetemő funkciója gyakorlatilag megszűnt.

Összességében a BTI-nek a felmért temetőkben 32.138 db telepített faról, kell gondoskodnia. Emellett pedig kb. 4.550 db spontán megtelepedett fa gyed fordul elő a parcellákon belül. Az Újtemető esetében mintegy 100 hektárosn alapozott, hajdan betemetett terület található. A gyomfák a temetői fenntartási feladatokat, azon belül is a faápolási munkákat is jelentősen nehezítik, a fenntartási költségeket pedig jelentősen növelik. Az elmúlt években mintegy 6.660 fát kellett eltávolítani a sorfák közül balesetveszély, illetve kiöregedés vagy éppen víharkárok következtetében.
A felmért temetők fasoraiban összesen 6.839 db üres fahely vagy tuskó található.

<table>
<thead>
<tr>
<th>Temető megnevezése – kerület</th>
<th>Nyilvántartott faegyedek száma</th>
<th>Egyéb, nem nyilvántartott faegyed becsült száma</th>
<th>Fakivágások száma</th>
<th>Üres fahelyek/ tuskók száma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Angeli úti urnatemető XXII.</td>
<td>191</td>
<td>10</td>
<td>0</td>
<td>47</td>
</tr>
<tr>
<td>Budafoki temető XXII.</td>
<td>501</td>
<td>50</td>
<td>0</td>
<td>200</td>
</tr>
<tr>
<td>Cinkotai temető XVI.</td>
<td>1.010</td>
<td>50</td>
<td>9</td>
<td>147</td>
</tr>
<tr>
<td>Csepeli temető XXI.</td>
<td>1.753</td>
<td>100</td>
<td>15</td>
<td>669</td>
</tr>
<tr>
<td>Erzsébeti temető XX.</td>
<td>2.487</td>
<td>100</td>
<td>12</td>
<td>481</td>
</tr>
<tr>
<td>Farkasréti temető XII.</td>
<td>2.839</td>
<td>300</td>
<td>31</td>
<td>580</td>
</tr>
<tr>
<td>Kispesti öregtemető XIX.</td>
<td>135</td>
<td>20</td>
<td>0</td>
<td>45</td>
</tr>
<tr>
<td>Kispesti temető XIX.</td>
<td>1.139</td>
<td>50</td>
<td>3</td>
<td>438</td>
</tr>
<tr>
<td>Lőrinci temető XVIII.</td>
<td>3.133</td>
<td>150</td>
<td>1</td>
<td>937</td>
</tr>
<tr>
<td>Megyeri temető IV.</td>
<td>3.342</td>
<td>300</td>
<td>8</td>
<td>851</td>
</tr>
<tr>
<td>Óbudai temető III.</td>
<td>2.986</td>
<td>300</td>
<td>36</td>
<td>591</td>
</tr>
<tr>
<td>Rákospatkai temető XV.</td>
<td>1.319</td>
<td>100</td>
<td>4</td>
<td>284</td>
</tr>
<tr>
<td>Tamás utcai urnatemető III.</td>
<td>126</td>
<td>20</td>
<td>0</td>
<td>21</td>
</tr>
<tr>
<td>Újköztemető X.</td>
<td>11.150</td>
<td>3.000</td>
<td>26</td>
<td>1.568</td>
</tr>
<tr>
<td>Csömöri sírkert és hamvasztómű</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

3. táblázat: BTI által működtetett köztemetők faállománynya

A temetés kegyeleti és egyben település-üzemeltetési feladat, tehát ősi kultikus cselekmény és egyben mindenkori közegészségügyi kötelezettség is. A budapesti temetők területének többsége a BTI, töredék része a Fővárosi Önkormányzat tulajdona, a köztemetők közhasználatúak, de nem közterületek. Sajnálatos módon vannak még olyan köztemetőként működő temetőrésekk, melyek tulajdonosaival eddig nem jött létre megállapodás a területhasználat, illetve a tulajdonjog rendezését illetően.

A fővárosi köztemetőkben akár 35 évre biztosítot a sírhely kapacitás, figyelembe véve az azonnal elérhető sírhelyek, a rátemetéses sírhelyek, az újra nem váltott felszabaduló sírhelyek, valamint az új parcellák, bővítési területeken kialakítható sírhelyek számát. A szabad koporsós-temetési kapacitást tekintve a temetőkben nagyságrendekkel több sírhely szabadul fel, mint amennyire szükség lenne, ami jellemzően a temetkezési szokások változásából adódik. A temetések megoszlása – azok típusát tekintve – egyre inkább a hamvasztásos temetés felé tolódik el: jelenleg a temetések 90%-a hamvasztásos (temetés, szórás, urnakiadás) és 10%-a hagyományos, koporsós. A temetőterületek fenntartására nézve különösen nagy terhet jelent, hogy évről évre növekszik a lejárt és újra nem váltott sírhelyek száma, amelynek aránya jelenleg átlagosan eléri a 40-45%-ot.

Függelék F.2.

Az egyes temetkezési módokat, a temetkezési szokások változásának jellemzőit, valamint a sírhelykapacitás részletes adatait a Függelék F.2. Temetkezés, temetők c. fejezete mutatja be.
A budapestiek véleménye a zöldfelületekről

16. ábra: Elégedettség a parkokkal, zöldterületekkel a lakóközösségekben 2020-ban (százfokú skála, 100=teljesen elégedett, 0=teljesen elégedetlen)

<table>
<thead>
<tr>
<th>nem</th>
<th>férfi</th>
<th>nő</th>
</tr>
</thead>
<tbody>
<tr>
<td>életkor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18-29 éves</td>
<td>68</td>
<td>67</td>
</tr>
<tr>
<td>30-39</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>40-49</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>50-64</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>65 éves vagy idősebb</td>
<td>71</td>
<td></td>
</tr>
<tr>
<td>iskolai végzettség</td>
<td></td>
<td></td>
</tr>
<tr>
<td>legfeljebb 8 osztály</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>szakmunkásképző, szakiskola</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>érettségi</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>diploma</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>lakótipus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>lakótelepi panelház</td>
<td>69</td>
<td></td>
</tr>
<tr>
<td>egyéb többszintes társasház</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>családi ház, ikerház, sorház</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>övezet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>történeti belváros</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>belváros körüli zárt sorú</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>lakótelepek</td>
<td>67</td>
<td></td>
</tr>
<tr>
<td>budai kertváros</td>
<td>74</td>
<td></td>
</tr>
<tr>
<td>pesti kertváros</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>teljes népesség</td>
<td>67</td>
<td></td>
</tr>
</tbody>
</table>
A 2022-ben végzett közvélemény-kutatás a csapadékvíz-gazdálkodási kérdésekhez kapcsolódóan a zöldtetők ismertségére is kitért. A zöldtetőről a megkérdezettek többsége hallott. Az idősebbek és a képzettebbek számottevően nagyobb arányban ismerik ezt a megoldást, mint a fiatalok, illetve képzetlenebbek.

<table>
<thead>
<tr>
<th>nem</th>
<th>férfi</th>
<th>nő</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-29 éves</td>
<td>60</td>
<td>40</td>
</tr>
<tr>
<td>30-39</td>
<td>59</td>
<td>41</td>
</tr>
<tr>
<td>40-49</td>
<td>35</td>
<td>65</td>
</tr>
<tr>
<td>50-64</td>
<td>31</td>
<td>69</td>
</tr>
</tbody>
</table>

A 2023-ban végzett közvélemény-kutatás kitért a parklátogatási szokásokra. A megkérdezettek egytizede nem jár parkokba, jellemzően az egészségi állapotuk vagy a koruk miatt, de jellemző az is, hogy nincs erre igényük (ennek egyik lehetséges oka, hogy kertes házban élnek). A megkérdezettek mindössze 2%-a válaszolta, hogy a parkok rossz állapota miatt nem látogatja azokat. Ezzel szemben a budapestiek fele betegségek miatt legalább egyszer elmegy egy parkba.

<table>
<thead>
<tr>
<th>nem</th>
<th>teljes népesség</th>
</tr>
</thead>
<tbody>
<tr>
<td>férfi</td>
<td>64</td>
</tr>
<tr>
<td>nő</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>életkor</th>
<th>18-29 éves</th>
<th>30-39</th>
<th>40-49</th>
<th>50-64</th>
<th>65 éves vagy idősebb</th>
</tr>
</thead>
<tbody>
<tr>
<td>18-29 éves</td>
<td>64</td>
<td>59</td>
<td>59</td>
<td>37</td>
<td>39</td>
</tr>
<tr>
<td>30-39</td>
<td>59</td>
<td>40</td>
<td>59</td>
<td>39</td>
<td>37</td>
</tr>
<tr>
<td>40-49</td>
<td>59</td>
<td>40</td>
<td>59</td>
<td>39</td>
<td>37</td>
</tr>
<tr>
<td>50-64</td>
<td>37</td>
<td>37</td>
<td>39</td>
<td>37</td>
<td>37</td>
</tr>
<tr>
<td>65 éves vagy idősebb</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
<td>37</td>
</tr>
</tbody>
</table>

17. ábra: A zöldtető ismertsége (%)

18. ábra: Parklátogatás gyakorisága a budapestiek körében 2023-ban (%)

<table>
<thead>
<tr>
<th>övezet</th>
<th>teljes népesség</th>
</tr>
</thead>
<tbody>
<tr>
<td>történeti belváros</td>
<td>63</td>
</tr>
<tr>
<td>belváros körüli zártború</td>
<td>52</td>
</tr>
<tr>
<td>lakótelepepek</td>
<td>55</td>
</tr>
<tr>
<td>budai kertváros</td>
<td>56</td>
</tr>
<tr>
<td>pesti kertváros</td>
<td>44</td>
</tr>
</tbody>
</table>
A budapestiek étetében két park játszik kiemelkedő szerepet – a Városligetben és a Margitszigeten a megkérdezettek többsége évente legalább egyszer megfordul. Ugyanakkor a helyi kisebb parkok jelentősége nagy, sokan nem utaznak a nagyobb parkokig, hanem a környékükön lévőket használják.

A Budapesten élők 85 százaléka látogat erdőterületeket, ugyanakkor legalább havi rendszerezéssel csak a megkérdezettek 45 százaléka tölti ott szabadidejét. Az érdekből jellemzően a fiatalabbak és a képzettebbek járnak, valamint a budai kertvárosban élők, akiknek a lakóhelye közel esik az erdőhöz.

A 2023-as közvélemény-kutatás kitért a temetőlátogatási és temetkezési szokásokra. A fővárosiak 28 százaléka jár legalább havonta temetőbe. Az életkor előrehaladával nő a viszonylag rendszeres temetőlátogatók aránya, a legtöbben sírlátogatás miatt mennek. Sétálni, pihenni csak a megkérdezettek 2 százalék szokott a temetőben.
Amennyiben lenne rá lehetőség, kegyeleti emlékerdőt a megkérdezettek 13 százaléka biztosan, további 27 százalék pedig valószínűleg választaná temetkezési helynek, ugyanakkor a fővárosiak egyharmada egyáltalán nem nyitott erre. A nyitottság az életkor előrehaladtával enyhén csökken, a 65 éven felüli korcsoportban azonban megjegíz az elutasítók aránya, 57 százalékok biztos benne, hogy nem választaná ezt a temetkezési módot.

Intézkedések

A Fővárosi Önkormányzat a város környezeti állapotának javítása, fejlesztése érdekében különféle pályázati lehetőségeket hirdet meg a fővárosi zöldfelületek létrehozásával, megújításával, gondozásával kapcsolatos programok támogatására.

A Fővárosi Önkormányzat 2013 óta több alkalommal hirdetett meg pályázatokat „TÉR_KÖZ” címmel a közterületek és kapcsolódó épületek, üres és alulhasznosított ingatlanok közösségi célú megújítására, hasznosítására. A kerületi önkormányzatok civil együttműködésével pályázhattak innovatív és fenntartható szemléletű rehabilitációs koncepciókkal; a kisebb közösségi célú beavatkozásoktól kezdve a komplex, nagyszabású városrehabilitációt megvalósító projektekig.

A Kvt. felhatalmazása 11 alapján a Fővárosi Önkormányzat létrehozta a Fővárosi Környezetvédelmi Alapját. 12 A Környezetvédelmi Alapból támogatható - egyben a fővárosi telephelyű gazdasági szervezetek társadalmi felelősségvállalásának is teret adva - kiemelt pályázati célok:

- lakosság közvetlen lakókörnyezetének és zöldterületeinek tisztaságát, rendezettségét, rendszeres gondozását elősegítő akciók és programok támogatása;
- környezetvédelmi és természetvédelmi szemléletformálás a fővárosban;
- helyi védett természeti értékek megőrzését, eredeti, természetes állapotuk helyreállítását, valamint bemutatását segítő programok, akciók, továbbá a helyi védett természeti értékek fizikai védelmét szolgáló létesítmények kialakításának, illetve a meglévő kapcsolódó létesítmények karbantartásának és felújításának támogatása;
- az avar és kerti zöld hulladék komposztálás elősegítését célzó programok, akciók támogatása.
A Fővárosi Környezetvédelmi Alap 2022-es pályázatán összesen 7 pályázó részére együttesen közel 10,4 millió Ft-ot ítél meg. A támogatás többek között komposztálási programok, tanösvények, kerékpártervök, élőhelykezelési és csapadékvíz hasznosítási, visszatartási programok megvalósítását támogatja. Pályázatot elsősorban civil szervezetek, alapítványok nyújtottak be. Emellett a Fővárosi Önkormányzat 2023-ban pályázatot hirdetett ővodai komposztálók és magasjavak létesítése, a komposztálás kulturális megvalósítását és a környezeti nevelés érdekében.

A projekt megvalósítására a rendelkezésre 40 millió forint forrás áll rendelkezésre.

A Fővárosi Önkormányzat támogatásával az „Égig Érő Fű” udvarzöldítési pályázat keretében tizenöt budapesti társasház belsőudvara újulhat meg, főként a belső, nagyfokú beépítésű belső városrészekben. A belső udvarok lehetőséget biztosítanak a zöldfelületi programok, tanösvények, kerékpártervök, élőhelykezelési és csapadékvíz hasznosítási, visszatartási programok megvalósítását támogatja.

A projekt megvalósítására a rendelkezésre 40 millió forint forrás áll rendelkezésre.

Az említett pályázatok elsősorban Budapest Környezetvédelmi Programjának és a Radó Dézső Terv céljainak megvalósítását segíti, tekintettel a fővárosi lakközösségek minél szélesebb körű, környezetvédelmi célú együttműködésének elősegítésére. Ugyanakkor a „TÉR_KÖZ” pályázat, sem a Fővárosi Környezetvédelmi Alap, nem tudja a zöldfelület-gazdálkodást tudományos, eljárásos módon megvalósítani.

A Fővárosi Önkormányzat és a FŐKERT 2021 tavaszán új, extenzív gyepgazdálkodási programot („Vadvirágos Budapest” program) vezetett be, melynek keretében 29 hektár területen alakítottak ki extenzív gyepfelületeket a fővárosi parkokban és zöldsávokban a biológiai sokféleség megóvása érdekében. Ezek a területeken a gyepfelületek intenzív, évenként 5-7 alkalommal történő teljes lekaszolása helyett, a kaszálás csak 1-3 alkalommal történik meg, így a vadvirágoknak van ideje kifejlődni, virágozni, magot érlelni, terjedni. A diverz élővilág, eszékhelyes rét kialakulása, lassú, több éves folyamat, de a magasabban engedett gyepnek már most több vizet kötnek meg. A kaszálás hiányában felnövő területek élő- és táplálkozó helyeket biztosítanak a rovarvilág számára, „méhlegelőként” funkcionálnak. A vadvirágos rétek kialakítása olyan helyeken zajlik, melyek parkhasználati szempontból kevésbé frekváltak.

1 A HUMUSZ szervezet a pályázattól visszalépett, ezért velük a támogatási szerződés nem került aláírásra.
A fővárosi kerületek közül a beérkező adatok alapján 2022-ben az I., VIII., IX. és XII. kerület volt be alternatív gyepgazdálkodásba városi zöldfelületeket. Legnagyobb arányban, több, mint 9 hektáron a IX. kerület folytat ilyen zöldfelületfenntartást. Az említett fennmaradó kerületek esetében egyelőre néhány száz négyzetméteren zajlik alternatív gyepgazdálkodás kísérleti jelleggel.

A kerületi adatszolgáltatások alapján 2022-ben a III., VIII., IX., XI., XIII. és a XII. kerületekben létesült esőkert kerületi önkormányzat megbízásából. A kezdeményezéshez 2023-ban többek között a XII. és a XVIII. kerület is csatlakozott, utóbbi 50 darab esőkert kialakítását tervezi 2023. és 2024. között. A FŐKERT az elmúlt évben a Pünkösdfürdő parkban és a Vérmező területén alakított ki esőkertet.

Jogszabály módosításokhoz kapcsolódóan megalakult egy favédelmi munkacsoport, mely a főjegyző fás szárú növények feletti tulajdonosi jogok gyakorlásával kapcsolatos munkáját segíti. A munkacsoport feladata, hogy minden egyes közműtervet és úttervet favédelmi szempontból is átvizsgálja, ezáltal már a tervezés során megszabadul azon kis kivágásra ítélt faegyedek, melyek indokolatlanul esnének áldozatul a fejlesztésekre.

További javasolt feladatok

A Radó Dezső Terv részletesen meghatározza 2030-ig terjedően a beavatkozási feladatokat a zöldfelületgazdálkodás terén (részletes ismertetés: I.2. Épített zöldfelületek c. fejezetben.)
Függelék

F.2. Temetkezés, temetők

Temetkezési módok és szokások, sírhelykapacitás

A temetések zömében a BTI üzemeltetésében levő köztemetőkben történnek Budapesten, illetve felekezeti temetőkben, altemplomokban, valamint a terület tulajdonosának, illetve üzemeltetőjének engedélyével egyéb területeken, magáningatlannak is lehetséges urnák elhelyezése. Temetések fajtái: koporsós vagy hamvasztással történő temetkezés, utóbbin belül urnás temetés, urna elhelyezés és hamvszórás, továbbá lehetőség van az urnák kiadására is.

Az Angeli úti és a Tamás utcai temetőben kizárólag urnában történő temetés lehetséges; hamvak szórása két budapesti temetőben (valamint a hamvasztóművel rendelkező Csömörő sirkertben) történhet, a többi temetőben mind koporsós, mind urnás temetés lehetséges. Új temető létesítése van folyamatban a XVII. kerületi Bocsai utcában, 1,3 ha nagyságú területen. A fővárosi köztemetők elhelyezkedését a 14. ábra mutatja, azokban a 2022. évi szabad sírhelyek számát a 4. táblázat részletezi.

<table>
<thead>
<tr>
<th>Sorszám</th>
<th>Temető megnevezése — kerület</th>
<th>Szabad sírhely (db)</th>
<th>Szabad urnahely (db)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Angeli úti urnatemető XXII.</td>
<td>0</td>
<td>201</td>
</tr>
<tr>
<td>2.</td>
<td>Budafoki temető XXII.</td>
<td>66</td>
<td>318</td>
</tr>
<tr>
<td>3.</td>
<td>Cinkotai temető XVI.</td>
<td>68</td>
<td>191</td>
</tr>
<tr>
<td>4.</td>
<td>Csepeli temető XXI.</td>
<td>94</td>
<td>183</td>
</tr>
<tr>
<td>5.</td>
<td>Erzsébeti temető XX.</td>
<td>1131</td>
<td>820</td>
</tr>
<tr>
<td>6.</td>
<td>Farkasréti temető XII.</td>
<td>1502</td>
<td>3758</td>
</tr>
<tr>
<td>7.</td>
<td>Kispesti öregtemető XIX.</td>
<td>152</td>
<td>3</td>
</tr>
<tr>
<td>8.</td>
<td>Kispesti temető XIX.</td>
<td>197</td>
<td>1203</td>
</tr>
<tr>
<td>9.</td>
<td>Lőrinci temető XVIII.</td>
<td>195</td>
<td>1765</td>
</tr>
<tr>
<td>10.</td>
<td>Megyeri temető IV.</td>
<td>789</td>
<td>547</td>
</tr>
<tr>
<td>11.</td>
<td>Óbudai temető III.</td>
<td>164</td>
<td>420</td>
</tr>
<tr>
<td>12.</td>
<td>Rákospalotai temető XV.</td>
<td>848</td>
<td>1254</td>
</tr>
<tr>
<td>13.</td>
<td>Tamás utcai urnatemető III.</td>
<td>0</td>
<td>71</td>
</tr>
<tr>
<td>14.</td>
<td>Újköztemető X.</td>
<td>3586</td>
<td>6696</td>
</tr>
<tr>
<td>ÖSSZESEN</td>
<td></td>
<td>8.400</td>
<td>17.438</td>
</tr>
</tbody>
</table>

Fontos kiemelni, hogy a fenti adatok kizárólag az azonnal elérhető új sírhelyek számát mutatják, a rátemetéses sírok, az új parcellák, művelésbe bevonható területek sírtábláinak kapacitását nem. Minden adatot felmérve, a budapesti szabad sírhelyek száma elérteti a 800 ezret is, tehát akár 35 évre biztosított a sírhelykapacitás, feltételezve, hogy ez idő alatt nem keletkeznek további kiadható sírhelyek. A nem a BTI által működtetett további, felekezeti temetőkre vonatkozóan kapacitási adatok nem állnak rendelkezésre.

A 2023. évre vonatkozó Sírhely-gazdálkodási tervben foglaltak alapján megállapítható, hogy 2023. évben a BTI a vele szemben támasztott lakossági igényeket, csakúgy, mint az előző években, ki tudja elégíteni. Teljesen új parcellák kialakítása a következő köztemetőkben lehetséges: Újköztemető, Csepeli, Lőrinci, Kispesti „Öreg” temető, Rákospalotai, Erzsébeti, Angeli úti és Tamás utcai urnatemető; e temetők esetében a 4. táblázatban feltüntetett sírhelytöbblet az új parcellák kialakításával akár a többszörösségére is növelhető.

A szabad koporsós-temetési kapacitást vizsgálva szembenűző, hogy a temetőkben nagyságrendekkel több sírhely szabadul fel, mint amennyire szükség lenne, melynek egyik oka vélelmezhetően a rendelkezők által magasnak vett sírhelydíj.
Az évi átlag 15-20.000 db lejárt sír- és umahelyből mindössze néhány ezer kerül újraváltásra. 2022-ben 24.328 db nyughely járt le, melyből 13.723 sír- és umahelyet váltottak újra, az újraváltási hajlandóság 56%-os volt. A magas arány jól mutatja, hogy ezen nyughelytípusok elavultak, ezzel együtt a jövőben a természetközeli megoldások juthatnak előtérbe a fővárosi köztemetőkben is.

A fentieket megerősítve különösen nagy terhet jelent a területek fenntartására nézve, hogy évről évre növekszik a lejárt sírhelyek száma, amelynek aránya jelenleg átlagosan eléri a 40-45 %-ot. Ezeknek a sírhelyeknek a szolgáltatásba történő visszafogatására azonban nincs fedeze és a törvényi kötelezettség ellenére a volt rendelkezők jellemzően nem gondoskodnak a síremlékek elbontásáról.

A költségeken túlmenően jelentős hatással bír a temetkezési szokásokra a gyászkultúra változása, elhalványodása is. Ehhez hozzájárul, hogy a hamvszórásos temetéséhez nem társulnak a temetőgondozásra fordított költségek, ugyanakkor az emlékoszloponkra a nevek megjelenítését lehetővé tevő joggal felépítők az ipari törvények között az az igényt, hogy a temető területe és a megemlékezés helyszíne rendezetlen legyen.

Az alternatív temetkezési szolgáltatások száma is jelentős mértékben növekedett az elmúlt években, mint például hamvak természetben történő elhelyezése (pl. erdei temetkezés, hajós szórás, légi szórás, altemplomokban történő szórás stb.). A temetkezési szokások változása okán a fővárosi köztemetőkben is célzottul lenne minél több olyan alternatív temetési eljárásra lehetőséget biztosítani, ami a meglévő temetőterületek hasznosításával jár, ugyanakkor egyedi igényeket is kielégíti. Ennek egyik lehetséges formája az „erdei temetkezés” bevezetése lehet, amelynek helyszíneit kizárólag a temetők azon területein kell megvalósítani, amelyek jelenleg is a szolgáltatás részeként üzemelnek.
A fejezet hivatkozásai

1 A helyi önkormányzatokról szóló 1990. évi LXV. törvény 63/A. § (I) pont, hatályon kívül 2013. január 1-jétől.
2 A kiemelt közcélú zöldterületekről szóló 14/1993. (IV. 30.) Főv. Kgy. rendelet
3 Budapest Főváros Közgyűlésének 14/1993. (VI.30.) sz. önkormányzati rendelete a kiemelt közcélú zöldterületekről
4 Dr. M. Szilágyi Kinga, Dr. Balogh Péter István, Dr. Fekete Albert, Dr. Almási Balázs, Kanczlemé Veréb Mária (2014): A Városliget parkhasználati felmérése
5 Prof. Dr. Persányi Miklós, a Liget Budapest Projekt kert- és tájépítészeti feladatainak miniszteri biztosa által összegyűjtött adatok, a fővárosi kerületi önkormányzatok 2017 tavaszán nyújtott adatszolgáltatása szerint.
7 A kiemelt közcélú zöldterületekről szóló 14/1993. (IV. 30.) Főv. Kgy. rendelet
8 Budapest Főváros saját tulajdonú erdeinek kezelési-fenntartási feladatai (2022–2031)
9 https://www.fokert.hu/erdok/
10 253/1997. (XII. 20.) Korm. rendelet az országos településrendezési és építési követelményekről 2. számú melléklet, 14. sor
11 A környezet védelmének általános szabályairól szóló 1995. évi LIII. törvény 58. § (1) bekezdése
14 https://budapest.hu/Lapok/2021/tizenot-budapesti-tarsashaz-belsoudvara-ujulhat-meg-a-fovarosi-onkormanyzat-tamogatasaval.aspx?fbclid=IwAR03fFMrXn8lKAsnGdH2T5xCS3gQSBaEaanjXJaAEPeGwJe6MSB8Sy6ai0w
15 https://homlokzatzoldites.budapest.hu/
16 https://www.fokert.hu/bpfatar/
17 https://www.fokert.hu/adviragos-budapest/
18 Budapest Főváros Önkormányzata vagyonáról, a vagyonelemek feletti tulajdonosi jogok gyakorlásáról szóló 22/2012. (III. 14.) Főv. Kgy. rendelet, 60/A. §
II.8. Közterületek tisztántartása

Jelenleg nem kellően egyértelmű a budapesti helyi önkormányzatok (kerületek vs. főváros) között a településtisztasággal kapcsolatos szabályozási hatáskörök és végrehajtási feladatok megosztása. Hatékonysági kérdéseket vet fel az az évtizedeken át folytatott gyakorlat is, miszerint a közszolgáltatást végző fővárosi gazdasági társaságok közül több az alaptevékenységen túl, részben párhuzamos műszaki tartalommal végez, illetve végezett településtisztasági feladatokat is. A hatékonynabb közszolgáltatás elvégzése tekintetben előrelépést jelenthet a 2021 szeptemberében megalakult BKM Budapesti Közművek Nonprofit Zártkörűen Működő Részvénytársaság.

A település tisztaságával szorosan összefüggő, együtt folyós fontos közigazgatási feladat a fővárosban az ún. egészségügyi kártevők (elősködő rovarok, rágcsládok) populációjának elfoglalható szintre történő csökkentése is, majd annak folyamatos fenntartása. A patkányfertőzöttként regisztrált budapesti objektumok száma 2013-2014-től kezdődő, a gyorsan romló folyamat 2018-ban vált olyan mértékűvé, hogy az addig folytatott megelőző beavatkozások már elégtelennek bizonyultak. Az észlelt patkánypopuláció elfogadható szintre történő csökkentését az elmúlt években sikerült megvalósítani.

A település tisztaságával szorosan összefüggő, együtt folyós fontos közigazgatási feladat a fővárosban az ún. egészségügyi kártevők (elősködő rovarok, rágcsládok) populációjának elfoglalható szintre történő csökkentése is, majd annak folyamatos fenntartása. A patkányfertőzöttként regisztrált budapesti objektumok száma 2013-2014-től kezdődő, a gyorsan romló folyamat 2018-ban vált olyan mértékűvé, hogy az addig folytatott megelőző beavatkozások már elégtelennek bizonyultak. Az észlelt patkánypopuláció elfogadható szintre történő csökkentését az elmúlt években sikerült megvalósítani.

Az érdemi javulás, a hosszú távon is hatékonyan fenntartható, hatóságilag megfelelően ellenőriző és irányított rágcsládorítás érdekében a településtisztasággal, továbbá a rovar- és rágcsládorítással kapcsolatos jogszabályi környezet felülvizsgálata, módosítása szükséges úgy, hogy a budapesti közszolgáltatások működőképessége, teljesítményének szintje átmenetileg se csökkenjen.
Közterületek tisztántartásának leírása, jellemzése

A köztsiztaság helyzete – ami általában egy települési önkormányzat feladatellátásának eredménye – a közterületek tisztasági, rendezettségi állapotát jelenti.

A közterület fogalmát három, (a közterület-felügyeletről, a szabálysértések róló és az épített környezetről szóló) törvényben eltérő módon határozták meg 1.2.3.

A legtágabb értelmezésben – azaz a tulajdonformától és ingatlan-nyilvántartástól függetlenül minden közhasználatra szolgáló területet is beleértve, de ide nem értve a külterületi, jellemzően erdő és mezőgazdasági területeket – a köztűrőlet tisztáztartási igénytelről érintett területek nagysága Budapesten közel 10 ezer hektár, ami Budapest területének mintegy 18%-a (lásd Függelék, 9. ábra).

A korábban a köztisztasági, településtisztasági fővárosi közügyek ellátását, megszervezését és működtetését alapvetően fővárosi önkormányzati feladatként értelmeztek, ezért Budapest köztsiztaságának fenntartása érdekében a Főváros Közgyűlés 1994-ben megalkotta a köztisztaságról szóló önkormányzati rendeletet, amely szerint a Fővárosi Önkormányzat a közterület tisztántartási feladatainak ellátását közszolgáltató gazdasági társaságain keresztül biztosítja.

A köszolgáltatási szerződéseket meghatározott alapvetékenységeken túl az elvégzett köztsiztasági tevékenységek az elmúlt évekban általában a Fővárosi Önkormányzat által jóváhagyott szolgáltatási szint és pénzügyi lehetőségek függvényében váltózott.

A hatékonyabb közszolgáltatás elvégzése tekintetben előrelépett jelenthet a 2021. szeptember 1-jén megalakult BKM Budapesti Közművek Nonprofit Zártkörűen Működő Részvénytársaság (a továbbiakban: BKM), amely a korábbi önkormányzati közszolgáltató gazdasági társaságok (FKF, FŐTÁV, FŐKERT, BTI és FŐKÉTÜSZ) jogutódjaként egyesíti, majd azok működését divíziókként foglalja magában. A döntés az elterjedt ”Stadtwerke”-modell budapesti megvalósítását célozza.

A Fővárosi Önkormányzat további jogszabályban meghatározott köztsiztasági feladata a közútak locsolása, síkosság-mentesítés biztosítása. A vonatkozó jogszabályok szerint a köztartásra szolgálatot kijelölt budapesti főútjainak kezelője a Fővárosi Önkormányzat, feladatait a stratégiai közútkezelés (pl. forgalomcserezés, tervezés) tekintetében a Budapesti Közlekedési Központ Zrt., míg az operatív közútkezelő feladatokat (pl. forgalomtechnikai létesítmények fenntartása, működtetése, karbantartása, felújítása) a Budapest Közút Zrt. látja el.

Az ingatlan előtti járda tisztáztartásáról, szemét- és gyommentesítéséről, a hó eltakarításáról és a síkosság-mentesítéséről – évszázados joggyakorlatnak megfelelően – az ingatlan tulajdonosa (kezelője, használója) köteles gondoskodni.

Függelék F.1.
Az átszervezést megelőzően folytatott településtisztasági gyakorlatot részletesen a BKÁÉ 2022 modjára be.

A köztérület-felügyeletről szóló 1999. évi LXIII. törvény szerint a fővárosi köztisztaságra vonatkozó jogszabályok végrehajtásának ellenőrzéséhez a fővárosi önkormányzatok és a Fővárosi Önkormányzat közigazgatási rendelkezéseit mutatja be.

A közterület-felügyeletről szóló 1999. évi LXIII. törvény szerint a fővárosi köztisztaságra vonatkozó jogszabályok végrehajtásának ellenőrzéséhez a BKÁÉ 2022 modjára be.

A fővárosi közterület-felügyeletei, illetve önkormányzati rendészetei rendelkeznek hatáskörrel.

A kerületi közigazgatási, közterület-felügyeleti hatáskörből eredő főszabályként a fővárosi közterület-felügyeleti engedélyek kihelyezéséhez a BKÁÉ 2022 modjára be.

A jelenlegi gyakorlat szerint a kerületi önkormányzatok jelenlegi tevékenységeit köztisztasági feladatnak tekintik napvilágin, illetve a lakosság számára nyújtott köztisztasági szolgáltatásnak tekintik.

A jelenlegi gyakorlat szerint a kerületi önkormányzatok jellemzően az alábbi településtisztasági feladatokat végzik a saját hatáskörükbe tartozó (kerületi önkormányzati tulajdonú, illetve vagyonykezelésben álló) köztérületeken:

- járdák, közutak, közterek kézi- és gépi takarítása, síkosságmentesítése;
- parkok, játszóterek, fitnessparkok, kutyafutóprágak stb. tisztán tartása, berendezések karbantartása;
- általuk kihelyezett utcai hulladékgyűjtők, kutyáürelekek gyűjtők ürítése;
- illegális hulladéklerakónak felszámolása;
- átfogó köztisztasági akciók szervezése (lásd még II.9. Szemléletformálás fejezetben).

Az elmúlt években több kerület is szervezett a BKM bevonásával ún. „falta-falig” takarítást egyes közterületeken, közterek átfogó megismeréséért. Az intenzívebb takarítás magában foglalja a járdák, lépcsők magasnyomású tisztítóval történő felületisztítását, amennyiben szükséges további kézi takarítását, a járdáról az uttestre kerülő szennyeződés felszedését, a megismeréséért. A felület ismeretéért. A burkolt közutak szegélytől-szegélyig történő önfelszedő seprését és gépi mosását, továbbá a hulladékgyűjtő edények tisztítását, fertőtlenítését.

Az önkormányzatok tapasztalatai alapján jelenleg a közterületi feladatokkal kapcsolatos legfőbb, legjellemzőbb problémák, konfliktustényezők:

- illegális hulladéklerakás (alomok, kommunális, építési-bontási és szezonálisan zöldhulladékok);
- közterületi személyes felületisztítás a forgalmasabb közterületeken, közlekedési csomópontokban (cigaretta csoporthűtők, italosdobozok, gyorséttermek csomagolóanyagai stb.);
- közterületi hulladékgyűjtő edények rendeltetésüktől eltérő használata (pl. háztartási hulladékok elhelyezése);
- emberi és állati ürülékek a közterületeken;
- hajléktalansággal összefüggő további köztisztasági problémák.

A település tisztaságával szorosan összefüggő, egyúttal fontos közegészségügyi feladat a fővárosban az ún. egészségügyi kártevők (elősködő rovarok, patkányok és egerek) populációjának elfogadható szintre történő csökkentése is, majd az elfogadható szint folyamatos fenntartása.

A fővárosi patkánypopuláció becsült száma nem ismert; csak azon objektumok számát regisztrálta korábban a – szisztematikus írtást a kezdetektől álló, gyakorlati és ugyanazon – váltalkozó, ahol patkány előfordulást észlelték, és ott kezeléseket végeztek.
A fővárosi szolgáltatást a kezdetektől végző vállalat, majd szolgáltató gazdasági társság – jogutódások után már, mint – Bábolna Bio Kártévőrtó Szolgáltató Kft. szolgáltatott adatokat az 1970-es évek elejétől 2015-ig. Abban az időszakban a patkánymentesítési fenntartási munka eredményességét a fővárosi kormányhivatal – mint egészségügyi államigazgatási szerv (aki ezt a tevékenységet hatósággént folyamatosan ellenőrizte) is – megerősítette (lásd BKÁÉ 2022.11)

Az országos tisztifőorvos 2020 júliusában kiadott véleménye alapján a patkányártalom mértékének jellemzésére a rendelkezésre álló adatok közül jelenleg a lakossági bejelentések száma a legalkalmasabb. A patkányirtást végző akkori vállalkozó, az RNBH Konzorcium által gyűjtött adatok 2018 júliusától állatrendelkezésre, havi bontásban látható a bejelentések és az igazoltan fertőzött helyszínek aránya (lásd 1. ábra), továbbá a kétféle adat trendje (lásd 2., és 3. ábra).

A 1. ábra alapján látható, hogy míg a bejelentések 2019-2020-ban átlagosan 75%-ban kerültek igazolásra, addig 2021-ben a bejelentések átlagosan csak 52%-a, 2022-ben pedig alig 37%-a bizonyult ténylegesen fertőzöttnek.
A patkányfertőzöttség mindenkori területi eloszlásáról a Budapest Portálon található bejelentési térkép ad folyamatos tájékoztatást. Jól látható, hogy a probléma a sűrűn lakott belvárosi területeken a legnagyobb – bár itt a lakosság fokozott jelenléte is növeli az észlelések számát (vő.: lakóterületek népsűrűségi térképével, II.1. Épített környezet fejezet, 2. ábra).

A városi patkánypopuláció növekedését a szakirodalmi publikációk és a hatályos jogszabályok szerint a BKÁÉ 2021. Függelékében részletezett okok eredményezhetik.

A városi környezetben fokozódó igényként jelentik meg a kedvelt állatok – Budapesten elsősorban kutyák és macskák – tartása, amely számos településtisztasági, közterülethasználati szorosan összefüggő konfliktussal jár. (A budapesti helyzetet kapcsolatos információkat a II.10. Társadalom fejezet, Társállattartás Budapesten című alfejezet tartalmazza.)

A városban megjelenő kóbor és vadon élő állatok etetésével kapcsolatban felmerülnek településtisztasági aggályok. A hatályos törvényi szabályozás előírásaiból levezethető, hogy a vadon élő vagy kóbor állatok olyan jellegű etetése, amely a közterületet beszennyezi, nem megengedett. A helyi önkormányzatok sajátos szabályokat alkothatnak rendeletekben, melynek célja a közösségi együttélés szabályainak megteremtése.

A hulladékgazdálkodási közszolgáltatás keretében kötelezően végzett lomhulladékgyűjtés jelenlegi fővárosi gyakorlata újrahasznosításra történik, de emellett számos településtisztasági problémát, konfliktust okoz. A törvényi szabályozás ellenére a helyi önkormányzatok sajátos szabályokat alkothatnak rendeletekben, melynek célja a közösségi együttélés szabályainak megteremtése.

A településtisztasági problémák kapcsán kell megemlíteni, hogy a főváros egyik nagy hiányossága a nyilvános illemhelyek alacsony száma, továbbá az, hogy a meglévő illemhelyek jelentős része nem felel meg a kor elvárásainak, akadálymentességi és higiéniai követelményeknek. A városban üzemelő nyilvános illemhelyből jelenleg 38 db (ebből 27 db személyzettel üzemelő, 11 db automata) tartozik a Fővárosi Önkormányzat tulajdonába, de közszolgáltató társaságok keresztül, ennél több illemhely tartozik a közterületek kihelyezett lomok jellemzően a városi zöldfelületek degradációjával, a gyalogos- és parkolóterületek használatának ideiglenes ellehetetlenségével jár.

A településtisztasági problémák kapcsán kell megemlíteni, hogy a főváros egyik nagy hiányossága a nyilvános illemhelyek alacsony száma, továbbá az, hogy a meglévő illemhelyek jelentős része nem felel meg a kor elvárásainak, akadálymentességi és higiéniai követelményeknek. A városban üzemelő nyilvános illemhelyből jelenleg 38 db (ebből 27 db személyzettel üzemelő, 11 db automata) tartozik a Fővárosi Önkormányzat tulajdonába, de közszolgáltató társaságok keresztül, ennél több illemhely tartozik a közterületek kihelyezett lomok jellemzően a városi zöldfelületek degradációjával, a gyalogos- és parkolóterületek használatának ideiglenes ellehetetlenségével jár.

A településtisztasági problémák kapcsán kell megemlíteni, hogy a főváros egyik nagy hiányossága a nyilvános illemhelyek alacsony száma, továbbá az, hogy a meglévő illemhelyek jelentős része nem felel meg a kor elvárásainak, akadálymentességi és higiéniai követelményeknek. A városban üzemelő nyilvános illemhelyből jelenleg 38 db (ebből 27 db személyzettel üzemelő, 11 db automata) tartozik a Fővárosi Önkormányzat tulajdonába, de közszolgáltató társaságok keresztül, ennél több illemhely tartozik a közterületek kihelyezett lomok jellemzően a városi zöldfelületek degradációjával, a gyalogos- és parkolóterületek használatának ideiglenes ellehetetlenségével jár.

A településtisztasági problémák kapcsán kell megemlíteni, hogy a főváros egyik nagy hiányossága a nyilvános illemhelyek alacsony száma, továbbá az, hogy a meglévő illemhelyek jelentős része nem felel meg a kor elvárásainak, akadálymentességi és higiéniai követelményeknek. A városban üzemelő nyilvános illemhelyből jelenleg 38 db (ebből 27 db személyzettel üzemelő, 11 db automata) tartozik a Fővárosi Önkormányzat tulajdonába, de közszolgáltató társaságok keresztül, ennél több illemhely tartozik a közterületek kihelyezett lomok jellemzően a városi zöldfelületek degradációjával, a gyalogos- és parkolóterületek használatának ideiglenes ellehetetlenségével jár.

Az illemhelyek területi eloszlása is egyenlőtlen, a belvárosban a budai oldal tekintetében sokkal kevésbé ellátott a pesti oldalénál. A fővárosi hatáskörű illemhelyek közül 2022-ben összesen 21 db (mintegy 19%) volt lezárt, romos, üzemképtelen állapotban.

Emellett a kerületi önkormányzatok is mintegy 100 helyszínen üzemeltetnek nyilvános illemhelyeket – a legtöbb kerületi üzemeltetési illemhely a VIII., XI. és XII. kerületben működik, ugyanakkor ezek jelentős része mobil-illemhely. A Budapesten üzemelő illemhelyekről nincs jelenleg egységes, térképes adatbázis. A városban működő nagyobb kereskedelmi létesítmények (plázák, hipermarketek), valamint a közlekedési közszolgáltatók (MÁV, VOLÁN, BKK) szintén biztosítanak – időben korlátozottan – illemhely lehetőségeket.

A budapestiek véleménye a közterületek tisztaságáról

A lakók könyvezetben, illetve a gyakran látogatott városi helyszíneken tapasztaltak alapján, a 2020-ban, 2021-ben és 2023-ban azonos módszertan szerint elvégzett felmérések adatai szerint a város közterületi állapotának megítélése egyre
javuló. Az utcák szemetessége (57-48 pont) lényegesen intenzívebben foglalkoztatja a budapestieket, mint az illegális személyerakás (43-33 pont). Az előbbiek lényegesen nagyobb problémát jelentenek a belvárosban, mint a kertvárosokban lakóknak. Az illegális személyerakás megítélése tekintetében kisebb különbségek mellett ellentétes irányú az összefüggés.

Minden egy évben felmérték a lakosság patkányészlelései mértékét is, ami a teljes lakosság körében 30-40% között alakult. A legtöbb észlelés 2020-ban mutatkozott, majd a sokkal kedvezőbb a 2021-és évhez képest 2022-ben és 2023-ban nőtt azok aránya, akik láttak patkányt a városban (de egyik év sem érte el a 2020-as szintet).

A patkányészlések száma a különböző városrészek között évenként nagy változatosságot mutat. Míg korábban inkább a történeti belvárosban, 2023-ban már a kertvárosokban volt a leggyakoribb jelenség, de a belváros körüli zárt sorövezetben is viszonylag magas az észlelések aránya. A lakástípusok közül viszont a családi házban élőkre jellemző a leginkább.

Mind a négy évben felmérték a lakosság patkányészlelései mértékét is, ami a teljes lakosság körében 30-40% között alakult. A legtöbb észlelés 2020-ban mutatkozott, majd a sokkal kedvezőbb a 2021-és évhez képest 2022-ben és 2023-ban nőtt azok aránya, akik láttak patkányt a városban (de egyik év sem érte el a 2020-as szintet).

A patkányészlések száma a különböző városrészek között évenként nagy változatosságot mutat. Míg korábban inkább a történeti belvárosban, 2023-ban már a kertvárosokban volt a leggyakoribb jelenség, de a belváros körüli zárt sorövezetben is viszonylag magas az észlelések aránya. A lakástípusok közül viszont a családi házban élőkre jellemző a leginkább.
Közterületek tisztántartása

A Fővárosi Önkormányzat hatáskörébe tartozó településtisztasági feladatok ellátásáért felelő FKF Köztisztasági Divízió szintén készítette felmérést a lakosság körében az általa végzett tevékenységek megítéléseiről. A felmérésben a megkeresztető budapestiek 46%-a mondta azt, hogy elégedett Budapest utcáinak, köztereinek köztisztasági állapotával. A hidak, autóutak, parkok, zöldterületek tisztaságával kapcsolatosan 60%-os elégedettség mutatkozott.

Az illegális hulladéklerakást törvény szigorúan tiltja: büncselekményt követ el, aki hulladékkal más jogellenes tevékenységet végez és az alkalmas az emberi élet, testi övezet lakástípus.

Intézkedések

A FKF-fel kötött közszolgáltatói szerződés a jobb közisztasági szint elérésére érdekében kiegészült az alábbi tartalmi követelmények: a végzett munkák minőségének ellenőrzési módja és gyakorisága.

A fővárosi közisztaságszatú szóló rendelet szabályozza az ingatlanokat (ingatlankezelőkre, -használókra) vonatkozó közisztasági követelményeket is. Azok kötelesek gondoskodni – többek között – az ingatlan és az ingatlan előtti járdaszkasz gondozásáról, tisztántartásáról, szemét- és gyommentesítéséről, a hőeltakarításáról és a síkosság-mentesítéséről is.

A rendelet tiltja a szemetelést, hulladékelhagyást. A szennyező köteles a közterületek megisztításáról, rendbetételéről gondoskodni, legyen az építési tevékenységből, gépjárműműködésből, vagy akár állattartásból adódó szennyezés.
épség, egészség, a föld, a víz, a levegő vagy azok összetevői, illetve élő szervezet egyedének veszélyeztetésére (illegális hulladéklerakás).

Törvényi szabályozás alapján szabálysértést követ el, aki a közterületet, a közforgalom céljait szolgáló épületet, vagy a közforgalmú közlekedési eszközt beszennyezi, illetve ha a felügyelete alatt lévő állat által az a közterületen, a közforgalom céljait szolgáló épületben, vagy a közforgalmú közlekedési eszközön okozott szennyezés megszüntetéséről nem gondoskodik.

A bűncselekményt, vagy a szabálysértést előkévető személy ellen Budapesten hatóságaik a kerületi rendőrségek, aki az illegális hulladéklerakók felolvasztásáért.

A közterületnek a hulladékgazdálkodással szorosan összefüggő területe az illegális hulladéklarások felszámolása. Az illegális hulladéklarások felszámolásában fontos szerepe van a különböző civil kezdeményezéseknek, így az évek óta országosan megrendezett „TeSzedd! Önkéntesen a tiszta Magyarországért” akcióknak.

A fővárosi önkormányzat által közvetlenül igazgatott terület (Margitsziget) esetében a Fővárosi Önkormányzati Rendészeti Igazgatóságon belül működő fővárosi közterület-felügyelő, a helyi (fővárosi) jelentőségű védett természeti területen az önkormányzati természettévelemi őr szabhat ki helyszíni bírságot.

Bejelentést lehet tenni a Fővárosi Önkormányzati Rendészeti Igazgatóság Köztisztasági és Kommunális Szolgálatánál, aki a fenti hatáskörű rendszernek megfelelően saját hatáskörében eljár, vagy intézkedésre átteszi a bejelentést az illetékes kormányhivatalna, vagy kerületi közterület-felügyeletnek.

A közönségtársaságnak a hulladékgazdálkodással szorosan összefüggő területe az illegális hulladéklarások felszámolása. Az illegális hulladékhelyszakok felszámolásánál fontos szerepe van a különböző civil kezdeményezéseknek, így az évek óta országosan megrendezett „TeSzedd! Önkéntesen a tiszta Magyarországért” akcióknak.

Szolgáltatóváltás eredményeképp 2023. március 11-től a fővárosi Önkormányzattal kötött vállalkozói szerződésben meghatározott rágcsálóirtási feladatokat hároméves időszakra a Deratizációs Központ Konzorcium (a Bábolna Bio Kártevőirtó Szolgáltató Kft. és a Ronix Kft alkotta konzorcium20) látja el.

A patkányfertőzőség hatékony kezelése érdekében a Budapest Portál patkány-bejelentési felület21 került kialakításra 2021-ben. Az online űrlap kitöltésével bárki jelentheti a fővárosi Önkormányzatnak, ha Budapest területén patkányt látott vagy patkány jelenlétére gyanakozik. A honlapon bejelentési térkép12 is található, amely megrimutatja a lakossági patkánybejelentések koordinátáit az elmúlt 12 hónapban, vagy egy azon belüli kiválásztott időszakban. Ez által bárki nyomon tudja követni, hogy Budapest mely területeiről érkezik a legtöbb bejelentés, mely területek lehetnek gócpontok a patkányfertőzőség szempontjából, és ezek alapján hol lehet szükség több írtási feladatra. A beavatkozási térkép22 megmutatja, hogy a kiválásztott időszakban átlagosan hányhuzor kellett megismételni az írtást, mire a bejelentés helyén megszűnt a patkányfertőzés.

A fővárosi településtisztasági feladatokért felelős BKM Zrt. a hatékonyságnövelés érdekében a Budapest Portál patkány-bejelentési felület21 került kialakításra 2021-ben. Az online űrlap kitöltésével bárki jelentheti a fővárosi Önkormányzatnak, ha Budapest területén patkányt látott vagy patkány jelenlétére gyanakozik. A honlapon bejelentési térkép12 is található, amely megrimutatja a lakossági patkánybejelentések koordinátáit az elmúlt 12 hónapban, vagy egy azon belüli kiválásztott időszakban. Ez által bárki nyomon tudja követni, hogy Budapest mely területeiről érkezik a legtöbb bejelentés, mely területek lehetnek gócpontok a patkányfertőzőség szempontjából, és ezek alapján hol lehet szükség több írtási feladatra. A beavatkozási térkép22 megmutatja, hogy a kiválásztott időszakban átlagosan hányhuzor kellett megismételni az írtást, mire a bejelentés helyén megszűnt a patkányfertőzés.

A fővárosi településtisztasági feladatokért felelős BKM Zrt. a hatékonyságnövelés érdekében 2022-ben tovább korszerűsítette gépjárműállományát: magasnyomású mosóberendezések, padlótakarító berendezések és gyalogos kíséretű utcai takarítógép beszerzésével. Folyamatban van további járművek pl. elektromos tehergépjárművek, egyéb teher- és rakodógépek, lombszívók, járdatarakítók, magasnyomású mosóberendezések, vegyszermentes gyomírtók stb. beszerzése is.
További javasolt feladatok

- A településtisztasági helyzet tapasztalható, érdemi javulása érdekében a jogszabályi környezet pontosítása szükséges úgy, hogy a budapesti településtisztasági közszolgáltatások működőképessége, teljesítményének szintje átmenetileg se csökkenjen. A Fővárosi Önkormányzatnak kezdeményeznie kell a kerületi önkormányzatokkal történő együttműködést, majd a vonatkozó jogszabályok olyan módosítását, amely egyértelművé teszi a budapesti településtisztasággal kapcsolatos (szabályozási és végrehajtási) hatáskörök, a településtisztaság működőképessége, teljesítményi szintet átmenetileg se csökkenjen. A jogszabályi felülvizsgálaton túl indokolt a lakossági vélemények felmérése, figyelembevételével, továbbá a költséghatékony feladatellátás illetékességének tisztázása, majd ennek megfelelően a közszolgáltatási szerződéseket módosítása is szükségessé válhat.

- Településtisztasági és természeti kérdések megoldásához szükségeséérté vált például a fővárosi közterületek használata a szabadon rendezett helyekre, megállapodások felülvizsgálata is, meg tiltva az utóbbi időben egyre jellemzőbb, különböző tárgyak (különösen légzőemberek, lámpák, vízfelszínen üsző műanyag) bármely környezeti eleme, vagy elemre történő tömeges (akár szervezettek módon való) szétszórását, terjesztését.

- A Fővárosi Önkormányzat irányítása alatt álló köszolgáló társaságok hatékonyságát és (gazdaságságosságát) feladatellátása érdekében a feladatellátás illetékességének tisztázása, majd ennek megfelelően a közszolgáltatási szerződéseket módosítása szükséges.

- A Fővárosi Önkormányzatnak – mint a problémával leginkább érintett egyik legnagyobb népsűrűségű település helyi és területi önkormányzatának – kezdeményeznie kell a rágcsálóirtás, valamint a szúnyoggyérítés jogszabályi környezetének teljes felülvizsgálatát is.

- A Fővárosi Önkormányzatnak – mint a problémával leginkább érintett egyik legnagyobb népsűrűségű település helyi és területi önkormányzatának – kezdeményeznie kell a rágcsálóirtással kapcsolatos törvények, és a vonatkozó országos szabályozás átfogó felülvizsgálatát, annak érdekében, hogy egyértelműen meghatározott váljanak:
 - egy település patkánypopulációja mintavételi, helyszíni vizsgálati eljárása, a mintavételi, helyszíni vizsgálatokra vonatkozó akkreditáció (a folyamatos monitorozást végző akkreditált szervezetek szembeni minőségé biztosított feltételek meghatározása) bevezetése, az eredmények hatósági értékelése, majd folyamatos közzétételek módja, szempontjai;
 - a települési patkánypopuláció elfogadható szintje (a fertőzőottsági határtartalék);
 - az írtásra (gyérítésre) kötelezett magán-, vagy jogi személyek feladatellátásának összehangolását végző felelős (hatósági?) szervezet kijelölése, feladatkörének meghatározása;
 - az észlelés esetén a hatóságok történő bejelentés szabályai;
 - a hatósági eljárás különleges szabályai (pl. azonnali végrehajthatóság/fellebbezés – másodfokú hatóság; kényszerintézkedés lehetősége, indokoltságú meghatározás).

Az ingatlan tulajdonosa, kezelője, továbbá egyes funkciójú objektumok (pl.: piacok, földalatti vezetékek, egészségügyi intézmények stb.) üzemeltetőjének rendszere megelőző írtásra, illetve külön hatósági kötelezésre végzett tevékenysége mellett indokolatlan a helyi önkormányzatok feladatra történő további általános kijelölése (különösen azért, mert egy önkormányzattal szemben a feladat megfelelő ellátását hatósági eszközök alkalmazásával nem lehet kikényszeríteni, legfeljebb egy intézményt, gazdasági társaságot, illetve annak vezetőjét határozatban a feladat megfelelő ellátására kötelezni).
A Fővárosi Önkormányzatnak szükséges kezdeményezni a rovarirtáson belüli a szúnyoggyérítésben résztvevők munkájának nagyobb fokú összehangolását a hatékonyabb védekezés érdekében, az ökológiai szempontból legkedvezőbb technológiai megoldások előnyében részesítését.

A lomtalanítási rendszer olyan átalakítása indokolt, amely a jelenleginél kisebb károkozással és veszteséggel járó közterülethasználatot eredményez.

A nyilvános illemhelyek számának bővítése, megfelelően egyenletes sűrűségű telepítése, fenntartása.
Függelék

F.1. Budapest közhasználatú területeinek megoszlása

9. ábra: Budapest közterületeinek és egyéb közhasználatú területeinek aránya a közigazgatási területhez viszonyítva

10. ábra: Budapest közterületeinek és egyéb közhasználatú területeinek nagysága kerületenként
A fejezet hivatkozásai

1 A közterület-felügyeletről szóló 1999. évi LXIII. törvény 27. § a) pont: „közterület: a közhasználatra szolgáló minden olyan állami vagy önkormányzati tulajdonban álló terület, amelyet rendeltetésének megfelelően bárrí használhat, ideértve a közterületnek közútént szolgáló és a magánterületnek a közfogalom számára a tulajdonos (használó) által megnyitott és kijelölt részét, továbbá az (a) közterület, amelyet azonos feltételekkel bárrí használhat”

2 a szabálysértésekről, a szabálysértési eljárásról és a szabálysértési nyilvántartási rendszerrel szóló 2012. évi II. törvény 29. § (2) bekezdés a) pont: „a) közterület a tulajdonos személyétől és tulajdonformától függetlenül minden olyan közhasználatra szolgáló terület, amely mindenki számára korlátozás nélkül vagy azonos feltételek mellett igénybe vehető, ideértve a közterületnek közútént szolgáló és a magánterületnek a közforgalom elől el nem zárt részét, b) nyilvános hely a közterületnek nem tekinthető, mindenki számára nyitva álló hely”

4 A főváros közösségének jogai 1994. (Vlll. 1.) Főv. Kgy. rendelet

6 Magyarország helyi önkormányzatairól szóló 2011. évi CLXXXIX. törvény (Mótv.) 23. § (4) bekezdés 3. pontja

7 A már hivatkozott Mótv. 23. § (4) bekezdés 1. pontja, valamint a közúti közlekedésről szóló 1988. évi I. törvény 33. § (1) bekezdés bb) pont alapján.

9 Budapest környezeti állapotértékelése 2022. 353. oldal

10 a) közterület-felügyeletről szóló 1999. évi LXIII. törvény 1 § (1) bekezdés a) pontja

11 Budapest környezeti állapotértékelése 2022. 354-355. oldal. 1. táblázat és 1. ábra

12 https://budapest.hu/Lapok/2022/patkanybejelentes-terkep-bejelentesek.aspx

14 A szabálysértésekről, a szabálysértési eljárásról és a szabálysértési nyilvántartási rendszerrel szóló 2012. évi II. törvény 196. § (1) bekezdés: „Aki a) a közterületet, a közforgalom céljait szolgáló épületet, vagy a közforgalmú közlekedési eszközt beszennyezi, b) a felügyelete alatt lévő állatok által az a) pontban megjelölt helyen okozott szennyezés megszüntetéséről nem gondoskodik”

15 A hangsúlyozás során közterületre helyezett hulladék a Koordináló szerv tulajdonát képezi és egyben a közszolgáltató birtokába kerül.”

18 A Büntető törvénykönyvről szóló 2012. évi C. törvény 248. §:

(1) Aki a) nyilvántartásba vétele vagy bejelentés nélkül, illetve engedély nélkül vagy az engedély keretével tüllővé végez hulladékgyázdálkodási tevékenységet, vagy b) hulladékkal más jogellenes tevékenységet végez és az alkalmazás az emberi élet, testi épészség, egészség, a föld, a víz, a levegő vagy azok összetevői, illetve élő szervezet egyedének veszélyeztetésére bűntett miatt három évig terjedő szabadságvesztéssel büntetendő.

(2) Aki arra a célra hatóság által nem engedélyezett helyen a) az emberi élet, testi épészség, egészség, a föld, a víz, a levegő vagy azok összetevői, illetve élő szervezet egyedének veszélyeztetésére alkalmas vagy b) jelentős mennyiségű hulladékot elhelyez, bűntett miatt három évig terjedő szabadságvesztéssel büntetendő.
Közterületek tisztántartása | Függelék

19 A szabályértésekől, a szabálysértési eljárásról és a szabálysértési nyilvántartási rendszeről szóló 2012. évi II. törvény 196. § (1)-(2) és (4) bekezdések
20 https://patkanyirtas.hu/onkormanyzatok.html
21 https://budapest.hu/Lapok/Szolgaltatas/patkanybejelentes.aspx
22 https://budapest.hu/Lapok/2022/patkanybejelentes-terkep-beavatkozasok.aspx
Környezeti nevelés, tájékoztatás, szemléletformálás

A környezetvédelem egyik fontos hatóterülete a környezettudatos életvitel, látásmod, amelyet a lakossági szemléletformálás teremti meg. Környezetvédelmi ismeretek és az ökológiai összefüggések megértése nélkül nem képzelhető el környezettudatos életmódot, ezért a környezeti szemléletformálásnak legalapvetőbb feladata az, hogy az emberek számára közérthetővé és világossá tegye, legtöbb fogyasztói döntésüknek környezeti következményei is vannak.

A Kvt. értelmében a környezeti nevelés, a környezeti ismeretek terjesztése és fejlesztése (az óvodai nevelés, iskolai nevelés, képzés, művelődés, iskolarendszeren kívüli oktatás és továbbképzés, ismeretterjesztés, könyvkiadás) elsősorban állami és önkormányzati feladat. 2017-től azonban minden önkormányzati működtetésű alapítvány, egyesülés, gazdasági társaság, épület, sportarcadék és kulturális intézmény alapított környezetvédelmi és környezetügyi intézményeket, sőt magyar ipar, kulturális és sportiskolák is megalkották, sőt a környezetvédelmi és környezetügyi intézmények által megalapított civil szervezetek is központosították e célú munkáit.

Az alkalmazott intézkedések keltezhetik a közösség felismerését és tiszteletességét, amely gyakorlatilag mindenkor megfelelő választásokat biztosítani tud, és a főként a közösség környezetvédelmi feladatát is megvalósítja.

Az állami és önkormányzati szervek, sőt a magyar ipar, kulturális és sportiskolák is megalkották, sőt a környezetvédelmi és környezetügyi intézmények által megalapított civil szervezetek is központosították e célú munkáit.

Az állami és önkormányzati szervek, sőt a magyar ipar, kulturális és sportiskolák is megalkották, sőt a környezetvédelmi és környezetügyi intézmények által megalapított civil szervezetek is központosították e célú munkáit.

Az állami és önkormányzati szervek, sőt a magyar ipar, kulturális és sportiskolák is megalkották, sőt a környezetvédelmi és környezetügyi intézmények által megalapított civil szervezetek is központosították e célú munkáit.
A lakosság környezettudatossága

A környezeti károkat megelőzéséhez és mérsékléséhez, az élhető és fenntartható városi környezet előrelépéséhez vezető célok meghatározásához fontos feladat a lakosság környezettudatosságának felmérése, a környezetvédelemhez és a fenntarthatósághoz való viszonyulásának megismerése. A fővárosi lakosság attitűdjére a nemzetközi és országos felmérések alapján lehet következtetni, illetve egyes országos felmérések a fővárosra vonatkozó adatokat is tartalmaznak.

Az EuroBarométer 2019-es felmérése szerint a magyarországi válaszadók a 2014-es felmérése óta valamivel kevésbé aggódnak a légszennyezés miatt (45%) és leginkább a hulladék növekvő mennyisége miatt aggódnak (58%). Emellett a klímaváltozást is hasonlóan fontos témanak tartják (51%). A magyar válaszadók a környezetvédelmi problémák kezelésének leghatékonyabb módnak elsősorban a szigorúbb környezetvédelmi jogszabályok bevezetését és a fogyasztás módjának megváltozását tartják. A magyar válaszadók leginkább a szelektív hulladékgyűjtésben voltak aktívak (53%), bár ez a korábbi felméréshez képest mérsékelődött, valamint több mint egyharmaduk csökkentette energiafogyasztását és kerülte az egyszer használt műanyag termékeket vagy inkább újrahasználható műanyagot vásárolt. Az energiafogyasztás csökkentésére a korábbihoz képest is kevésbé magyar válaszadó (38%) tett lépéseket. A magyarországiak 40%-a aggódtak a műanyag termékek környezetre és az egészségre gyakorolt hatása miatt, azonban az EU átlaghoz képest 8 százalékponttal kevesebben, a válaszadók közel fele csökkentette az egyszer használatos műanyag szatyrokat használatát.

1. ábra: A legfontosabbnak ítélte környezeti problémák
Magyarország és az EU lakossága szerint (Forrás: EuroBarométer 501, 2019, European Comission)

A korrekció követően a minta pontosan tükrözi a felnőtt budapesti népesség nem, életkor és iskolai végzettség szerinti összetételét.
A 2020-as kutatás szerint a budapestiek közül az ivóvíz minőségéről érzik a legtöbben tájékozottnak magukat, és – a városban keletkező hulladék sorsa mellett – erről mondta a legekevesebb, hogy nem érdeklő őket. A tájékozottak aránya azonban ebben a tekintetben is csupán 50 százalék.

A 2021-es kutatás szerint a Fővárosi Önkormányzat környezetvédelmi tevékenységei közül a Klímastratégia a leginkább ismert a városban élők körében, de ezzel is csak a lakosság fele találkozott. A többi törekvés, program ismertsége figyelemre méltóan alacsony.

Környezeti nevelés, tájékoztatás, szemléletformálás

<table>
<thead>
<tr>
<th>Kockázati téma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hallott-e Klimastratégiáról?</td>
</tr>
<tr>
<td>Hallott-e Budapest Környezeti Programjáról?</td>
</tr>
<tr>
<td>Hallott-e Budapest Környezeti Állapotértékeléséről?</td>
</tr>
<tr>
<td>Hallott-e a Klímagyűlésről?</td>
</tr>
<tr>
<td>Hallott-e részvételi költségvetéséről?</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Résztvevők</th>
<th>Hallott</th>
<th>Nem hallott</th>
</tr>
</thead>
<tbody>
<tr>
<td>49</td>
<td>51</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>79</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>86</td>
<td></td>
</tr>
</tbody>
</table>

hallott róla | nem hallott róla

A budapestiek leginkább a városi hősziget hatást, a nagy autóforgalmat, a biztonságos kerékpárút hiányát, a közlekedésből eredő zajt és az utcák piszkosságát tartják a legnagyobb környezeti problémának a környezetükben.

A város környezeti helyzetét összességében kevésbé találják súlyosnak 2023-ban, mint 2020-ban. Egyedül a város felforrósodását itélők nagyobb problémának az idén, mint három évvel ezelőtt, miközben az utcák szennyezettsége, a levegő minősége, az illegális szemétlerakások, az előtér és a hulladékégetésből eredő levegőszennyezettség egyértelműen kisebb problémát jelent 2023-ban, mint 2020-ban.

A kérdéssor elemei a lakóhely belvárosi, vagy külvárosi jellege szerint rendeződtek egy kivételével két csoportba. Nem illeszkedett ebbé a csoportosításba a kerékpárutak biztonságosságára adott válaszok értékelése, mivel azokat a belvárosban és a külvárosban is hasonló arányban értékelik.

A környezet nyári felforrósodását, az autóforgalmat, a közúti közlekedésből eredő zajt mindenhol nagynak tartják, de a történeti belvárosban még jellemzőbb problémák ezek, mint máshol. A rossz levegő és a kevés fa kifejezetten a belváros körül rétegződött üveget lakónálán vagy.

A hulladékkal fűtsék, a zöldhulladékok égetéseből származó füst és az esőzések utáni előnyedése a pesti kertvárosi részekben jellemzőbbek, mint más lakóövezetekben.

A belvárosi jellegű problémák elsősorban a történeti belváros területén okoznak gondot, tehát a belváros közeli zártsorú övezetben már nincs akkora jelentőségük. A külvárosi jellegű problémák a pesti kertvárosi részekben nehezebbek, hogy fennmaradjak, de a budai kertvárosi területeken is jellemzőek. Egyik problématípus sem jelentős a belváros körül zártsorú övezetben, illetve a lakótelepen.

A Budapesten élők leginkább a szelektív hulladékgyűjtéssel járulnak hozzá a környezet védelméhez, ez a magatartás rendkivül elterjedt, a kutatás tapasztalatai szerint. Nagyon jellemző még az étel kidobásának elkerülése és az otthoni víz- és energiafogyasztás csökkentése.

Függelék F.1.

A környezettudatos magatartás jellemezői a nőkre, mint a férfiakra, és az idősek is jobban odaféGREölnek néhány területen, mint a fiatalok. A társadalmi csoportok közötti
különbségeket elsősorban a lehetőségek különbözésére okozza: a kertvárosban élők például értelemzésüen jellemzőbben komposztálnak, viszont kevésbé fogják vissza az autóhasználatot.

A kutatás alapján az a kép bontakozik ki, hogy a magasabb státuszúak nagyobb fokú környezettudatosságnak hatását csökkenti a magasabb fogyasztásuk (pl. gyakori autóhasználat), így összességében nem feltétlenül élne környezettudatosabb életet, mint az alacsonyabb státuszúak, akiknél a kisebb fokú autóhasználat mellett a nagyobb takarékosság is növeli a környezetkímélőbb magatartásformák előfordulását.

A szakterületekre vonatkozó konkrét véleményeket a környezeti állapotértékelés vonatkozó fejezetei tartalmazzák.

Környezeti nevelést, tájékoztatást és a társadalmi részvételt célzó intézkedések

Környezeti nevelés

A környezeti nevelés, a környezeti ismeretek terjesztése és fejlesztése (az óvodai nevelés, iskolai nevelés, képzés, művelődés, iskolarendszeren kívüli oktatás és továbbképzés, ismeretterjesztés, könyvkiadás) a környezetvédelmi törvény szerint elsősorban állami és önkormányzati feladat. 2017-től azonban minden önkormányzati működtetésű általános és középiskola állami fenntartásba került. A nemzeti köznevelésről szóló törvény végrehajtásáról szóló kormányrendelet 2016-os módosítása szerint az állami intézményfenntartó helyébe lépő tankerületi központok feladata a köznevelési intézmények fenntartása és működtetése. Emellett egyéb szervezetek is tevékenyen részt vesznek a környezettudatos szemlélet kialakításában.

Ökoiskolák, zöldövodák, erdei iskolák

A Nemzeti Alaptanterv bevezetése óta a közoktatás egyik kötelező alapfeladata a környezeti nevelés. A kerettantervek alapcéljai között szerepelnek a környezeti nevelés céljai és szinte minden tantárgy esetében megtalálhatóak a környezeti nevelés követelményei.

Az ökoiskolákhoz hasonlóan 2006 óta ügyvezetett zöldövodák is működnek a fővárosban. Budapesten 194 db „Zöld Óvoda” és ezen belül 69 db „Örökös Zöld Óvoda” működik.

Tanösvények

Jelenleg Budapest természeti értékeit több mint 40 tanösvény, valamint bemutató tábla ismerteti, melyek többnyire az elmutt két évtizedben jöttek létre. A fővárosi tanösvények így összesen körülbelül 30 km hosszúságúak. Döntő többségük
szabadon látogatható, de néhány helyen a látogatás korlátozott, vagy nyitvatartási időhöz kötött. A tanösvények részletes bemutatását a függelék tartalma.

Budapest Főváros Önkormányzata a Magyar Madártani és Természetvédelmi Egyesülettel (MME) közösen 2011-ben a helyi védettségű területeken tanösvényhálózat kialakításába kezdett, a Fővárosi Könyvezetvédelmi Alap anyagi támogatásának segítségével. Így a Fővárosi Önkormányzat a legtöbb természetismereti fővárosi tanösvény támogatójává vált, ugyanakkor Budapesten számos további kerületi önkormányzat, valamint állami és civil szervezet is hozott létre tanösvényeket.

Míg az őkoskolák, zöldövodák, erdei iskolák, illetve az országos védett területeken található tanösvények fenntartása állami feladat, a főváros helyi jelentőségű védett természeti területein található tanösvények fenntartása a Fővárosi Önkormányzat hatásköre. A tanösvények egyfajta „szabadtéri tanteremként” segítik, egészítik ki az intézményi oktatást.

Szemléletformálás

A Fővárosi Önkormányzat szemléletformálási feladatainak többsége a tematikus célterületekhez rendelten jelenik meg, elsősorban a közszolgáltatást végző gazdasági társaságok alapfeladatájaként, illetve a környezetvédelmi hasznos eredményű beruházásokhoz ismeretterjesztő, népszerűsítő átfogó kampányok is társulhatnak, növelve a projekt társadalmi támogatottságát.

A Fővárosi Önkormányzat szemléletformálás céljából zöldinfrastruktúra fejlesztéssel kapcsolatos kiadványokat jelentett meg Zöldinfrastruktúra füzetek címmel, amelyek a főváros honlapjáról letölthetők. A közszolgáltatást végző fővárosi gazdasági társaságok közül az elmúlt években elsősorban a BKM Nonprofit Zrt. FŐTÁV. FKF, FŐKERT Divíziói és a Fővárosi Vízművek vállaltak aktív szerepet a szemléletformálásban – lázd részletesebben: III. fejezet Környezeti program végrehajtásának nyomonkövetése c. fejezet.

A Fővárosban számos más szervezet (gazdasági társaság, civil szervezet, kerületi önkormányzat, államiigazgatási szerv stb.) is folytat szemléletformálási tevékenységet, melyek közül több nemzetközi projekthez kapcsolódik, mint például a „Föld órája” elnevezésű mozgalom, vagy az Európai Mobilitási Hét. Más programok országos kampányokhoz kapcsolódnak, mint például a BAM! Bringázz a munkába kampány, vagy az Energiaiudatosok Magyarország kampány.

Mára már az egyházak is szerepet vállalnak a környezetvédelemmel kapcsolatos szemléletformálásban, többek között – Ferenc pápa megnyilatkozásai alapján – a római katolikus egyház is.

A kerületek számos szemléletformáló akciót szerveznek (növényültetés, hulladékgyűjtés, közösségi kert, közösségi komposztáló létesítés, növényvásár, magkőnyvtár, lakossági komposztáló és csapadékvizesítő pályázat, zöldterület örökbefogadási program stb.), emellett a szemléletformálást és tájékoztatást segítő hónapokat és tanácsadó pontokat is üzemeltetnek (klima.obuda.hu, I. kerületi Renopont stb.)

A szemléletformáló kampányok többségének célcsoportja a teljes lakosság, illetve számos program a gyermekeket és fiatalokat célozta meg, viszont nincs olyan projekt, mely kifejezetten az idős korosztályt szólítaná meg a tájékozódás, alkalmasodás érdekében.

A szemléletformáló tevékenységek többsége nem eseti jellegű, hanem évente megrendezésre kerül vagy folyamatosan valósul meg, azonban a finanszírozási háttér kiszámíthatatlansága problémát jelent a szemléletformálást végző szervezetek
számára. A jó gyakorlatok megosztása és a kerületek, valamint intézményei, szakmai szervezetek közötti kapcsolatok erősítése még további lehetőségekkel bír.

A Fővárosi Önkormányzat aktuális szemléletformálási projektjének részletes bemutatását a BKÁÉ 2022. Környezeti nevelés, tájékoztatás, szemléletformálás fejezetének F.3 függelékére tartalmazza.

Tájékoztatás

A Kvt. alapján az önkormányzatok törvényi kötelezettsége a lakosság rendszeres tájékoztatása a település környezeti állapotáról. A Fővárosi Önkormányzat környezeti tájékoztatásának meghatározó eszköze a jelen dokumentum, a Budapest környezeti állapotértékelése, ami az önkormányzat illetékességi területén elemzi, értékelni a környezet állapotát. Budapest környezeti állapotértékelését a Fővárosi Közgyűlés hagyja jóvá és az önkormányzat honlapján kerül teljes terjedelmében közöltetettlere. Ezenkívül a legfőbb adatokat, következtetéseket tartalmazó magyar és angol nyelvű rövidített tartalmi kivonat – legalább kétévenként nyomdai kiadásban is – előállításra kerül.

A környezeti adatok térbeliségéről Budapest térinformatikai portálja tájékoztatja a lakosságot. A Portál célja, hogy a térinformatikai alkalmazásokon keresztül tájékoztatás céljából megjelenítse és széles körben hozzáférhetővé tegye a fővárossal kapcsolatos, fontosabb, nyilvános térinformatikai adatokat.

A lakosság veszélyhelyzeti tájékoztatásáért a vonatkozó jogszabály12 alapján, amennyiben más jogszabály másként nem rendelkezik, a katasztrófák elleni védekezésért felelős miniszter, a központi államigazgatási szerv vezetője, a hivatásos katasztrófávédelmi szerv központi és területi szervének vezetője, a megyei és a helyi védelmi bizottság elnöke, a polgármester, a főpolgármester, a gazdálkodó szervezet vezetője felelős.

A mért adatok alapján a szmogriadót, annak fokozatát és a szükséges intézkedéseket – a Kvt. rendelkezései alapján – Budapesten a főpolgármester rendeli el és szünteti meg.

Társadalmi részvétel

Hasonlóképpen törvényi kötelezettség a társadalmi részvétel biztosítása is. A Mötv. alapján a helyi önkormányzat feladatai ellátása során támogatja a lakosság önszerveződő közösségeit, együttműködik e közösségekkel, biztosítja a helyi közügyekben való széles körű állampolgári részvételt.13

Civil szervezetek, alapítványok, nagyvállalatok rendszeresen írnak ki környezetvédelmet célzó pályázatot, azonban a Fővárosi Önkormányzat is évente pályázatot ír ki, melyet a Környezetvédelmi Alapból finanszíroznak. Emellett a Fővárosi Önkormányzat tulajdonában álló közzetőlátó cégek is aktív szerepet vállalnak a környezetvédelemben és a személyletformálásban. Továbbá a kerületi önkormányzatok jelentős része is klír környezetvédelmi pályázatokat.

A Főváros Közgyűlésé által létrehozott Fővárosi Környezetvédelmi Alap14 célja, hogy hatékonyan segítse a Fővárosi Önkormányzat környezetvédelmi feladatainak ellátását, többek között a környezetvédelmi oktatás, nevelés területén is. A Fővárosi Önkormányzat évente hirdet pályázatot, melyre civil szervezetek, budapesti telephelyű köznevelési intézmények, budapesti telephelyű felsőoktatási intézmények pályázhatnak, amelyek az ehető összegből Budapest közigazgatási területén végeznek környezet- és természettévedelmi tevékenységet.

A Fővárosi Önkormányzat által létrehozott TÉR_KÖZ pályázatokhoz kapcsolódóan útmutató kézikönyv és példatár is készült a társadalmi bevonásról. A kézikönyv
Környezeti nevelés, tájékoztatás, szemléletformálás

célja, hogy a lehető legtöbb szereplő száma rávilágítson a társadalmi bevonás előnyeire, feltára a szükséges feltételeket, továbbá a bemutatásra kerülő eszközökkel mindenki a helyi viszonyok közé átültethető ötletet szerezzen.

2020-tól a Fővárosi Önkormányzat számos részvételiséggel kapcsolatos folyamatot indított el:

- **Budapesti parkok közösségi tervezése:** A budapesti parkok tervezését közösségi tervezéssel egybekötve készíti elő. A kialakult járványhelyzetre tekintettel jellemzően online formában bonyolítja le a közösségi tervezést a Radó Dezső Terv honlapján.15 A lakosság kérdőíves formában megoszthatja a véleményét a fővárosi közterületek, parkok fejlesztéséről.

- **Közösségi gyűlések:** 2020 szeptemberében zajlott le Budapest első közösségi klímagyűlése. A gyűlésen 50 véletlenszerűen kiválasztott, Budapest lakosságát reprezentáló budapesti lakos vett részt, ahol rövid oktatást követően vitatták meg a főváros éghajlat-változási kérdéseit, melynek megoldására javaslatokat is tettek. A következő évben Budapest Európában címmel rendeztek közösségi gyűlést, míg a Fővárosi Önkormányzat 2022-ben a közlekedési eredetű légszennyezéssel kapcsolatban szervezett közösségi gyűlést.

- **Közösségi költségvetés:** A fővárosi költségvetés terhére egymilliárd forint sorsáról a lakosok dönthetnek. A közösségi költségvetés keretében három témában lehet projektöltetekkel jelentkezni: (1) „Nyitott Budapest”: együttműködést, kísérleti megoldásokat, digitális fejlesztéseket segítő ötletek; (2) „Zöld Budapest”: a főváros zöldterületeinek fejlesztését vagy a klímaváltozást segítő ötletek; (3) „Esélyteremtő Budapest”: a társadalmi szolidaritást segítő vagy közösségesfejlesztő projektek. A részvételi költségvetés megvalósításával Budapest nem csak hasznos, sokaknak tetsző fejlesztéseikkel gyarapodik, hanem tudatos, aktiv állampolgárokkal is.

- **A lakosság bevonása a forgalomcsillapítás ügyébe:** Azonnali, drága és végleges beavatkozás helyett a Fővárosi Önkormányzat mintaprojektbeli tervezéseket konzololja, ahol az alapvető megoldásokat online formában megjeleníti. A fővárosi fórumokat hozott létre, ahol a lakosok döntéshozatali tapasztalataikról, javaslataikról, valamint a fejlesztés tényeit és hatásait megoszthatja a fővárosi közgyűlés előtt tárgyalni az ügyet. A társadalmi szerepvállalás folyamatos, napi szintű lehetőséget biztosítja a város lakóiaknak, ahol az alapvető megoldásokat online formában megjeleníti. A fővárosi közgyűlés előtt tárgyalni az ügyet.

- **A Fővárosi Önkormányzat civil rendeletének megújítása:** Az önkormányzat társadalmi vitára bocsátotta új civil rendeletet. A 2021-ben elfogadott új szabályozás révén a főváros döntéshozatali folyamataiba könnyebben tudnak a civil szervezetek bekapcsolódni, a Városháza megfelelő szakmai egységeivel való párbeszéd könnyebben ki tud alakulni.

- **A Budapest polgári kezdeményezés:** Az önkormányzat online fórumot hozott létre, ahol a lakosság kezdeményezést indíthat, illetve mások kezdeményezéseit a járványhelyzetre csatolhatják, Budapest élhető mindennapjainak és fenntartható fejlődésének biztosításáért. A fórum lehetőséget nyújt arra is, hogy a döntéshozók megismernének a lakosság ötleteit, véleményét. Amennyiben egy ötlethez több mint 10 000 lakos csatlakozik, úgy lehetőség nyílik a Fővárosi Közgyűlés előtt tárgyalni az ügyet.
létrehozott Budapest Dialog18 is arra biztosítható lehetőséget, hogy a helyi lakosság és az önkormányzatok egyaránt megoszthatják fejlesztési ötleteiket, projektjeiket egymással.

A fővárosban megvalósult, a környezettvédelem témájával összefüggő pályázatokat és projekteket a Környezeti nevelés, tájékoztatás, szemléletformálás Függelék tartalmazza. Mivel ezen pályázatokról és projektekről nem áll rendelkezésre adatbázis, így a lista nem tekintetlenné teljesne, a feltüntetett projekteken kívül számos más környezetvédelmi, illetve természetvédelmi szemléletformálási projekt is megvalósulhatott a fővárosban.

A fővárosban kiírt pályázatok többsége esetében, de nagy számában vannak évente kihirdetett pályázatok is. A pályázatok jelentős része a lakosságot (illetve társasházakat) célzója, és sok esetben iskolákat, civil szervezeteket céloz meg. Emellett több kerület is létrehozott saját környezetvédelmi alapot, például a VIII.19, XIII.20, XXII.21 kerületi önkormányzatok.

\section*{Közösségi tervezés}

nevezzük, ha a tervezési folyamatba már annak egészen korai szakaszában is ténylegesen bevonják az érintetteket. A közösségi tervezés kulcséléme a helyi érintettek, közösségek aktivizálása és bevonása egy közös jövőkép és stratégia kialakításába, oly módon, hogy az valóban tükrözze az érintett közösség szükségleteit, igényeit és szempontjait.22

A közösségi tervezésnek személyi, tárgyi és anyagi feltételeit is meg kell teremteni, mint például moderátor, közösségi platform, és ezek költségei. További feltétel, hogy a közösségi tervezés lehetősége a tervezési folyamat elején jelenjen meg, az érintettek között egyenrangúság legyen, valódi jogaik legyenek. Feltétel továbbá a kölcsönös tájékozottság esélyének megteremtése, ehhez minden résztvevőnek lehetőséget kell biztosítani egy tanulási, szocializációs folyamatban való részvételére. Mindezen feltételeken túl valódi közösségi tervezésről akkor beszélhetünk, ha minden együttműködő megoszta egymás között a közös tevékenységből eredő hasznot és kockázatot is.

A társadalom bevonásával megvalósuló közösségi tervezés gyakorlati megvalósulása erősíti a társadalmi kohéziót, hozzájárul a társadalmi jóléthez. Az egyes társadalmi folyamatokat, illetve azok környezeti vonatkozásait a II.10. Társadalom című fejezet tartalmazza.

\section*{További javasolt feladatok}

- Tekintettel arra, hogy egyes fővárosi környezetügyi feladatokkal kapcsolatos különböző tájékozottatások, vélemények csak részben megalapozottak vagy teljesen megalapozatlanok, ezért a Fővárosi Önkormányzatnak mindent meg kell tenni a lakosság hiteles (vonatkozó jogszabályoknak megfelelő, szakmailag ellentmondó, lényeges és valós folyamatokat mutató) tájékozatát érdekében.

- A releváns környezeti adatok hitelesség kérdésén túl látni kell, hogy a környezettudatososság erősítésének egyik legfőbb kihívása – a Magyar Természetvédők Szövetsége nyomán – az a végének nevezhető ok, az az általánosan elfogadott tény, hogy a Fővárosi Önkormányzat saját szabályozását, önkormányzati rendeletalkotási hatáskörébe tartozóan a társadalmi értékeretéssel nem jár – különösen például a kerületi lakosok gyakorlati ingyenes közterületi parkolása, a reklám-, a társadalmi tevékenységeket illető feltételeit a Fővárosi Közgyűlés progresszív módon mihammarabb korlátozza, annak ellenére, hogy az ilyen jellegű bevétel az önkormányzat számára rövid távon egyre inkább nélkülözhetetlennek tűnnek.
A lakosság hiteles tájékoztatásával kapcsolatban további jelentős kihívást jelent a napjainkban nagyon hangsúlyossá vált infokommunikációs eszközök használata, amelynek során a közösségi média közreműködésével személyre szabott, célzott információk gyors és széleskörű, hatékony eljuttatása történik. E kihívás során a személyre szabott, célzott információk hatékony eljuttatásán kívül egyidejűleg indokolt lenne biztosítani a szakmailag ellenőrzött, lényegi és valós tartalom biztosítását is, illetve az információs tartalom hitelességéért felelős – állami, önkormányzati – szervezet álláspontjának figyelembevételét.

Az éghajlati változásokhoz, rendkívüli környezeti eseményekhez történő alkalmazkodás (árvízvédelem, szmogriadó) érdekében a lakosság környezetügyi tájékoztatása sajtóközlemények formájában is szükséges, illetve lehetséges.

A szemléletformálást nem csak a fővárosi lakosság és vállalkozások részére fontos biztosítani, hanem a Fővárosi Önkormányzat, valamint a közszolgáltatásokat végző fővárosi gazdasági társaságok alkalmazottjai számára is, annak érdekében, hogy a környezettudatos szemlélet érvényesüljön a napi működésben. A beszerzéseket, projekteket, az éves üzleti terveket és stratégiákat a környezetvédelmi, fenntarthatósági szempontok mentén kell kialakítani.

A lakossági szemléletformálás során nem csak a környezetvédelem és a fenntarthatóság alapelveinek átadása szükséges, hanem a konkrét lakossági beruházások megvalósításával kapcsolatos szaktanácsadás biztosítása is, pl. energetikai korszerűsítés esetén.

A szemléletformálás, a környezeti nevelés részét képezi a tudásmegosztás, melynek érdekében biztosítani kell a fővárosi cégek, oktatási intézmények és a kerületi önkormányzatok közötti partnerséget.
Függelék

F.1. A környezeti helyzet megítélésének mértéke (szignifikancia) a lakóhely, illetve a sűrűn látogatott városrészek állapota alapján

<table>
<thead>
<tr>
<th>议题</th>
<th>belvárosi jellegű</th>
<th>külvárosi jellegű</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rossz a levegő, és ez károsíthat az egészségemet</td>
<td>0,753</td>
<td>0,180</td>
</tr>
<tr>
<td>Túl nagy az autóforgalom</td>
<td>0,720</td>
<td>0,116</td>
</tr>
<tr>
<td>Nagy a közúti közlekedésből eredő zaj</td>
<td>0,714</td>
<td>0,150</td>
</tr>
<tr>
<td>Nincs eléggé fa az utcákon</td>
<td>0,486</td>
<td>0,092</td>
</tr>
<tr>
<td>Nyáron túlságosan felforrósodik a város, az utcák, az épületek, a járművek</td>
<td>0,483</td>
<td>-0,010</td>
</tr>
<tr>
<td>Koszosak az utcák: sok a szemét, kutyapiszok</td>
<td>0,454</td>
<td>0,188</td>
</tr>
<tr>
<td>A kerti zöldhulladék vagy szilárd tüzelőanyagok égetése miatt gyakori a füst</td>
<td>0,009</td>
<td>0,591</td>
</tr>
<tr>
<td>Hulladékkal, például műanyagpalackkal, ruhaneművel, bútorhulladékkal fűtenek</td>
<td>0,032</td>
<td>0,538</td>
</tr>
<tr>
<td>Sok az illegális szemétlerakás</td>
<td>0,294</td>
<td>0,462</td>
</tr>
<tr>
<td>Gyakoriak az esőzések utáni előírások az utcákon, közterületeken</td>
<td>0,209</td>
<td>0,362</td>
</tr>
</tbody>
</table>

1. táblázat: A környezeti helyzet megítélésének mértéke (szignifikancia) a lakóhely, illetve a sűrűn látogatott városrészek állapota alapján, 2021.
F.2. Tanösvények és bemutatótáblák Budapesten

<table>
<thead>
<tr>
<th>Tanösvény/bemutatótábla neve</th>
<th>Tanösvény/bemutatótábla terület</th>
<th>Létesítő</th>
<th>Létesítés dátuma</th>
<th>Felújítás dátuma</th>
<th>Látásfoka</th>
<th>Védettség foka</th>
<th>felújítás dátuma (tőbb ütemben)</th>
<th>Felújítás dátuma (tőbb ütemben)</th>
<th>Hossz (m)</th>
<th>Állomások száma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pávalóggy-barlang</td>
<td>2.</td>
<td>Szemlőhegyi-barlang</td>
<td>2010</td>
<td>2012</td>
<td>DINPI</td>
<td>3</td>
<td>20</td>
<td>0</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

2. táblázat: Tanösvények és bemutatótáblák Budapesten
<table>
<thead>
<tr>
<th>Tanösvény/ bemutató-tábla neve</th>
<th>Kerület</th>
<th>Védett terület neve</th>
<th>Védett foka</th>
<th>Létesítő</th>
<th>Létesítés dátuma</th>
<th>Felújítás dátuma</th>
<th>Létesítés dátuma</th>
<th>Felújítás dátuma</th>
<th>Hossz (m)</th>
<th>Állomások száma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Környezeti nevelés, tájékoztatás, szemléletformálás</td>
<td>Függelék</td>
<td>Tamariska-domb</td>
<td>TT</td>
<td>Dinpi, Csepel Önkormányzata</td>
<td>2011</td>
<td>600</td>
<td>2022</td>
<td>-</td>
<td>8</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tamariska-domb</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hunyadi-szigeti</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gucker Keroly</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Apáthy-szikla</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Balogh Ádám-szikla</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aquincumi mosásos</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Róka-hegy</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Újpesti Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Róka-hegy</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Újpesti Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Róka-hegy</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Újpesti Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Róka-hegy</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Újpesti Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Róka-hegy</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Újpesti Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Róka-hegy</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Újpesti Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Róka-hegy</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Újpesti Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Róka-hegy</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Újpesti Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Róka-hegy</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Újpesti Homoktövis</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Róka-hegy</td>
<td>HH</td>
<td>Horvéd Sportorgészeti Egyesület</td>
<td>1995</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>600</td>
<td>8</td>
</tr>
<tr>
<td>Tanösvény/ bemutató-tábla neve</td>
<td>Körüllet</td>
<td>Védett terület neve</td>
<td>Védett terület foka</td>
<td>Létesítő</td>
<td>Létesítés dátuma</td>
<td>Felújítás dátuma</td>
<td>Létesítő dátuma</td>
<td>Hossz (m)</td>
<td>Állomások száma</td>
<td>Allomások száma</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------</td>
<td>----------------------</td>
<td>------------------</td>
<td>-------</td>
<td>----------------</td>
<td>--------------</td>
<td>----------------</td>
<td>-----------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Felsőrákosi rétek tanösvény (3 db)</td>
<td>10.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Budai Arborétum</td>
<td></td>
</tr>
<tr>
<td>Rupp-hegyi tanösvény</td>
<td>11.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kis-Sváb-hegyi tanösvény</td>
<td>12.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ordgorom Omor</td>
<td></td>
</tr>
<tr>
<td>Naplás-tó tanösvény</td>
<td>16.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Merze-moszar Kert</td>
<td>17.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tétényi-fennsík Kert</td>
<td>22.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Szentábeli Kert</td>
<td></td>
</tr>
<tr>
<td>Tabáni</td>
<td>1.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Soroksári Botanikus Kert</td>
<td>23.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Népszerűsítés:
- **Felsőrákosi rétek tanösvény:** Budai Arborétum
- **Rupp-hegyi tanösvény:** Kis-Sváb-hegyi
- **Ordgorom Omor:** Naplás-tó
- **Naplás-tó tanösvény:** Merze-moszar Kert
- **Tétényi-fennsík Kert:** Szentábeli Kert
- **Tabáni**
- **Soroksári Botanikus Kert**
<table>
<thead>
<tr>
<th>Tanösvény/ bemutatótábla neve</th>
<th>Kerület</th>
<th>Védett terület neve</th>
<th>Védett foka</th>
<th>Létesítő</th>
<th>Létesítés dátuma</th>
<th>Felújítás dátuma</th>
<th>Hossz (m)</th>
<th>Állomások száma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Öbuda-sziget tanösvény</td>
<td>3.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2014</td>
<td>2014</td>
<td>350</td>
<td>10</td>
</tr>
<tr>
<td>Záporokert tesztszín</td>
<td>3.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2014</td>
<td>2014</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Farkaserdő tanösvény</td>
<td>11.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2014</td>
<td>2014</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Brassó-Komoncor Park évente és tanösvény</td>
<td>11.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2014</td>
<td>2014</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Madárrúforrás-tanösvény</td>
<td>14.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2014</td>
<td>2014</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paskom-liget tanösvény (természetismereti)</td>
<td>15.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2014</td>
<td>2014</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sashalmi-erdő tanösvény</td>
<td>16.</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2014</td>
<td>2014</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Védett terület neve</th>
<th>Védett foka</th>
<th>Létesítő</th>
<th>Létesítés dátuma</th>
<th>Felújítás dátuma</th>
<th>Hossz (m)</th>
<th>Állomások száma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Óbudai-sziget</td>
<td>3</td>
<td>-</td>
<td>2014</td>
<td>2014</td>
<td>350</td>
<td>10</td>
</tr>
<tr>
<td>Záporokert tesztszín</td>
<td>3</td>
<td>-</td>
<td>2014</td>
<td>2014</td>
<td>-</td>
<td>10</td>
</tr>
<tr>
<td>Farkaserdő</td>
<td>11</td>
<td>-</td>
<td>2014</td>
<td>2014</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Brassó-Komoncor Park</td>
<td>11</td>
<td>-</td>
<td>2014</td>
<td>2014</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Madárrúforrás-tanösvény</td>
<td>14</td>
<td>-</td>
<td>2014</td>
<td>2014</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Paskom-liget tanösvény (természetismereti)</td>
<td>15</td>
<td>-</td>
<td>2014</td>
<td>2014</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sashalmi-erdő</td>
<td>16</td>
<td>-</td>
<td>2014</td>
<td>2014</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Tanösvény/bemutató- tábla neve</td>
<td>Kerület</td>
<td>Védett terület neve</td>
<td>Védett terület foka</td>
<td>Létesítő</td>
<td>Védettség foka</td>
<td>Felújítás dátuma</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>----------</td>
<td>---------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Környezeti nevelés, tájékoztatás, szemléletformálás</td>
<td>Függelék</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kis Dunai-től dél tartózmány</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biodiverzitás tartózmány</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pusztrászus úti védett földi alapszelvény</td>
<td>21.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gellért-hegyi bemutató</td>
<td>3.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Északi terraszt védett földi alapszelvény</td>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kondor utcai libanoni cédrus</td>
<td>11.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Madárvilág bemutató</td>
<td>18.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dendrológiai bemutató</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nagyfejű Csajkó</td>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Szép-Vágyi erdő</td>
<td>11.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fővárosi Önkormányzata, fickók védett terület</td>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>XVIII. kerületi Önkormányzata, földeszórók védett terület</td>
<td>2.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Önkormányzata</td>
<td>2014</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2013</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n.a.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2009</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n.a.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n.a.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2021</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n.a.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1300</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>n.a.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tanásvény/bemutató-tábla neve</td>
<td>Kerület</td>
<td>Védett terület neve</td>
<td>Védett-ség foka</td>
<td>Létesíthetőség</td>
<td>Létesítés dátuma</td>
<td>Felújítás dátuma</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>--------</td>
<td>---------------------</td>
<td>----------------</td>
<td>---------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>Turjános Természetvédelmi Terület</td>
<td>15.</td>
<td>Turjános Természetvédelmi Terület</td>
<td>helyi védett</td>
<td>helyi védett</td>
<td>2020</td>
<td>-</td>
</tr>
<tr>
<td>Felsőrákosi-tó</td>
<td>10.</td>
<td>Felsőrákosi-tó Természetvédelmi Terület</td>
<td>helyi védett</td>
<td>helyi védett</td>
<td>2021</td>
<td>-</td>
</tr>
<tr>
<td>Kiscelli-Doberdó tanásvény</td>
<td>3.</td>
<td>Kiscelli-park terület</td>
<td>nem védett</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A fejezet hivatkozásai

1 A környezet védelmének általános szabályairól szóló 1995. évi LIII. törvény 54. § (2) bekezdése
2 Magyarország helyi önkormányzatairól szóló 2011. évi CLXXXIX. törvény 6. § a) pontja
3 Special Eurobarometer 501 (2019): Attitudes of European citizens towards the environment.
 https://ec.europa.eu/commfrontoffice/publicopinion/index.cfm/Survey/getSurveyDetail
 /instruments/SPECIAL/search/501/surveyKy/2257
4 Special Eurobarometer 416 (2014): Attitudes of European citizens towards the environment.
5 102/2016. (V. 13.) Korm. rendelet a nemzeti köznevelésről szóló 229/2012. (VIII. 28.) Korm. rendelet módosításáról
6 110/2012. (VI. 4.) Korm. rendelet a Nemzeti alapanterv kiadásáról, bevezetéséről és alkalmazásáról
7 http://ofi.hu/okoiskola
8 https://ofi.oh.gov.hu/okoiskolak-adatbazisa
9 http://zoldovoda.hu/zold-ovodak-magyarorszagon-terkepes-elrendezes
10 http://budapest.hu/Lapok/Kiemelt-fejleszt%C3%A9si-c%C3%A9lok,-k%c3%A9zik%C3%B6nyvek.aspx Zöldinfrastruktúra füzetek: Vízérzékeny tervezés a városi szabadtereken; Vízáteresztő burkolatok; Zöldhomlokzatok; Városi fák és közművek kapcsolata
11 Ferenc pápa Laudato si’ kezdetű enciklikája közös otthonunk gondozásáról
 (Szent István Társulat az Apostoli Szentszék Könyvkiadója, Budapest 2015):
 https://regi.katolikus.hu/konyvtar/ferenc_papa_laudato_si_enciklika.pdf
12 A katastrófavédelemről és a hozzá kapcsolódó egyes törvények módosításáról szóló 2011. évi CXXVIII. törvény végrehajtásáról szóló 234/2011. (XI. 10.) Korm. rendelet 37. § (1) bekezdése
13 Magyarország helyi önkormányzatairól szóló 2011. évi CLXXXIX. törvény 6. § a) pontja
14 Budapest Főváros Önkormányzata Közgyűlésének 12/2009 (III.13.) önkormányzati rendelete a Fővárosi Önkormányzat Környezetvédelmi Alapjáról
15 https://rdt.budapest.hu/
16 https://kozossegitervezes.budapest.hu
17 http://klimapanasz.online/
18 https://www.budapestdialog.hu/
20 34/2007. (X. 25.) Budapest Főváros XII. kerületi önkormányzati rendelete a Környezetvédelmi Alap létrehozásáról és működtetéséről
21 Budafok-Tétény Budapest XXII. kerület Önkormányzata képviselő-testületének 12/2013. (IV.22.) önkormányzati rendelete a Környezetvédelmi Alappról
II.10. Társadalom

Különösen a 2008-as gazdasági és társadalmi válság óta köztudomású, hogy a bruttó hazai termék (GDP) nem alkalmas a társadalmi fejlettség és fejlődés mérésére¹. A jövőbeli nemzedékek társadalmi jólétének mérésére olyan mutató(k)a) kell kialakítani, majd alkalmazni, amely(ek) egyszerre alkalmasak a gazdasági (fogyasztási) szemponton túl a társadalmi és természeti (környezeti) változások figyelembe vételére is. E fejezet olyan társadalmi mutatókat, folyamatokat ismertet, amelyek területi összefüggéseinek vizsgálata hozzájárulhat a jövőbeli budapesti társadalmi-jólét közösség tervezéséhez.

A társadalmi folyamatok kölcsönhatásban állnak Budapest természeti, környezeti állapotával: egyfelől időben és térben közvetetten hatnak azokra, másrészt a megváltozott természeti, környezeti állapot további – akár kedvezőtlen – társadalmi folyamatokat idézhet elő. Fontos megjegyezni, hogy környezetiügyi beavatkozások gazdasági, társadalmi és természeti (környezeti) változások figyelembe vételére is.

A budapesti agglomerációban erőteljes urbanizáció figyelhető meg, a népesség 1990 óta 58%-kal növekedett, ami elsősorban a vándorlást folyamatoknak – főként az agglomerációs övezethez történő oda- és visszavándorlásoknak – köszönhető. Budapest lakossága ehhez képest csökken, 2016 óta a tényleges fogyás, ezzel együtt a fővárosi peremkerületekbe, valamint a környező településekre történő kikapcsolódási folyamata jellemző. A szuburbanizáció számos kedvezőtlen környezeti hatás aljára: a városi terjeszkedés a természeti környezet területi csökkenését és minőségének romlását, a motorizáció erősödését, a közlekedésből fakadó környezetterheléseket növeléseit is okozhatja. Budapesten a térbeli társadalmi különbségek növekedésével is számos lehetőséghez jutottak, ezáltal a különböző környezeti károk és konfliktusokat okozó környezeti tényezők számára egy olyan környezeti állapotértékelődésre szükséges, amelyek megközelítése a budapesti társadalmi mintakörnyezetnek számára fontos.

A fővárosban belüli eltérő jellegű városrészek alakultak ki, mely a városkörnyék strukturális jellemzőitől, eltérő környezeti magatartástól adódó differenciált környezeti károk és konfliktusokat okoz. Az eltérő jellegű városrészek a környezeti átalakulások, azok eredete és a szennyezések szintje eltérő, bizonyos társadalmi csoportok jobbává válnak téve az egészségügyi kockázatoknak. Emellett az egyes csoportok környezeti tudatosság szintje és működése, a közlekedésből fakadó környezetterrorhelések növekedéseit is okozhatja. Budapesten a térbeli társadalmi különbségek növekedésével is számos lehetőséghez jutottak, ezáltal a különböző környezeti károk és konfliktusokat okozó környezeti tényezők számára egy olyan környezeti állapotértékelődésre szükséges, amelyek megközelítése a budapesti társadalmi mintakörnyezetnek számára fontos.

A főváros középpontjából a leginkább érintett európai nagyvárosok közé tartozik. A fővárosban belüli eltérő jellegű városrészek alakultak ki, mely a városkörnyék strukturális jellemzőitől, eltérő környezeti magatartástól adódó differenciált környezeti károk és konfliktusokat okoz. Az eltérő jellegű városrészek a környezeti átalakulások, azok eredete és a szennyezések szintje eltérő, bizonyos társadalmi csoportok jobbává válnak téve az egészségügyi kockázatoknak. Emellett az egyes csoportok környezeti tudatosság szintje és működése, a közlekedésből fakadó környezetterrorhelések növekedéseit is okozhatja. Budapesten a térbeli társadalmi különbségek növekedésével is számos lehetőséghez jutottak, ezáltal a különböző környezeti károk és konfliktusokat okozó környezeti tényezők számára egy olyan környezeti állapotértékelődésre szükséges, amelyek megközelítése a budapesti társadalmi mintakörnyezetnek számára fontos.

Budapest Magyarország fővárosaként a nemzetközi turizmus egyik fő célterülete, az ún. túlzott turizmus szempontjából a leginkább érintett európai nagyvárosok közé tartozik. A fővárosban belüli eltérő jellegű városrészek alakultak ki, mely a városkörnyék strukturális jellemzőitől, eltérő környezeti magatartástól adódó differenciált környezeti károk és konfliktusokat okoz. Az eltérő jellegű városrészek a környezeti átalakulások, azok eredete és a szennyezések szintje eltérő, bizonyos társadalmi csoportok jobbává válnak téve az egészségügyi kockázatoknak. Emellett az egyes csoportok környezeti tudatosság szintje és működése, a közlekedésből fakadó környezetterrorhelések növekedéseit is okozhatja. Budapesten a térbeli társadalmi különbségek növekedésével is számos lehetőséghez jutottak, ezáltal a különböző környezeti károk és konfliktusokat okozó környezeti tényezők számára egy olyan környezeti állapotértékelődésre szükséges, amelyek megközelítése a budapesti társadalmi mintakörnyezetnek számára fontos.

A fővárosi gazdás társállatok (elsősorban kutyákkal) ezer lakosra vetített száma az elmúlt évszázadokban növekedett, míg a környezeti károk és konfliktusokat okozó környezeti problémák csökkennek. Az idegenfogalmal elnyelő és hátrányai közötti egyensúly kezelésében a fenntartható kialakítása Budapesten is kulcsfontosságú.
Társadalom folyamatok jellemzése

A városodás globális folyamata – a nagyvárosi lakosság számának növekedése, ezzel együtt a rurális térségek lakosságának csökkenése – hazánkra is jellemző. 2022-ben a mintegy 9,6 millió magyarországi lakosság 70%-a volt városiak, ez az arány 2050-re elérteti akár a 81%-ot is.

Az erőteljes urbanizáció főként Pest megyére és benne a budapesti agglomeráció településeire jellemező. Utóbbiban 1990 és 2022 között a népességszám 58%-os növekedést mutat (l. 1. táblázat és 1. ábra).

<table>
<thead>
<tr>
<th>Lakónépesség száma (fő)</th>
<th>Budapest</th>
<th>Agglomerációs övezet</th>
<th>Összesen</th>
</tr>
</thead>
<tbody>
<tr>
<td>1990</td>
<td>10353765</td>
<td>2018035 (19,49%)</td>
<td>2587767 (24,99%)</td>
</tr>
<tr>
<td>2022</td>
<td>9597085</td>
<td>1674014 (17,4%)</td>
<td>2573803 (26,8%)</td>
</tr>
<tr>
<td>2051</td>
<td>~1527000*</td>
<td>~1444000*</td>
<td>2971000*</td>
</tr>
</tbody>
</table>

*Lennert József kutatói becslése alapján számított érték

Lennert József 2019-es kutatói előrezzámítása3 alapján 2051-re a fővároson kívüli agglomerációs települések népessége várhatóan tovább fog növekedni, a 2011-es adatokhoz viszonyítva akár 75%-os növekedés is lehetséges. A főváros ezzel szemben 2051-ig kb. 200 ezer fő feletti, a 2011-es adatokhoz viszonyítva kb. 10%-os népességsűrűség kölcsönösszel számolhat.

A budapesti agglomeráció fenti népességszám-növekedése a népesség egyértelmű természetes fogyása mellett az annál nagyobb mértékű vándorlási folyamatok együttes eredménye.

Budapest, illetve agglomerációja népességmegtartó erejét – vagy annak hiányát – a tényleges szaporodás/fogyás mutatója fejezi ki, amely ezer lakosra számítva a természetes szaporodás/fogyás mellett a belföldi és nemzetközi vándorlási folyamatok egyenlegéből adódó összegzett hatást jelenti.

Budapesten az utóbbi bő két évtizedben nagyrányú népességszám csökkenés ment végbe leginkább a belső kerületeket érintve, ahol több mint 19%-os veszteséggel kellett számolniuk az egyes kerületeknek. A legnagyobb veszteség az a V. kerületet érintette: népességének több mint 24%-át vesztette el. Jelentős elvándorlás tapasztalható a VII. kerületben is, ahol 13.700 fővel csökkent a népesség. Jelentősebb népesség-növekedés a XIII. kerületben és a külső kerületekben (XXII., XXIII.) volt jellemző. A lakónépességhez viszonyítva legnagyobb arányban a XIII. a XXIII, XXII. kerületek népessége nőtt leginkább. Mindhárom kerületben 9% feletti növekedés volt tapasztalható (l. 3. ábra).

Budapesten a z utóbbi két évtizedben nagyarányú népességszám csökkenés ment végbe leginkább a belső kerületeket érintve, ahol több mint 19%-os veszteséggel kellett számolniuk az egyes kerületeknek. A legnagyobb veszteség az a V. kerületet érintette: népességének több mint 24%-át vesztette el. Jelentős elvándorlás tapasztalható a VII. kerületben is, ahol 13.700 fővel csökkent a népesség. Jelentősébb népesség-növekedés a XIII. kerületben és a külső kerületekben (XXII., XXIII.) volt jellemző. A lakónépességhez viszonyítva legnagyobb arányban a XIII. a XXIII, XXII. kerületek népessége nőtt leginkább. Mindhárom kerületben 9% feletti növekedés volt tapasztalható (l. 3. ábra).
Természeti, környezeti problémák társadalmi okai – Urbanizációs trendek

Szuburbanizáció

A külső kerületekbe, valamint az agglomerációs övezetbe való népességáramlás főként infrastrukturális problémákat, közlekedési nehézségeket okoz, aminek kedvezőtlen környezeti vonatkozásai is egyre érzékelhetőbbé váljak.

Egy 2022. évi reprezentatív közvélemény-kutatás szerint az agglomerációs övezetbe 1990 után költőzők 59%-a hetente többször ingázik más településre (I. 4. ábra). Az ingázók csaknem háromnegyede a fővárosba ingázik, amely jellemzően annak köszönhető, hogy a fővárosból kikötőzők továbbra is Budapestre járnak dolgoznak,

Az utóbbi évtizedekben a budapesti szuburbanizáció főbb okai között újabb pénzügyi szempontok is megjelentek (pl. befektetési lehetőségek, jól értékesíthető bérlakások vagy éppen a lakhatási költségek csökkentése és megfizethetőség). Az újabb szempontok növekvő tényező mellett azok újabb társadalmi jelenségek – az elszegényedést, a középosztály lecsúszását – egyre nyilvánvalóbb megjelenését is eredményezik, amelyek viszont egyre határozottabban tükröződnek a főváros átalakuló térben-társadalmi szerkezetében is.

Az egy lakosra jutó évi nettó belföldi jövedelem alapján a legalacsonyabb értékek a XX., XXI., VIII., XV., VII. és XIX. kerületekben mutatkoznak, míg átlagosan a legjobb anyagi helyzetűek a II., XII., XI., XIII., I., és IX. kerületekben élnek.
A fenti átlagos jövedelem túl a **magas státuszúak által lakott területek** jellemzően a nagyvárosi belső negyedekben a kedvezőbb környezeti adottságú (vagy azzá váló) budai oldalon (kivéve a peremkerületi, hagyományosan rosszabb helyzetű, részben lakótelepi részeket), valamint a pesti belvárosi övezetekben és az újlipótvárosi körzetben találhatók. Budapesten további magas státuszú lakóterületek csak nyomokban fordulnak elő: például a Városiügyi körú (ahol még megtalálható a tradicionális villanegyed nyoma), vagy Budapest északkeleti területein (Zugló külső részén, valamint a XVI. kerületi területeken, ahol a kilencvenes években a relatív társadalmi státusz lényegesen emelkedett).

Az alacsonyabb státuszúak az átmeneti, illetve külvárosi övezetekben, míg a **legszegényebb rétegek** a főváros belső területei szélsőértéktől eltérően, általában ismeretlen a fővárosi bérlakás koncepciója, bár az érdeklődésre szolgáló átlagok alapján lehetőséges. Az alacsonyabb státuszú lakóterületek közé tartoznak a belső városrészek kisebb megteremtették az 1980-es években.

Az alacsonyabb státuszúak az átmeneti, illetve külvárosi övezetekben, míg a **legszegényebb rétegek** a főváros belső területei szélsőértéktől eltérően, általában ismeretlen a fővárosi bérlakás koncepciója, bár az érdeklődésre szolgáló átlagok alapján lehetőséges. Az alacsonyabb státuszú lakóterületek közé tartoznak a belső városrészek kisebb megteremtették az 1980-es években.

Az alacsonyabb státuszúak az átmeneti, illetve külvárosi övezetekben, míg a **legszegényebb rétegek** a főváros belső területei szélsőértéktől eltérően, általában ismeretlen a fővárosi bérlakás koncepciója, bár az érdeklődésre szolgáló átlagok alapján lehetőséges. Az alacsonyabb státuszú lakóterületek közé tartoznak a belső városrészek kisebb megteremtették az 1980-es években.

A belváros funkcionális átalakulása következményeképp az alacsonyabb státuszúak fokozatosan szorultak ki a főváros kevésbé jó helyzetű részeibe vagy a városkörnyék szintén rosszabb helyzetű településeire. Az utóbbi 5-10 évben lezajló **belső pesti** (VI., VII., VIII. és IX. kerületi) **városrehabilitációk** – a befektetéssel érintett környékre a magasabb jövedelmű lakosok beköltözése révén – olyan **társadalmi** (dzsentrifikációs) folyamatokat is elindítottak, amely változások egyre jobban fokozzák a fővárosban belüli társadalmi egyenlőtlenségeket is.

A dzsentrifikáció jelensége – azon túl, hogy a társadalmi különbségeket öngyilkos módon tovább erősíthetik – a belvárosi ingatlan- és alberéti árak (további) **emelkedését** is eredményezhetik.

A budapesti lakásárak 2017 és 2018 közötti **növekedése** a harmadik leggyorsabb volt a világban.10 Az ingatlanárak erőteljes növekedése 2013-tól elsősorban a pesti belső kerületekben volt jellemző, a befektetői/rövid távú bérládási, turisztikai **hasznosítási célú vásárlások** eredményeképpen, amit a külső kerületek ingatlanár- **emelkedése** is követett – utóbbit azonban elsősorban a pandémia hatására megőrvevedett kertes családi ház iránti igények idézhetették elő (l.: F.4. Társbeli és környezeti egyenlőtlenségek Függelék 23. ábra).

A versenyképes és versenyképtelen válások kialakulása erősíti a **társadalmi egyenlőtlenségeket**, ami hatással van a környezeti elemek állapotára is. Ugyanakkor az ingatlanárak sokszor a környezeti állapotba is együttesen mozognak: például egy kedvező környezeti állapotú lakóterületen magasabbak lehetnek az ingatlanárak, míg például a zajjal szembesült területeken alacsonyabbak.

A magán alberéti díjak növekedése ellenére **jelentős mennyiségű önkormányzati bírlakás** áll üresen Budapesten. Jelenleg a fővárosi összes lakásállomány **2,6%-a** van önkormányzati tulajdonban, melyek **9,7%-a** kihasználatlan. A kihasználatlanság egyik fő oka a lakások rossz állapota. A bírlakások nagy része (kb. 60%-a) részleges vagy teljes felújításra szorul, amire a fővárosi és a kerületi önkormányzatok jelenleg nem rendelkeznek elegendő orrassal.11 2020-ban összesen 38.114 lakás volt kerületi önkormányzati tulajdonban, amiből csaknem 3.700 lakás állt kihasználatlanul. A legtöbb bírlakás a III., VII., és XIII. kerületek, míg a legkisebb ingatlanvagyonnál a II., XVI., és XXIII. kerületek rendelkeznek. A legtöbb üres lakás a VIII. kerületben található (857 db), de az V., VII., VIII. és IX. kerületeken is magas a kihasználatlan lakások aránya (l.: 6. ábra).

2020-ban a Fővárosi Önkormányzat tulajdonában 1.244 lakás volt, ami a teljes fővárosi lakásállomány mindössze 0,1%-át, míg a fővárosi bírlakás-állomány mindössze 2,5%-át tette ki. A fővárosi bírlakás koncepciójának kidolgozása 2020-ban indult el.
A térbeli társadalmi egyenlőtlenség növekedése a környezeti, egészségügyi kockázatok egyenlőtlen térbeli eloszlását is eredményezik, valamint közvetlen és közvetett hatása van az egyénekre és közösségekre is.

A környezetben zajló folyamatok igazságot, illetve igazságtalanságot generálnak, a melyek többléptékű földrajzi térben – a háztartás szintjétől akár a globálisig – megfigyelhetők. Környezeti igazságosságon az emberek egyetemes jogát értjük az azonosan jó állapotú és minőségű környezethez. A környezetben fellépő igazságtalanságok leginkább a valamilyen szempontból kisebbségi csoportok, így például a hajléktalan, illetve szegény embereket érintik, inkább.

Energiafelhasználás társadalmi különbségei, energiaszegénység

Az országos energiafelhasználás 34%-át a hajtások fogyasztása adja, amelynek majdnem háromnegyede (73%) a lakótekerő fűtésére szolgál.14
A budapesti lakóépületek energiafogyasztása eredményezi az összes budapesti üvegháztatás gáz kibocsátás gyakorlatilag 75%-át. Habár, ma már egyre inkább terjednek az alternatív, energiahatékony megoldások az építőiparban is, ugyanakkor a fűtésre használt energia csak kis mértékben csökkent. A növekvő energiaigényt fokozzák továbbá az áruk és szolgáltatások iránti igény, a nagy számban vásárolt elektromos és elektronikai áruk. Az egy főre jutó egyéves villamosenergiafogyasztás az országban az elmúlt több mint 50 évben csaknem folyamatosan növekedő tendenciát mutat. A 2021-es érték körülbelül 4,7 MWh/fő, mely 1990 óta 38%-os növekedést jelent.

A főváros energiaproduktivitását részletesen, valamint annak környezeti hatásait a II.2. Energiagazdálkodás c. fejezet mutatja be.

Kedvező körülmény, hogy Budapesten a lakások fűtésére használt energiahordozók között a környezeti szempontból legártalmasabb szilárd tüzelőanyagok használata az elmúlt években alig volt jelen: a KSH adatai szerint az "egyedi helyiségfülés egyébben (szén, fa, olaj)" aránya a fűtési módok között 2017-ben 2,4% volt. Ez az arány 2019-ben 0,6%-ra csökkent.

Az egészségre szárazos káros PM_{2.5} kibocsátásának több mint 80%-áért a háztartási szilárdtűzelés felelős Magyarországon – míg az EU-atlag ennek a fele, 41%. Ebből is adódik, hogy a rosszabb anyagi helyzetű háztartások esetén a környezeti körülmények is rosszabbak, jobban ki vannak téve a negatív környezeti hatásoknak és egészségügyi kockázatoknak.

Ugyanakkor az egy főre jutó éves energiakapcsolatot tekintve elmondható, hogy a legmagasabb jövedelmi ötödbe eső emberek átlagosan 3,7-szer annyit költenek háztartási energiára, mint a legszegényebb ötödbe esők. Az elmúlt 5 évet tekintve az éves szinten egy főre jutó lakásfenntartásra és háztartási energiára fordított kiadások a budapesti lakosok összes kiadásainak átlagosan kb. 20%-át teszik ki. Míg, ha csak a legalacsonyabb jövedelmű alsó 30%-át tekintjük a háztartásoknak, ők átlagosan jövedelmük 20%-át költik el energiára évére.

Egy háztartást akkor nevezünk energiaszegénynek, ha az nem képes megfizetni a fűtés vagy az egyéb alapvető energiaszolgáltatások olyan szintjét, mely a tiszteséges életminőséghez szükséges. Habár Magyarországon jelenleg nincs hivatalos definíciója és mérőszáma az energiaszegénységnek, a hazai helyzet felméréséhez az egyik leggyakrabban használt mérőszám szerint energiaszegény egy háztartás, ha a jövedelméből a háztartási energiára fordított kiadások legalább kétszeresen meghaladják a mediánértéket. Ekkor a háztartás jövedelmének 34%-ánál húzdózik az energiaszegénység határa, ezen határértéket túllépő háztartások számítanak energiaszegénnyeknek. Ez a fajta megközelítés szerint Magyarországon a háztartások 8-10%-a tekinthető energiaszegénynak, országos szinten kb. 300-380 ezer háztartás érintett, jellemzően inkább a vidéki, főleg kiselepetlenségeken.
Az energiahatási monitorozás (EHM) területén a magasabb energiaköltségekkel rendelkező háztartásokban a felmerülő probléma nagy mértékű. A társadalom megőrzése és fejlődése érdekében fontos az energiahatások felderítését és megelőzését, és az energiahatási monitorozást téves hatású energiahasználási irányzatértékelődése miatt fontos. Az energiahatási monitorozás lényegében az energiahasználás megfelelőségének és az energiahatások megelőzésének nagy fontosságú felmérésére, és az energiahatási politikák keretében megvalósított feltételeként szerepel az energiahatási kapcsolatok monitorozásában.

Az energiahatási monitorozás lényegében az energiahasználás megfelelőségének és az energiahatások megelőzésének nagy fontosságú felmérésére, és az energiahatási politikák keretében megvalósított feltételeként szerepel az energiahatási kapcsolatok monitorozásában.

Az energiahatási monitorozás lényegében az energiahasználás megfelelőségének és az energiahatások megelőzésének nagy fontosságú felmérésére, és az energiahatási politikák keretében megvalósított feltételeként szerepel az energiahatási kapcsolatok monitorozásában.

Az energiahatási monitorozás lényegében az energiahasználás megfelelőségének és az energiahatások megelőzésének nagy fontosságú felmérésére, és az energiahatási politikák keretében megvalósított feltételeként szerepel az energiahatási kapcsolatok monitorozásában.
sérülékenységét és adaptációját meghatározó térbeli társadalmi mechanizmusokról. A kutatás kérdőíves felmérés segítségével tárt a budapesti várostrejtegésben élő, különöző térbeli-társadalmi csoportok alkalmazkodási (adaptációs) és az üvegházhatású gázok kibocsátás-csökkentéshez való hozzájárulási (mitigációs) képességeit. A kutatás eredményei kiderültek, hogy a lakosság környezetvetetteosság, a klimaváltozással kapcsolatos ismeretei egyre nagyobb mértékben jelen vannak, ezek alapján érzékelik a környezeti problémákat és a klimaváltozás jelenségét is. A lakosság adatfelvétel eredményei rávilágítanak arra, hogy alapvetően súlyos problémának érzékelik a klimaváltozást és egyetértének abban, hogy ez a probléma létezik, válós. A válaszadók véleményét azonban egyértelműen befolyásolja társadalmi státuszuk, illetve lakóhelyük is:

- Azok, akik feltehetőleg sérülékenyebbek, veszélyeztetettebbek (alacsony jövedelműek, alacsonyabb végzettségűek), sokkal inkább látják súlyos problémának a klimaváltozást, mint a magas státuszúak, akiknek az alkalmazkodáshoz szükséges eszközök és lehetőségek szélesebb körben állnak rendelkezésre.
- Egyes környezeti problémákat jellemzően a külvárosi, kertvárosi városrészekben élők érzékelnek súlyosabbnak: pl. illegális szemétlerakások, esőzés utáni előintések, repülőgép-zaj, égetés miatt füst.
- A belvárosi területeken súlyosabbnak ítélt környezeti problémák jellemzően a szélsőséges meleg, a hőhullámok, a zsúfoltság, a nagy autóforgalomból adódó zajterhelés, a rossz levegőminőség, a kevés zöldfelület, valamint a nem megfelelő tisztasági állapotú közterületek.

Túlzott globális turizmus helyi környezeti hatása

A mobilitás globális növekedésével és az elérhetőségek javulásával a tömegturizmus erősödése jellemző a nagyvárosokban, között Budapesten is. A Statista adatportál 2017-es elemzése szerint Budapest az ötödik helyen áll a túlzott turizmus szempontjából legrosszabb európai városok rangsorában.
Számos európai úti cél idegenforgalmi fellendülést tapasztal, és bár gazdaságiág az iparáz pozitívan járul hozzá a helyi bevételekhöz, ugyanakkor egyre nagyobb aggódalma merülne fel a tőmegturizmus környezetre gyakorolt hatásával és az úgynevezett "túlturizmus" (overtourism) megfelelésének szükségességével kapcsolatban.

Az olyan városok, mint Barcelona, Amszterdam és Velence a túlturizmusokkal leginkább érintett európai célpontok közé tartoznak, ezért a helyi önkormányzatok – az elégedetlen ott lakók nyomására – kénytelenek kezelni, illetve korlátozni a látogatók beáramlását. Úgy tűnik, hogy a fenntartható gyakorlatok kialakítása kulcsfontosságúak az idegenforgalom előnyei és hátrányai közötti egyensúly kezelésében. Enre példa a Budapestnél gazdagabb és egy települési önkormányzattal működő túlzott turizmus terhelt európai városokban a gépjárművel történő behajtás korlátozása, illetve tiltása a központi városterület(ek)ben.

A Nemzeti Turizmusfejlesztési Stratégia 2030 – Turizmus 2.0 is megállapítja, hivatkozva a Nemzeti Éghajlatváltozási Stratégiára (NÉS-2), miszerint a „NÉS-2 egy klímabarát turizmusstratégia kidolgozását javasolja az ágazat számára kijelölt rövidtávú cselekvési irányokban, különös tekintettel az ágazat alkalmazkodására és fenntarthatóságára”.

A tömegturizmus által okozott jelentősebb negatív környezeti hatások a főváros teljesítésé, túlzúsűföltséga és a természeti, környezeti elemek romlása (mint például a levegőminőség romlása, a zöldterületek túlhasználata vagy a zajterhelés növekedése), amelyek főként a turisztikai szempontból népszerű városrészeken, a fővárosban elsősorban a belvárosi területeken okoznak problémát. Ezzel együtt a turizmus átalakítja a belső városrészek arculatát és a terület lakhatási/használati lehetőségeit is: az érintett városrészeken a hosszú távú elhetőség romlik, helyette inkább a lakások kiadása, ideiglenes szálláshelyként történő használata jelent meg. Az egyes környezeti hatásokat fokozza a főként nemzetközi turizmus által generált légiföldi, vízi- és szárazföldi forgalom energiafogyasztása, ezzel együtt a földhasználat, a hulladék- és szennyvíztermelés, valamint a keletkező károsanyag-kibocsátás.

A globalizáció helyi szinten is jelentkező káros környezeti hatásait, főleg az azt kiváltó hatótényezők környezeti hatását mihamarabb – akár helyi korlátozások bevezetésével is – csökkenteni indokolt. Ahol a turizmus valamely, pl. közlekedési hatása lokálisan fenntarthatatlan helyzetet teremt (főleg, ahol a belvárosi közúti gépjárműforgalom már önmagában is minél hamarabb térítő ügyűgytörténeti érdeklődésre indokol, ott ezt a hatást nem – az önkormányzati jövedelemszerzési cél egyidejű fenntartásával közvetett módon is – generálni, hanem korlátozni indokolt.

Társállattartás Budapesten

A MEDIÁN Közvélemény- és Piackutató Kft. közreműködésével 2021-ben végzett telefonos, reprezentatív közvélemény kutatás válaszai alapján a fővárosi lakosok közel felének van valamilyen házifogadás, legjellemzőbb a kutyá (27%). A kedvételből történő állattartás elterjedtebb a családi házban lakók körében, mint a lakásban élők körében. A gazdás közvetlennél is jelentkező kóros környezeti hatásait, főleg az azt kiváltó hatótényezők környezeti hatását miharamabb – akár helyi korlátozások bevezetésével is – csökkenteni indokolt. Ahol a turizmus valamely, pl. közlekedési hatása lokálisan fenntarthatatlan helyzetet teremt (főleg, ahol a belvárosi közúti gépjárműforgalom már önmagában is minél hamarabb térítő ügyűgytörténeti érdeklődésre indokol, ott ezt a hatást nem – az önkormányzati jövedelemszerzési cél egyidejű fenntartásával közvetett módon is – generálni, hanem korlátozni indokolt. A gazdás közvetlennél is jelentkező kóros környezeti hatásait, főleg az azt kiváltó hatótényezők környezeti hatását miharamabb – akár helyi korlátozások bevezetésével is – csökkenteni indokolt.
– 2018. január 1-jei elnevezéssel ebnyilvántartást vezet33, és amelyhez hozzáférést biztosít többek között Budapesten a fővárosi kerületi és a fővárosi önkormányzatok részére is;
- ebösszeírást végez24 a tartás helye szerint illetékes települési, fővárosban a kerületi önkormányzat – a Margitsziget tekintetében a Fővárosi Önkormányzat (ugyanakkor a Margitszigetnek nincs lakossága) – háromévente legalább egy alkalommal.

A NÉBIH az ebnyilvántartás adatai között regisztrálja a válaszjeladóval, azaz transzponderrel (ami olyan bőr alá ültetett mikrochip, amely kiolvashatóan tartalmazza az állatorvos által rögzített adatokat, és amelyek az állat egyedi azonosítására is szolgálnak) megjelölt kutyák számát, hiszen Magyarországon 2013. január 1-jétől a „négy hónaposnál idősebb eb csak transzponderrel megjelölve tartható”36.

A jelentős adateltérések elsősorban arra vezethetők vissza, hogy a budapesti állattartók jelentős része nem tesz eleget a jogszabályokban előírt kötelezettségeinek, mint például:
- nem szolgáltatnak adatokat az ebösszeírásnál,
- nem láttatják el transzponderrel, illetve
- nem oltatják be kutyaüket veszszetség ellen (a macskák kizárólag belföldön történő tartása esetében nem kötelező azok veszszetség elleni oltása),
- gyakran nem történik meg a kuta elpusztulásának bejelentése (így a NÉBIH ebnyilvántartásában számos, már elpusztult kuta adata is szerepel(het), mint ahogy
- gyakran elmarad annak – mindkét oldali – bejelentése is, ha a kuta új tulajdonoshoz került.

Itt jegyezzük meg, hogy abban az esetben, ha a kerületi önkormányzatok eltérést tapasztalnak az ebösszeírás és a hatósági ebnyilvántartás adatai között, akkor az Átv. szerint42 az adatszolgáltatási kötelezettség a kerületi önkormányzatot terheli. Ugyanakkor, ha valaki nem teljesíti a megfelelő adatszolgáltatást az ebösszeírás során, akkor a kerületi jegyző kiszabhat állatvédelmi bírságot43, ami a kerületi önkormányzat Átv. szerinti feladatainak ellátására fordítható.

Mindazonálattal a fővárosi gazdasági társállatok száma az elmúlt évtizedben jelentősen növekedett44, a különböző statisztikák, például a NÉBIH nyilvántartása alapján különösen az elmúlt néhány évben – ennek hátterében több tényező együttes hatása állhat.
A NÉBIH ebnyilvántartása alapján megállapítható, hogy lakosságarányosan jellemzően a peremkerületekben tartanak több kutyát (10. ábra).

10. ábra: 1000 főre vetített kutyák száma, az egyes budapesti kerületek lakóterületein, 2023. (Forrás: NÉBIH ebnyilvántartási adatok, KSH népszámlálás adatok alapján saját ábra

A bécsi kutyapopulációhoz képest a budapesti adatok – utóbbiak nagy pontatlansága mellett is – jelenleg egy nagyságrenddel magasabbak: Bécsben 1.000 lakosra átlagosan 29,1 kutya jut, 17-44 kutya/1.000 lakos kerületi szórás mellett.

Ha kerületenként összevetjük a budapesti lakosok, valamint a kutyák egy lakásra jutó számát, akkor annak eredményét a 11. ábra grafikonja szemlélheti.

11. ábra: Az egy lakásra jutó ebek és lakosok száma a budapesti kerületekben, 2023. (Forrás: NÉBIH, KSH adatok alapján)
Ha a NÉBIH ebnyilvántartás kerületi adatait az adott kerületek kötherületeire vonatkoztatjuk, akkor további következetések vonhatók le az adott kerület kutyatartáshoz kapcsolódó terhelésével kapcsolatban (12. ábra):

• Elsősorban a belső kerületekben jellemző a sűrű beépítés és a társesházai lakások magas aránya, így az ugyanazon kerületen belüli kutaszállításra alkalmas kötherületek nagysága viszonylag alacsony. Például Erzsébetvárosban 21.800 az egy négyzetkilométer kerületi kötherületre (ha ebben az esetben figyelembe vesszük a kerületben lévő zöldterületeket is) jutó kutyák száma, ugyanez az érték Terézvárosban 8.400, Józsefvárosban mintegy 6.100, a XV. kerületben 5.600, míg a többi 19 kerületben 2.000-4.900 közötti szórást tapasztalunk.

• A kutyák sétáltatására/futtatására alkalmas területek korlátozott nagysága miatt a zöldfelület-terhelést eredményez (pl. az Óbudai-sziget helyi védett ártéri erdeje tekintetében), ugyanakkor a fővárosi gépjárműforgalom ez által is nő.

A társállatiságról

Fentiekkel összhangban egy országos szintű reprezentatív felmérés alapján 2022-ben a budapesti felnőtt lakosság:

• 37%-a élt olyan háztartásban, ahol tartottak valamilyen társállatot;
• 26%-a élt olyan háztartásban, ahol kutyát (is);
• 15%-a, ahol macskát (is);
• 6%-a, ahol egyéb társállatot (is)

tartottak.
A megkérdezett fővárosi társállattartók:

- 74%-a teljes mértékben vagy inkább egyetértett azzal a megállapítással, hogy házi kedvencét családtagként;
- 18%-a pedig azzal az állítással, hogy gyerekként tartják.

A házaidakkal és házikedvencekkel kapcsolatos kiadások Magyarországon az összes fogyasztási kiadás egyre nagyobb részét képezik: 2010-ben 0,4%-át, 2019-ben 0,7%-át. Az országos átlaghöz képest pedig a fővárosban magasabb a társállatokra fordított egy főre jutó kiadások mértéke (2019-ben az országos átlag 131%-a tet)

A fent említett társadalmi jelenségek mögött meghúzódó okok sokrétűek. Többek között az életmód, illetve az emberek közötti kapcsolatok változása, valamint a társállattartáshoz kötődő termékek és szolgáltatások piacának bővülése a fogyasztói társadalmakban egymástól nem független, de fontos tényezők.

A társállattartás környezeti hatásai

A társállattartás Budapest esetében is komoly gazdasági jelentőséggel bír. Ezt példázza, hogy az egyik legnagyobb hazai szállásfoglaló oldalon a mintegy 700 budapesti szálláshely negyede állatbarátként szerepel.

A Berlini Műszaki Egyetem kutatói szerint egy átlagos kutya, illetve a kutyatartáshoz, mint végfelhasználáshoz rendelt – kizárólag annak etetésével, az ürülékével és vizeletével kapcsolatban figyelembe vett, szén-dioxid egyenértékben kifejezett és összegzett – üvegházhatású gáz kibocsátás éves szinten megfelel egy átlagos EU-lakos által előidézett hatás 7%-ának.

A társállattartás fenntarthatósága állatvédelmi, illetve etikai szempontból is vet fel kérdéseket, mivel számos népszerű társállatfajta egyedi genetikai betegségekkel terheltek, így komoly egészségügyi problémákkal küzdnek egész életükön át.

A budapesti társállatok konfliktusokat okozhatnak a gazdák és a környezetükben élő lakosok között, például a tartásukkal járó esetleges hang- és szaghatások miatt.

A budapesti társállatok közül a kutyákkal jelennek meg leggyakrabban a gazdák Budapesten az otthonuk kívül. Az, hogy a kutyák viselkedését ilyenkor hogyan kontrollálják, valamint az általuk okozott szennyeződéseket kezelése miként történjen, régóta foglalkoztatja a döntéshozókat.

A budapesti közterületeken az állattartóknak alapvetően azt a két szabályt kell betartaniuk mindennapjaik során, hogy

- ebet a belterület közterületén – kivéve az ebek futtatására kijelölt területet – csak pórázon lehet vezetni;
Társadalom

- a kedveltől tartott állat ürülékét az állattartó a közterületről köteles eltávolítani\(^{58}\).

Továbbá a szabálysértési törvény szerint szabálysértést követ el,
- a felügyelete alatt álló kutyát\(^{59}\):
 - „a település belterületén felügyelet nélkül bocsátja közterületre, vagy kóborolni hagya”
 - „természeti és védett természeti területen, vagy vadászterületen – […] kívételek mellett […] – póráz nélkül elengedi vagy kóborolni hagya”;
 - „szájkosár és póráz nélkül közforgalmú közlekedési eszközön – segítő kutyá kivételével – szállítja”;
 - „vendéglátó üzlet kivételével élelmiszer-elárusító üzletbe, közfürdő területére vagy játszótérre – segítő kutyá kivételével – beengedi, illetve beviszi”;
- a felügyelete alatt lévő állat ürülékének, illetve a közterületen, a közörszertések miatt a közterület-felügyelő, természeti és védett természeti területen a természetvédelmi őr, helyi jelentőségű védett természeti területen az önkormányzati természetvédelmi őr, továbbá az önkormányzat közigazgatási területéhez tartozó termőföldeken az őshonos fajok számára nem gondoskodik\(^{57}\).

Az állattartók gyakran figyelmen kívül hagyják, szankcionálásuk pedig leginkább a tettenérés nehézsége, illetve a közterületi pórázhasználat esetében a vitára alapot adó jogszabályi környezet miatt marad el. A jogszabályok betartatása azonban közegészségügyi, természeti és állatvédelmi, továbbá városüzemeltetési szempontból egyaránt indokolt.

A fenti rendelkezéseket az állattartók gyakran figyelmen kívül hagýják, szankcionálásuk pedig leginkább a tettenérés nehézsége, illetve a közterületi pórázhasználat esetében a vitára alapot adó jogszabályi környezet miatt marad el. A jogszabályok betartatása azonban közegészségügyi, természeti és állatvédelmi, továbbá városüzemeltetési szempontból egyaránt indokolt.

A fővárosi zöldfelületek jelentős része védett terület, ugyanakkor azokat gyakran keresik fel kutyával, így a gyakori tőmeges esbétáltatás, -futtatás is hozzájárul a védett területek kóborlásához, ami viszont a természetközeli élőhelyek károsodását eredményezi. A városi zöldterületek fenntartását tovább nehezíti a kutyák taposása (illetve kaparása), valamint ürülék- és vizeletterhelése is, mivel vizeletük – táplálásuk függvényében általában – savanyú (savas) kémhatású, a fővárosi zöldterületeken – különösen pl. Tétényi-fennsikon, Óbudai-szigeten – okoz nagy gondot a póráz nélküli kutyasétáltatás, mivel így a természetközeli élőhelyek, illetve a védett állatok nagyobb mértékű háborogatásnak vannak kitéve. Emíltést érdemel az is, hogy egyes megunt házi kedvencek szabadon engedése – különösen a védett természeti területeken – komoly konkurenciát teremthet az őshonos fajok számára, pl. a védett mocsári teknősök (Emys orbicularis) az inváziós vörösfülű ékszerteknősök (Trachemys scripta elegans) szabadon engedése\(^{62}\).

Itt jegyezzük meg, hogy a már említett 2022-es országos felmérésben megkérdezett kedvencként macskát tartó fővárosiak 65%-a nem kizárólag a lakásban tartja a macskáját.\(^{63}\) Ez a tartási mód azonban nemcsak a macskára, hanem a környéken élő, a macska számára képesítő állatokra is veszélyt jelenthet\(^{64}\).

A kijárós macskák mellett a különböző okok miatt kóborrá váló állatok is okozhatnak károkat egy adott terület élővilágában, leginkább a kóbor kutyák és macskák, mint ragadozó állatok károkozása kap nagyobb figyelmet.

A fenti rendelkezése szerint 2013. július 20-tól önkormányzati állatvédelmi órszolgálatot hozhat létre, működtethet\(^{65}\) a kerületi önkormányzat (a Margitsziget tekintetében a Fővárosi Önkormányzat). Miközben önkormányzati állatvédelmi órszolgálatot minden települési (Budapesten kerületi) önkormányzat létrehozhat,
működtethet, valamint amelyeknek Budapesten kívül kötelező önkormányzati feladata a település belterületén a kóbor állatok befogása, addig Budapesten mindez 2008 szeptembere óta a Fővárosi Önkormányzat kötelező feladata66. Továbbá a Fővárosi Önkormányzat 2013. július 20-tól ebrendészeti hozzájárulást csak a margitszigeti tevékenysége tekintetében írhatna elő (l. később).

A háziasított fajok kóbor egyedeinek befogásán túl a Fővárosi Önkormányzat Rendészeti Igazgatóság Önkormányzati Állatvédelmi Örszolgálata a IX. kerületi Illatos uti telephelyén díjmentesen átveszi a főváros lakossága által tovább tartani nem szándékozott kutyákat és macskákat is – a telephely kutya- és macskaállományának főbb mutatóit az 13. ábra szemlélteti.

13. ábra: Az Állatvédelmi Örszolgálat Illatos uti telephelyén lévő kutyta- és macskaállomány főbb mutatói (Forrás: FÖRI)

További budapesti civil fenntartású menhelyek:

- Herman Ottó Magyar Országos Állat- és Természetvédő Egyesület (XXII. ker., Brassói utca);
- Noé Állatotthon Alapítvány (XVII. ker., Csordakút utca vége);
- Rex Kutyaothon Alapítvány (IV. ker., Óceánárok utca).

A menhelyek működtetésében fontos szerepe van a személyi jövedelemadó 1%-os felajánlásából eredő összegeknek. 2022-ben a három budapesti alapítványnak összesen közel 20 ezren ajánlottak fel a személyi jövedelemadójuk 1%-át67, ami szintén jelzi az emberek állatokhoz fűződő viszonyának felértékelődését.

A kóborállat-állomány csökkentésében egyre nagyobb szerepet kap a társállatok ivartalanításának ösztönzése, jóllehet utóbbi megítélése Európában nem egyöntetű68. A NÉBIH ebnyilvántartása alapján a fővárosi ebeek 22%-a ivartalanított.

Egyes zöldterületeknek jelentős vonzásokörzete van a kutyákon körében. Amennyiben azonban ezeknek a területeinek a megközelítése autóval történik, az jelentősen növeli a társállattartás egyébként is számottevő környezetterhelését. Környezetkímélőbb alternatívát jelent ezekben az esetekben a közösségi közlekedés igénybevétele, jóllehet a BKK járművein egy utas csak egy kutyát szállíthat és az egyes járműveken összesen szállítható kutyák száma is korlátozott69. A közösségi közlekedést egyre többen használják kutyával – 2021-ben a BKK által értékessített havi kutyabérlétek száma több, mint 70%-kal magasabb volt, mint 2017-ben, illetve a MÁV-START Zrt. Budapestről induló vagy oda érkező járataira is nőtt a kutyajegy-eladások száma70.

Városfejlesztés, várospolitika

Az egyes társadalmi folyamatokat jelentősen befolyásolják a helyi és országos szintű további különböző ágazati szakpolitikai intézkedések. A városfejlesztés
során gyakran ütköznek a különböző érdekek, amelyek közvetetten jóljuk hozzá a környezeti állapotváltozásokhoz. Ezen felül a fővárosi, helyi szintű környezetvédelmet az állam részéről történő forrásmegosztásokkal, feladat- és hatáskörelenvánásokkal, valamint a helyi autonómiai fokozatos, de egyre növekvő mértékű korlátozásával megnehezíti, illetve ellehetetleníti, többek között a környezetvédelem helyi szinten is hiányos társadalmi támogatottságát.

A zöldmezős beruházások, a nagy léptékű infrastruktúra-fejlesztések és állami beruházások, valamint a nagy volumenű magántőke beruházások, ingatlanfejlesztések elsősorban a gazdaságpolitikai érdekek érvényesülését támogatják, a környezetvédelmi és természetvédelmi érdekek – a helyi településtervezési eljárások, intézmények lehetőségeinek szüksítése miatt is – háttérbe szorulnak. Ennek eredményeképp a városi széterület és a szuburbanizáció folyamata tovább erősödik. Erre példa a lakásépítést fokozó családátamogatási rendszer (CSOK). Az állami támogatás – habár az intézkedés elsődleges célja a gyermekvállalás ösztönzése – jelentősen hozzájárul az új lakások építéséhez, amellyel főként a városszéleti területek beépítésére, beleértve a belvárosi, külső kerületi agglomerációs területeken is, fokozódik.

Az önkormányzati amortizációs veszteségek egyre növekednek, mivel az ún. „rezsicsökentés” fedezetét részben az infrastruktúra fenntartásától elvont önkormányzati források biztosítják. A hazai családátamogatási rendszer 2017 óta az önkormányzatokra fordított, ahol a különböző körülmények alapján, a területi, mezőgazdasági művelés alól kivont korábbi zártkerteken, az üdülőterületeken, valamint a különböző tanyák esetében is támogatja a lakóházak építését, amely jellemzően olcsóbb és ezért vonzóbb megoldást kínál. Ezzel újabb területeken jelenhetnek meg az újabb infrastruktúra igények fejlesztése az önkormányzatokat fogja terhelnél – eközben a meglévő infrastruktúralaps képességeinak kihalására, a műszaki színvonal fenntartásához szükséges források elvonása pedig elmaradódik.

Összefoglalva, az urbanizációs folyamatokkal jellemzően érintett területeken, így Budapesten és környékén:
- a kedvezőtlen környezeti hatások és
- a törbeli társadalmi különbségek növekedésével,
- a belvárosi – külső kerületi – agglomerációs települési, illetve
- a külnöbőző társadalmi csoportok között fellépő érdekkonfliktusokkal,
- egyes lakótagok támogatása és fizikai leromlásával vagy
- felértékkelődésével,
- a belvárosi társadalmi és környezeti problémák súlyosbodásával, valamint
- a lakóhelyi mobilitás növekedésével kell számolni.

A fenntartható várospolitika és a városfejlesztés célja, hogy a környezeti problémák mérséklésével kináljan megoldást a társadalmi kihívásokra, illetve a társadalmi kihívások kezelése a környezeti szempontokat is figyelemben vevő módon valósuljon meg. A környezeti problémákra is igaz, hogy nem állnak meg a főváros és a kerületek határainál, így a városfejlesztés környezeti vonatkozásait is csak a városkönyvki települési önkormányzatokkal és Pest megyével közösen lehet érdemben kezelni. Emellett a környezeti problémák megoldásában és kezelésében az országos szintnek, valamint a területi közigazgatás és a szakigazgatás intézményeinek (pl. kormányhivataloknak) is fontos szerepe van.

Intézkedési javaslatok

- A SECAP-ban meghatározott célkitűzés a környezeti kultúra és a felelősségvállalás erősítése. A meghatározott alkalmazkodási célkitűzések
elérése érdekében fontos feladat a lakosság életmódjának, fogyasztási
szokásainak befolyásolása, a lakossági felelőssvállalás és a
klimatudatosság erősítése.

A vizsgált, környezeti konfliktusokat okozó területi társadalmi jelenségek olyan új
léptékű környezeti problémákkal járnak, amelyekkel globális, nemzeti, illetve
területi és települési szinteken egyaránt foglalkozni kell, továbbá megoldásukra új
módszert kell kidolgozni, részben a társadalmi párbeszédek erősítésével, az
érdekeltek bevonásával és rendszeres, visszacsatolásra is épülő
tájékoztatásával, részben pedig a mai tudományos eszközök segítségével.

- A térbeli társadalmi különbségekből adódó környezeti problémák feloldásához
 jelentősen hozzájárulhat a környezetvédelmi szempontú társadalmi kohézió.
- A környezetéről és a társadalmi kohézió elmondható.

- A környezeti igazságosság érdekében a társadalmi-gazdasági-környezeti
 vonatkozású politikai döntéshozatalok során törekedni kell a különböző adottságú
 és helyzetű városrészek, illetve társadalmi csoportok különbségeinek
 csökkentésére.

- A lahatás szempontjából fontos a megfizethető és minőségi
 közszolgáltatások biztosítása: így az ingatlanárak, bérleti díjak és energiaárak
 szabályozása, kiszámítható lakhatási feltételek biztosítása, jó minőségű és
elegődő mennyiségű víz előállításával, biztosítások és
egészséges környezet megteremtése, elhelyezésének kialakítása, vagy például
közösségi közlekedés lehetőségének biztosítása.

- A klimaváltozás következményeihez való alkalmazkodáshoz a sérülékenyebb
társadalmi csoportok és a negatív hatásoknak jobban kitett
 városréstekezést kell kezelni a közpolitikai döntéshozatalok során.

- Az energiaszegénység csökkentésének egyik módja a lakóépületek
 korszerűsítése, amely nemcsak környezeti, hanem társadalmi kérdés is, a
 belvárosi leromlott fizikai állapotú városázhak mellett a külső
 kerületben a házak területén pedig egyaránt indokolt. A szociálisan
 rasszírozott állami vagy
onzkormányzati támogatása szükséges pályázati forrásokkal,
tanácsadással vagy
egyéb energiahatékonyság programokkal.

- A szuburbanizációt és a városi szétterülést támogató fejlesztések, valamint
 programok helyett komplex szemlélet és új társadalmi-környezeti
 csatlakozások kialakítása.

- A metropolisz térség önkormányzatainak (megyei, fővárosi, kerületi,
települési
 önkormányzatok) és a kormányzatnak egységes régióként kell együttműködniük.
 Tervezett, koordinált, stratégia-alapú térségefejlesztés keretében összehangolt
 hálózatos településtechnikát kell megvalósítani. A metropolisz térség területi
 és települési tervezését, adó-, befektetési és közösségi közlekedési politikáját
 Budapest és a többi agglomerációs település, Pest megye, valamint a területükké
 összehangolásával tért működési cselekedésében és költségvetésében.

A lakáspolitikát támogató családtámogatási rendszer (CSOK) esetén fellépő
 érdekkonfliktusok csak a környezet védelme és a különböző társadalmi csoportok
 igényeinek, illetve családi házás felhasználási elvárásainak összehangolásával
 kezelhetők.

A városkörnyéki fejlesztésekre irányuló társadalmi, lakóhelyi igények
 mennyiségét enyhítő intézkedés létezik, ha az új humán és műszaki infrastruktúra-
 fejlesztések, valamint az új beépítések miatt szükséges változások
 aktivitásérték növelés költségeit az érintettek
 viselnék.

A jövőben megvalósuló városfejlesztési projektek megvalósítása, valamint a
fellépő problémák feloldásához szükséges intézkedések kialakítása során a
körülettekintő, minden érdek figyelembevételével történő, megfontolt döntéshozatal javasolt.

- Az ún. túlzott turizmusból adódó konfliktusok és negatív környezeti hatások mérsékeltése érdekében is szükségszerű a főváros turisztikai stratégiájának partnerségi alapon történő kidolgozása. Az idegenforgalom előnyei és hátrányai közötti egyensúly megteremtéséhez az integrált szemlélet és a fenntarthatóság érvényesítésére van szükség. A turisztikai fejlesztések során egyaránt fontos a városiak és a vendégek érdekeinek figyelembevétele, de a városi környezet minősége, illetve minőségi javítása is alapvető szempont kell, hogy legyen.

- A fentiekben vázolt intézkedési javaslatok összhangban vannak Budapest 2021-2026-os időszakára vonatkozó települési környezetvédelmi programjával, továbbá illeszkednek a Budapest 2030 hosszú távú városfejlesztési koncepció távlati céljaihoz is. A megvalósítás részletére a környezetvédelmi program hatálya alá tartozó ágazati (tematikus) tervek keretében kerülhetnek kidolgozásra. A Fővárosi Önkormányzat középtávon tervezett projektjeit az Otthon Budapesten Integrált Településfejlesztési Stratégia tartalmazza.

Társállattartással kapcsolatos intézkedések, javaslatok

- A szabályok betartását a budapesti önkormányzatok jelentős része a szankcionálás helyett szemléletformálással próbálja elősegíteni. A felelős kutyatartó magatartás személyes keretében félelmetes és mesterséges közterületi megértésével is ösztönzik.

- Mivel a kutyatartók régóta megfogalmazott igénye, hogy legyenek olyan közterületek, ahol a kutyák póráz nélkül is szabadon engedhetők, ezért a budapesti önkormányzatok Budapesten már több, mint 200 kutyafuttatót működtetnek és növekedni kezdtek. A fentiekben vázolt intézkedések és javaslatok összhangban vannak Budapest 2021-2026-os időszakára vonatkozó települési környezetvédelmi programjával, továbbá illeszkednek a Budapest 2030 hosszú távú városfejlesztési koncepció távlati céljaihoz is. A megvalósítás részletére a környezetvédelmi program hatálya alá tartozó ágazati (tematikus) tervek keretében kerülhetnek kidolgozásra. A Fővárosi Önkormányzat középtávon tervezett projektjeit az Otthon Budapesten Integrált Településfejlesztési Stratégia tartalmazza.

- A kedvtelésből történő állattartással kapcsolatos kötelező, továbbá önként vállalt (pl. kutyafuttatók létesítése, ürülékgyűjtő zacskók biztosítása) önkormányzati feladatellátás finanszírozásához – az Ávt. szerint meghatározott további korlátokkal, feltételekkel, 2012 januárjától – a kerületi önkormányzat (a Margitsziget tekintetében 2013. július 20-tól) a Fővárosi
Önkormányzat) ebrendészeti hozzájárulást szedhet be, azonban jelenleg sem a fővárosi, továbbá a kerületi önkormányzatok egyike sem él ezzel a lehetőséggel.

Itt jegyezzük meg, hogy ezt az eszközt országos szinten is csak a helyi önkormányzatok mintegy 1%-a alkalmazza, miközben a „befolyt ebrendészeti hozzájárulás teljes összegét az ebek ivartalanításának támogatására, az állatmenhelyek és az ebrendészeti telepek fenntartására, állatvédelmi szervezetek támogatására, valamint az ebek ivartalanítása és állatvédelmi intézkedések finanszírozására” kell fordítani.

Ugyanakkor az önkormányzatoknak – tekintettel arra, hogy „az önként vállalt helyi közügyek megoldása nem veszélyeztetheti a törvény által kötelezően előírt önkormányzati feladat- és hatáskörök ellátását” – érdemes átgondolniuk, hogyha különböző okok miatt az ebrendészeti hozzájárulással nem élnének, akkor milyen forrásokból tudják biztosítani az előírt kötelező és az önként vállalt vonatkozó feladataikat, a társállattartás egyre növekvő népszerűsége mellett.
Függelék

F.1. Társadalmi folyamatok leírása, jellemzése

A természetes fogyással leginkább érintett fővárosi kerületek 2020-ban az V. és XXI. kerületek voltak (I. 2. táblázat).

<table>
<thead>
<tr>
<th>kerület</th>
<th>ezrelék</th>
<th>kerület</th>
<th>ezrelék</th>
</tr>
</thead>
<tbody>
<tr>
<td>V.</td>
<td>-7,8</td>
<td>VI.</td>
<td>-4,9</td>
</tr>
<tr>
<td>XXI.</td>
<td>-7,0</td>
<td>XIV.</td>
<td>-4,8</td>
</tr>
<tr>
<td>XV.</td>
<td>-6,8</td>
<td>XII.</td>
<td>-4,6</td>
</tr>
<tr>
<td>I.</td>
<td>-6,6</td>
<td>XI.</td>
<td>-4,5</td>
</tr>
<tr>
<td>XX.</td>
<td>-6,3</td>
<td>VIII.</td>
<td>-3,8</td>
</tr>
<tr>
<td>XXIII.</td>
<td>-5,9</td>
<td>XXII.</td>
<td>-3,6</td>
</tr>
<tr>
<td>VII.</td>
<td>-5,7</td>
<td>IV.</td>
<td>-3,6</td>
</tr>
<tr>
<td>XVIII.</td>
<td>-5,6</td>
<td>III.</td>
<td>-3,5</td>
</tr>
<tr>
<td>X.</td>
<td>-5,6</td>
<td>XVI.</td>
<td>-3,1</td>
</tr>
<tr>
<td>XVII.</td>
<td>-5,3</td>
<td>XIII.</td>
<td>-2,8</td>
</tr>
<tr>
<td>XIX.</td>
<td>-5,2</td>
<td>IX.</td>
<td>-2,0</td>
</tr>
<tr>
<td>II.</td>
<td>-5,2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. táblázat: Természetes fogyás* mértéke 2020-ban az egyes fővárosi kerületekben

*élveszületések és a halálozások különbözete ezer lakosra számítva

14. ábra: Belföldi vándorlási különbözet* 2000 és 2020 között Pest megyén belül és Budapesten (Forrás: KSH adatai alapján)

*odavándorlások és elvándorlások különbözete

F.2. A budapestiek költözési tervei

A Budapesten élők 13%-a biztosan, 20%-a valószínűleg lakást vált a következő öt évben. A legmagasabb arányban a 18–29 év közöttiek érzik átmenetnek a jelenlegi otthonukat, a 30 éven aluliak több mint fele költözőst tervez, de körükből jellemzőbb a városon belüli lakóhelykeresés, mint a kikötőzés. 30–40 év között is viszonylag magas a költőzási hajlandóság, ők leginkább a Budapesthez közel fekvő települések iránt érdeklődnek.

Az átlagosnál magasabb arányban költőznének azok, akik jelenleg lakásban laknak, a családi házban, sorházban, ikerházban élők többsége biztosan vagy valószínűleg nem költözik el öt éven belül.

<table>
<thead>
<tr>
<th>Teljes népesség</th>
<th>13</th>
<th>20</th>
<th>20</th>
<th>45</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>férfi</td>
<td>13</td>
<td>21</td>
<td>23</td>
<td>39</td>
<td>3</td>
</tr>
<tr>
<td>nő</td>
<td>13</td>
<td>18</td>
<td>17</td>
<td>49</td>
<td>2</td>
</tr>
<tr>
<td>18–29 éves</td>
<td>32</td>
<td>35</td>
<td>18</td>
<td>11</td>
<td>4</td>
</tr>
<tr>
<td>30–39</td>
<td>18</td>
<td>40</td>
<td>15</td>
<td>24</td>
<td>3</td>
</tr>
<tr>
<td>40–49</td>
<td>14</td>
<td>19</td>
<td>30</td>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td>50–64</td>
<td>8</td>
<td>13</td>
<td>24</td>
<td>53</td>
<td>2</td>
</tr>
<tr>
<td>65 éves vagy idősebb</td>
<td>4</td>
<td>12</td>
<td>78</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>legfeljebb 8 osztály</td>
<td>14</td>
<td>21</td>
<td>17</td>
<td>43</td>
<td>3</td>
</tr>
<tr>
<td>szakmunkásképző</td>
<td>7</td>
<td>10</td>
<td>10</td>
<td>72</td>
<td>1</td>
</tr>
<tr>
<td>érettségi</td>
<td>12</td>
<td>21</td>
<td>21</td>
<td>43</td>
<td>3</td>
</tr>
<tr>
<td>diploma</td>
<td>15</td>
<td>22</td>
<td>23</td>
<td>38</td>
<td>3</td>
</tr>
<tr>
<td>lakótelepi panelház</td>
<td>16</td>
<td>18</td>
<td>16</td>
<td>48</td>
<td>3</td>
</tr>
<tr>
<td>egyéb többszintes társasház</td>
<td>16</td>
<td>27</td>
<td>20</td>
<td>36</td>
<td>2</td>
</tr>
<tr>
<td>családi ház, ikerház, sorház</td>
<td>8</td>
<td>12</td>
<td>23</td>
<td>54</td>
<td>3</td>
</tr>
<tr>
<td>történeti belváros</td>
<td>16</td>
<td>27</td>
<td>20</td>
<td>33</td>
<td>3</td>
</tr>
<tr>
<td>belváros körüli zártsorú</td>
<td>18</td>
<td>20</td>
<td>15</td>
<td>45</td>
<td>2</td>
</tr>
<tr>
<td>lakótelepek</td>
<td>15</td>
<td>19</td>
<td>20</td>
<td>43</td>
<td>3</td>
</tr>
<tr>
<td>budai kertváros</td>
<td>10</td>
<td>21</td>
<td>29</td>
<td>41</td>
<td>2</td>
</tr>
<tr>
<td>pesti kertváros</td>
<td>11</td>
<td>14</td>
<td>19</td>
<td>53</td>
<td>4</td>
</tr>
</tbody>
</table>

15. ábra: Költőzási tervek öt évén belül (2023)

16. ábra: Költőzási tervek 5 évén belül bontásban (százalék)
A biztosan és valószínűleg elköltőzök többségben Budapesten kívül szeretnének ingatlan találni. A válaszadók 49%-a továbbra is maradna a fővárosban, 20% pedig Budapesthez közeli településre, a fővárosi agglomerációba költözne szívesen. Ha ezt a számot a teljes fővárosi népességére vetítjük, kiderül, hogy a város lakosságának egytizede az agglomerációba szándékozik költözni a következő 5 évben.

Budapesttől távolabb a lakóhelyet változtatók 11%-a, külföldre 20%-a menne. Budapesttől távolabbra az 50 éven felüliek költöznének jellemzően (a költözni szándékozók negyede), az országot pedig a legfiatalabbak és jellemzően a 40-50 évesek terveznek elhagyni legmagasabb arányban.

17. ábra: A költöző szándékozók által választott lokációk által választott lokációk bontásban (százalékok azok körében, akik biztosan vagy valószínűleg költöznek 5 éven belül)

18. ábra: A költőzni szándékozók által választott lokációk által választott lokációk bontásban (százalékok azok körében, akik biztosan vagy valószínűleg költöznek 5 éven belül)
Az előző évi felmérés eredményeihez képest 9%-kal kevesebben szeretnének már különálló családi, kertes házba költözni, azonban a biztosan és a valószínűleg elköltözök többségében még mindig ilyen típusú ingatlanba költöznének a legszívesebben. Ez különösen az agglomerációs övezetek költözőkre igaz (95%). A költözési igények alapján a budapesti agglomerációban környezeti szempontból is kedvezően városi széletterületi folyamatokkal, illetve családi házás építkezésekkel kell számolni a jövőben is. A város terjeszkedésének jellemzőit a II.1. Épített környezet c. fejezet mutatja be részletesen.

Érdekes módon két csoportra jellemző kiemelkedő arányban, hogy családi házba költözne: a lakótelepeken élőkre, valamint a jelenleg is kertvárosban élőkre. A költözést fontolók körén belül a belvárosban és a belváros közelében élőkre jellemző a leginkább, hogy Budapesten belül szeretnének új lakóhelyet találni, ők az átlagosnál kisebb arányban törekednek önálló családi házba költözni, jellemzően társasházi lakást keresnek.

<table>
<thead>
<tr>
<th>nem</th>
<th>férfi</th>
<th>nő</th>
<th>18-29 éves</th>
<th>30-39</th>
<th>40-49</th>
<th>50-64</th>
<th>65 éves vagy idősebb</th>
<th>legfeljebb 8 osztály</th>
<th>szakmunkásképző</th>
<th>érettségi</th>
<th>diploma</th>
<th>lakótelepi panelház</th>
<th>egyéb többszintes társasháza</th>
<th>családi ház, ikerház, sorház</th>
<th>történeti belváros</th>
<th>belváros körüli zártosor</th>
<th>lakótelepek</th>
<th>budai kertváros</th>
<th>pesti kertváros</th>
</tr>
</thead>
<tbody>
<tr>
<td>férfi</td>
<td>6</td>
<td>20</td>
<td>64</td>
<td>66</td>
<td></td>
<td></td>
<td>14</td>
<td>18</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>nő</td>
<td>9</td>
<td>24</td>
<td>57</td>
<td>40</td>
<td>6</td>
<td>73</td>
<td>16</td>
<td>18</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>18-29 éves</td>
<td>15</td>
<td>32</td>
<td>40</td>
<td>66</td>
<td>6</td>
<td>6</td>
<td>16</td>
<td>18</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>30-39</td>
<td>6</td>
<td>17</td>
<td>66</td>
<td></td>
<td>9</td>
<td>73</td>
<td></td>
<td>16</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>40-49</td>
<td>0</td>
<td>23</td>
<td>68</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td></td>
<td>16</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>50-64</td>
<td>1</td>
<td>16</td>
<td>73</td>
<td>4</td>
<td>73</td>
<td>6</td>
<td></td>
<td>16</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>65 éves vagy idősebb</td>
<td>14</td>
<td>18</td>
<td>58</td>
<td>100</td>
<td>5</td>
<td>16</td>
<td></td>
<td>14</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>legfeljebb 8 osztály</td>
<td>0</td>
<td></td>
<td></td>
<td>100</td>
<td>5</td>
<td>16</td>
<td></td>
<td>14</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>szakmunkásképző</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td>9</td>
<td>73</td>
<td></td>
<td>16</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>érettségi</td>
<td>10</td>
<td>20</td>
<td>56</td>
<td></td>
<td>9</td>
<td>73</td>
<td></td>
<td>16</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>diploma</td>
<td>5</td>
<td>29</td>
<td>55</td>
<td>4</td>
<td>6</td>
<td>6</td>
<td></td>
<td>16</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>lakótelepi panelház</td>
<td>14</td>
<td>13</td>
<td>63</td>
<td></td>
<td>10</td>
<td>73</td>
<td></td>
<td>16</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>egyéb többszintes társasháza</td>
<td>6</td>
<td>29</td>
<td>57</td>
<td></td>
<td>6</td>
<td>6</td>
<td></td>
<td>16</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>családi ház, ikerház, sorház</td>
<td>9</td>
<td>15</td>
<td>64</td>
<td>4</td>
<td>8</td>
<td>6</td>
<td></td>
<td>16</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>történeti belváros</td>
<td>6</td>
<td>38</td>
<td>49</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td></td>
<td>16</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>belváros körüli zártosor</td>
<td>7</td>
<td>42</td>
<td>37</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td></td>
<td>16</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>lakótelepek</td>
<td>10</td>
<td>10</td>
<td>66</td>
<td>8</td>
<td>5</td>
<td>6</td>
<td></td>
<td>16</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>budai kertváros</td>
<td>4</td>
<td>28</td>
<td>60</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td></td>
<td>16</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>pesti kertváros</td>
<td>7</td>
<td>12</td>
<td>69</td>
<td>6</td>
<td>5</td>
<td>6</td>
<td></td>
<td>16</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>
A Budapestről elköltözni vágyók jellemzően más környezetre vágynak, több válaszadó hangsúlyozta a főváros rossz környezeti állapotát. Ennek részeként új lakóhelyként főképp a természeti és az egészségesebb környezetet választanának (25%), illetve családi házba költöznének (16%). Többen válaszolták, hogy a költözés mögött családi vagy személyes indokok állnak, emellett egyéb indokokat is említettek, amelyek között nagy számban hivatkoztak a fővárosi rossz közlekedési és parkolási helyzetére.

F.3. Szuburbanizáció Budapesten

22. ábra: Természetes személy által üzemeltetett személygépkocsi számának változása 2010 és 2020 között (db)

(Forrás: KSH adatai alapján)

F.4. Térbeli társadalmi és környezeti egyenlőtlenségek

Európai viszonylatban 2013 óta – Prágával azonosan – Budapesten drágultak leggyorsabban az új építső lakások ára. Az egy főre jutó országos nettó jövedelemhez viszonyított lakásáremelkedés Németország után Magyarországon volt a legmagasabb, azaz a jövedelmi viszonyok és a lakásárak közötti különbség jelentősen romlott az elmúlt 8 évben. Az egyes pesti belső kerületek négyzetméter áraiban közel négyszeres áremelkedés történt (VI., VII., VIII. kerület), de a külső kerületekben is 2,5-3 szoros emelkedést tapasztalhattunk.
A gazdaságilag aktív lakosság aránya a belvárosi (VI., VII., VIII., IX.) kerületekben a legmagasabb, ami utal az egyes korosztályok lakhatási igényeire is: míg a fiatal munkavállalóknak elsősorban a jó közlekedés, a munkahely jó elérhetősége a fontos, addig a gyermekekkel élőknek, illetve családosoknak a családi házra, zöldterületekkel rendelkező lakhely iránti igénye magasabb. A gyermekek koruk (0-14 évesek) aránya jellemzően a II., XII., XVI. és XXII. kerületekben a legmagasabb (15-17%) és a belvárosi kerületekben a legalacsonyabb (10% alatt). A kerületek közül a 65 éves és idősebb népesség aránya szintén a II., és XII. kerületekben a legmagasabb (25-26%), a legalacsonyabb arány pedig a VI., VII., VIII. és IX. kerületekben (17-18%) mutatkozik.
25. ábra: Lakónépességből az aktív népesség (15-64 évesek) száma (fő) és kerületi aránya 2021 év végén
(Forrás: KSH adatai alapján)
A fejezet hivatkozásai

4. Magyarország és egyes kiemelt térségeinek területrendezési tervéről szóló 2018. évi CXXIX. törvény 112. § 1/1. melléklet szerinti települések
6. https://www.ksh.hu/thm/2/indi2_1_1.html
19. 2.2.3.4. Az egy főre jutó éves kiadások COICOP-főcsoportok és jövedelmi tizedek (decilek) szerint (ksh.hu)
20. 14.1.2.9. Az egy főre jutó éves kiadások részletezése COICOP-csoportosítás, régió és településtípus szerint (ksh.hu)
22. Otthon Budapesten – Integrált Településfejlesztési Stratégia (lásd: 38.o.) 884/2021. (04.28.) Főv. Kgy. határozattal elfogadva https://budapest.hu/Documents/V%C3%A1ros%C3%A9p%C3%ADt%C3%A9si%20Helyzetfelt%C3%A9t%C3%A9sek%202022.pdf
23. Diagnosis of causes and consequences o fuel poverty in Belgium, France, Italy, Spain and United Kingdom. EUROPEAN FUEL POVERTY AND ENERGY EFFICIENCY project, WP2 – D5.
25. VAHAVA projekt és a Nemzeti Éghajlatváltozási Stratégia, 2006
32 Az élelmiszerláncról és hatósági felügyeletéről szóló 2008. évi XLVI. törvény 2. § (2) bekezdés n) pont
33 Ávt. 42/A. §
34 Ávt. 42/B. §
35 Ávt. 42/A. § (4) bekezdés szerint
36 A kedvtelésből tartott állatok tartásáról és forgalmazásáról 41/2010. (II.26.) Korm. rendelet 17/B. § (10) bekezdés
37 A veszteség elleni védekezés részletes szabályairól szóló 164/2008. (XII.20.) FVM rendelet 4. § (1) bekezdés
38 A veszteség elleni védekezés részletes szabályairól szóló 164/2008. (XII.20.) FVM rendelet 3. § (1) bekezdés b)-c) pontok és a (2) bekezdés.
39 https://terezvaros.hu/terezvaros-portal/methods/fmFrontendControl/getFile?key=SyLdfLRW2cflriAS1U0w5abCb4DjmTJ8vY4oh3ggA7A0nNomqU
40 https://www.kobanya.hu/docs/kobanya/hu/news_attach/3936.pdf?v=3b80e8337103c0942d5d766b2f51035
41 https://budajpolgar.hu/data/cms178826/BP_2020_03.pdf 27.o.
42 Ávt. 42/B. § (3) bekezdés
43 Egyidejűleg tekintettel az Ávt. 43. § (1)-(2a) bekezdéseire, a földművelésügyi hatósági és igazgatási feladatokat ellátó szervek kijelöléséről szóló 383/2016. (XII. 2.) Korm. rendelet 6. § (1) bekezdésére, valamint az állatvédelmi bírságról szóló 244/1998. (XII. 31.) Korm. rendelet 2. § összes bekezdése és annak (2) bekezdésben hivatkozott 1. és 3. mellékletére.
45 https://www.wien.gv.at/statistik/bezirke/index.html
46 Kubinyi E. és Varga Gy. „megbízásából” a Tárki Zrt. által végzett országos szinten reprezentatív felmérés eddig még nem publikált adatai alapján.
54 A kedvtelésből tartott állatok tartásáról és forgalmazásáról szóló 41/2010. (II. 26.) Korm. rendelet 17. § (1) bekezdés
56 A szabálysértésekről, a szabálysértési eljárásról és a szabálysértési nyilvántartás rendszeréről szóló 2012. évi II. törvény (Szabs.tv.) 193. § (1) bekezdés
57 Szabs.tv. 196. § (3) bekezdés
58 Szabs.tv. 196. § (3) bekezdés és 193. § (3) bekezdés
59 Az alapvető jogok biztosának jelentése az AJB-192/2021. számú ügyben – A közterületi pórázhasználat szabályozásával összefüggésben – https://www.ajbh.hu/documents/10180/3713052/Jelent%C3%A9s+a+k%C3%B3zter%C3%BCleti+p%C3%B3r%C3%A1zhaszn%C3%A1lat+szab%C3%A1lyoz%C3%A1s%C3%A1val+%C3%B6sszef%C3%BCgg%C3%A9s+192_2021/675b847b-b2e4-953c-a703-0ade7648888d?version=1.0 ; továbbá
63 Kubinyi E. és Varga Gy. megbízásából a Tárki Zrt. által országos szinten reprezentatív felmérés eddig még nem publikált adatai alapján.
65 Ávt. 48/A. §
66 Ávt. 48/A. § (3) bekezdés, továbbá a kóbor állat befogásával, tulajdonjogának átruházásával és elhelyezésével kapcsolatos feladatok ellátásának részletes szabályairól szóló 785/2021. (XII. 27.) Korm. rendelet 1. §
67 NAV (2023): Közlemény a 2022. évben szja 1%-os felajánlásban részesült civil kedvezményezettőrknál.

425
Társadalom | Függelék

75 https://budapest.hu/Lapok/2021/varosi-kutyas-etikett.aspx
78 Ávt. 49. § (6) bekezdés
79 Belváros-Lipótváros Budapest Főváros V. kerület Önkormányzata Képviselő-testületének 14/2020. (III. 13.) önkormányzati rendelete a kedvetlésből tartott állatok tartásának szabályairól, valamint Budapest Főváros XVII. kerület Rákosmente Önkormányzata Képviselő-testületének 22/2022. (IX. 22.) önkormányzati rendelete a helyi állattartás szabályairól
80 Ávt. 42/C. §
82 Ávt. 42/C. § (7) bekezdés
83 Magyarország helyi önkormányzatairól szóló 2011. évi CLXXXIX. törvény 10. § (2) bekezdés
84 https://blog.kpmg.hu/2021/12/csak-praga-tartotta-a-lepest-a-budapesti-lakasarak-duplazodasaval/
85 https://www.ingatlannet.hu/statisztika/Magyarorsz%C3%A1g
III.1. Környezetvédelmi Program végrehajtásának nyomonkövetése

Budapest közötti időszakra szóló települési környezetvédelmi programját (BKP 2026) a Fővárosi Közgyűlés 141/2021. (I.27.) számú határozatával hagyta jóvá.

Mivel a főváros települési környezetvédelmi programjában foglalt feladatok végrehajtásáról, a végrehajtás feltételeinek biztosításáról gondoskodni kell, valamint a feladatok ellátását figyelemmel kell kísérinti, továbbá a végrehajtás helyzetéről a lakosságot rendszeres időközönként tájékoztatni kell, ezért jelen fejezet a BKP 2026-ban meghatározott feladatok végrehajtásának 2022-es év végi helyzetét foglalja össze (azaz a 2023. év során megvalósult projektek, intézkedéseket az alábbi táblázat még „folyamatban lévőnek” jelöli).
A BKP-2026-ban kitűzött feladatok megvalósulásának értékelése

<table>
<thead>
<tr>
<th>Feladat</th>
<th>Érintett szervezet</th>
<th>Megvalósulás szöveges értékelése</th>
<th>Projektek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Környezeti program cél: A-1 Levegőminőség</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-1-2</td>
<td>Levegőminőség előrejelző rendszer fejlesztése</td>
<td>FPH Klima- és Környezetügyi Főosztály</td>
<td>Folyamatban</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-1-3</td>
<td>Szennyező gépjárművek fokozatos visszaszorítása a városi közlekedésben</td>
<td>FPH Klima- és Környezetügyi Főosztály, kerületi önkormányzatok</td>
<td>Folyamatban</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feladat</td>
<td>Érintett szervezet</td>
<td>Megvalósulás szöveges értékelése</td>
<td>Projektek</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>---------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>- A fenti határozat alapján a Fővárosi Önkormányzat közösségi gyűlést szervezett a közlekedésből eredő légszennyező anyagok mennyiségének mérséklése céljából (2022. szeptember 10-11-én és 2022. szeptember 24-25-én „Lélegezz fel, Budapest!” címmel, 50 fő önkéntes részvételével), - A közösségi gyűlést 16 elfogadott ajánlása között megtalálhatók a budapesti közösségi közlekedés szolgáltatásaik fejlesztésére, a város közterének zöldítésére, illetve egészségesebbé tételére, illetve a parkolási rendszer harmonizálására és racionalizálására irányuló javaslatok. A javaslatok támogatottságuk alapján súlyozva fognak bekerülni a fővárosi közlekedés-szervezési tervekbe, végül pedig a Fővárosi Közgyűlésen döntenek ezek megvalósíthatóságáról. - A 29/2022. (VII. 14.) Főv Kgy. rendelet módosítása révén további szigorú korlátozásokat alkalmazhat a szmogriadó esetén kötött gépjárművek köré, az EURO-3-as benzines, valamint a hibrid-dízel vegyesüzemű gépjárművekkel. Így szmogriadó esetén továbbra is a fővárosi gépjárművek szennyezettebbik (45-55%-a) esik korlátozás alá.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-1-4 Légszennyező tüzelési módok visszaszorítása</td>
<td>FPH Klíma- és Környezetügyi Főosztály, Folyamatban, előkészítés alatt.</td>
<td>Megvalósult A „Zöld Budapest” lakossági tanácsadó irodában a Fővárosi Önkormányzat tanácsadást nyújtott többek között a helyes fűtési technikákra is (lásd E-3-1 feladat).</td>
<td></td>
</tr>
<tr>
<td>- A légszennyező tüzelési módok visszaszorítását is szolgálják a fővárosi épületállomány komplex, épületenergetikai felújítását célzó intézkedések (lásd C-1-1 feladat).</td>
<td>Folyamatban</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Budapest Főváros Önkormányzata „Ne égess!” címmel 2021-ben közös felvilágosítás kampányt indított a Budapesti Közművek, a Levegő Munkacsoport és a Humusz Szövetség részvételével a lakossági hulladékjeladás visszaszorítása és a helyes fűtési módok terjedése céljából. A HungAIRy program keretében oktatóanyagok készültek a fenti témában.</td>
<td>Megvalósult</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A Fővárosi Önkormányzat a légszennyező tüzelési módok visszaszorítását célzó szabályozási, intézkedési javaslatok bevezetését, országos, vagy legalább agglomerációs szintű alkalmazását tervezi kezdeményezni. - A Fővárosi Önkormányzatnak koordináló, közvetítő szerepet kíván vállalnia annak érdekében, hogy a lakossági fűtés támogatása (szociális tűzifa támogatás) során az érintett helyi önkormányzatokkal közösen megtalálják a szociális és környezetvédelmi szempontokat egyaránt érvényesítő legjobb megoldásokat.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Környezeti program cél: A-2 Alkalmazkodás az éghajlatváltozás helyi hatásaihoz</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feladat</td>
<td>Érintett szervezet</td>
<td>Megvalósulás szöveges értékelése</td>
<td>Projektek</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>---------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>- Óbudai-sziget stratégiai terv jóváhagyásra került.</td>
<td></td>
<td>Folyamatban</td>
<td>- Klímabarát zöldfelület-gazdálkodás (BKM FŐKERT Divízió): az alternatív gyepgazdálkodási program folytatódik 30.4 hektárón. A virágágyak tervezett átalakítása is folytatódik (egynyáriból ökológikus évelő ágyások) további 140 m²-en. RDH Pesti hidfölnél Miyawaki erdő létesítése. - Átfogó közterület-megújítások: A Fővárosi Önkormányzat által koordinált, vagy közreműködésével végzett átfogó közterület-megújítási projektek a klímaadaptációs szempontok szerint kerülnek kialakításra. - Előkészítési, tervezési fázisban lévő projektek:</td>
</tr>
<tr>
<td>Folyamatban</td>
<td>Folyamatban</td>
<td>Folyamatban</td>
<td>- További (kb. 25 db) új ivókút telepítése folyamatban van a közösségi költségvetés keretében. - A Fővárosi Önkormányzat együttműködésével (a Hegyvidéki Önkormányzat (XII. kerület) vezetésével) folyamatban van a 2021-2025 között részben uniós forrásból megvalósuló "LIFE – Városi Érő" projekt, amelynek fő célja a városi klímaadaptáció támogatása csapadékkézelés terén a zöld és kék infrastruktúrák közötti szinergiák megtalálásával és ezek erősítésével.</td>
</tr>
<tr>
<td>Feladat</td>
<td>Érintett szervezet</td>
<td>Megvalósulás szöveges értékelése</td>
<td>Projektek</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
<td>----------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Környezeti program cél: A-3 Zajterhelés</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-3-1</td>
<td>Strategiai zajtérkép intézkedési tervek végrehajtása, zajtérképezés alkalmazása</td>
<td>Megvalósult</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FPH Klima- és Környezetügyi Főosztály</td>
<td>- a 80a jelű Budapest-Hatvan vasútvonal felújítása kapcsán történtek zajcsökkentési intézkedések, beruházások, a beruházás részeként az épített szakaszon 900 m hosszúságban zajvédő falat építettek.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FPH Városüzemeltetési Főosztály, FPH Várostervezési Főosztály, BKK, BK, kerületi önkormányzatok</td>
<td>- A Játszberényi út mentén szintén zajvédő fal épült, amely Kőbánya-Kertváros és Akadémiaújtelep lakóterületéért védi.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Az M0-as autóút Déli sektorának rekonstrukciója részeként a Deák Ferenc híd fejlesztése során zajváriréktérer felé épültek a forgalomból adódó zajterhelés csökkentése érdekében. Az M6-os autópálya és az 51. számú főút közti szakaszt érintő kivitelezései munkák 2018-ban kezdődtek, amely során zajváriréktérer falrendszer beépítésére került sor. A már meglévő zajvédő falakat hosszabb, hosszasabb és jobb hanggátló tulajdonságú falakra cseréltek.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Folyamatban</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Budapest Közút vezetésével a lakossági panaszok alapján zajméréseket megrendelésre van folyamatban.</td>
<td></td>
</tr>
<tr>
<td>A-3-2</td>
<td>Légiforgalom zajtérhelésének csökkentése</td>
<td>Folyamatban</td>
<td></td>
</tr>
<tr>
<td></td>
<td>FPH Klima- és Környezetügyi Főosztály, FPH Várostervezési Főosztály</td>
<td>Megvalósult</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Budapest Liszt Ferenc Nemzetközi Repülőtér zajgátló védőövezetének kijelölése 2016-ban vált végrehajthatóvá (emelkedett jogerőre).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- A zajcsökkentési intézkedési terv célkitűzéseinek végrehajtására az alábbi intézkedések kerültek megvalósításra 2021-ben:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Lakossági ablakszigetelési program indult 2017-ben, elsősorban a védőövezetkörök régi lakótelepeket érintő ingatlanok tulajdonosai körében. 2021-ben a BUD a támogatás igénybevételét a környező oktatási, nevelési közintézmények számára is lehetővé tette.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- A 2017-es évtől a repülőtér teljes területén tilos az éjszakai időszakban (22 és 06 óra között) történő hajtóműpróbázás.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 2021 tavaszán a X. kerületi Keresztúti úton lévő zajmérő áthelyezése került a Bajcsy-Zsilinszky Kórház és Rendelőintézet területére, hogy a mérőállomás a repülési zajnak leginkább kitett lakóközségek területén működjön, ezáltal hatékonyabban véve a zajszintek ellenőrzését.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- 2022-ben elkészült Budapest Liszt Ferenc Nemzetközi Repülőtér stratégiai zajtérképének felülvizsgálata.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Folyamatban</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Folyamatos együttműködés és párhuzamú valamennyi érintett önkormányzattal, környékbeli civil szervezetekkel és a lakossággal.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- A repülőtér üzemeltetésével kapcsolatos zajkérdések szükségességét tekintve az önkormányzat és a környezettartalékunk szerves része érintetté vált az önkormányzat szervezetek közül.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A Budapest Közút vezetésével a lakossági panaszok alapján zajméréseket megrendelésre van folyamatban.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- A 2017. évi stratégiai zajtérképek felülvizsgálata és megújítása 2023-ban vált volna időszertővé (az illetékes minisztérium megújításáról szóló tájékoztatása függőben).</td>
<td></td>
</tr>
</tbody>
</table>

431
<table>
<thead>
<tr>
<th>Feladat</th>
<th>Érintett szervezet</th>
<th>Megvalósulás szöveges értékelése</th>
<th>Projektek</th>
</tr>
</thead>
<tbody>
<tr>
<td>A-3-3</td>
<td>FPH Klíma- és Környezetügyi Főosztály, FPH Városzemellett ési Főosztály, FPH Várostervezési Főosztály, BKK</td>
<td>Folyamatban</td>
<td>Megvalósult</td>
</tr>
</tbody>
</table>

A-3-4 Közterületi rendezvények zajterhelésének csökkentése | FPH Klíma- és Környezetügyi Főosztály, FPH Vagyonpénzügyi Főosztály | Folyamatban | Megvalósult |

Környezeti program cím: A-4 Talajok

A-4-1 A szennyezett területekkel kapcsolatos átláthatóság biztosítása | FPH Klíma- és Környezetügyi Főosztály | Nem történt előrelépés. | Megvalósult |
| | - | Folyamatban | - |
A-4-2 Potenciális talajszennyezett területek felmérése

- **FHV Várostervezési Főosztály**, **FHV Klíma- és Környezetügyi Főosztály**

 Nem történt előrelépés

 Megvalósult

 Folyamatban

 Tervezett

 - A javaslat alapján a Fővárosi Önkormányzat – és a kerületi önkormányzatok – az illetékes hatósággal együttműködve felmeríti a saját tulajdonában, illetve használatában (vagyongazdai körében) álló területeket, melyek a korábbi vagy jelenlegi területhasználatból adódóan feltételezhetően szennyezettek, majd kezdeményeznének a vizsgálatok eredményeinek a tulajdoni lapra történő földhivatali bejegyzését.

A-4-3 Fővárosi Önkormányzat felelősségi körébe tartozó területek kármentesítése

2022. augusztusi adatok alapján a Fővárosi Önkormányzat felelősségi körébe tartozó kilenc terület kármentesítésébe n jelentős előrelépés nem történt

Folyamatban

- Az elmúlt időszakban két fővárosi önkormányzati érdekeltségű helyszín került sikeresen lezárásra a kármentesítés (FTSZV XV. kerületi telephelye, valamint BKV Hamzsabégi úti buszgaráza).

Tervezett

- Budapesten 2022.12.31-én még 1.709 db ólombekötést tarto_

 - műszaki beavatkozás, Erőd utca 5.; BKV telephely, Pomázi út 15., Cséry-telep (BFFH, MNV), Ipacsfa utca).
 - tényfeltárás folyamatban: Csepeli volt szennyvíziszap lerakó, XXI. ker. (FCSM);
 - Naplás úti keleti bánya (BKM): folyamatban lévő peres ügy miatt jelenleg nincs hatályos kötelezés nincs vizsgálat.

Tervezett

- 2022-ben az ivóvízbiztonságának fenntartása

A-5-1 Az ivóvíz szolgáltatás biztonságának fenntartása

- **FHV Városerdemesítési Főosztály**, **FV**

 Folyamatban

 Megvalósult

 Tervezett

- 2022-ben az ivóvízhálózaton a Fővárosi Vízművek Zrt. által saját forrásból elvégzett munkálatok:
 - 6.944 fm ivóvízvezeték főnyomó- és elosztóvezeték rekonstrukció,
 - szerelvények, tűczsakok és bekötések cseréje,
 - alacsonyomású gyűjtőcsatorna felújítása,
 - gépházak felújítása,
 - elektromos berendezések, kábelek, valamint irányítástechnika rekonstrukciója.

- Budapesten 2022.12.31-én még 1.709 db ólombekötést tartottak nyilván, mivel 2022. évben már kicséréltek 1595 db-ot, melyből 1427 db a Főváros KEHOP-2.1.5-16-2017-00001 projekje keretében valósult meg. Továbbá a projekt keretében víztermelő kutak felújítása (21 db) is megtörtént,

- 2022-ben a Fővárosi Önkormányzat megbízásából a Fővárosi Vízművek Zrt. által megvalósított fejlesztések (mind azbesztcement vezeték átépítése):
 - XI. kerület, Dayka zóna, XVII. kerület Vargha Gyula utca, XVI. kerület Érsekújvári utca és XVII. kerület Szatmárnémeti utca vízellátást biztonságot és vízminőség javítást célozó fejlesztések.

- 6.204 fm technikai beruházások összesen.

2022-ben leselejtezt azbesztcement vezetékek hossza 6.204 fm volt (saját, fővárosi, illetve külső fejlesztő által finanszírozott beruházások összesen).
Folyamatban

A Fővárosi Önkormányzat általi fejlesztések:
- Folyamatos a főváros közterületein új ivókutak telepítése (lásd A-2-2 feladat).
- Az örökmékítés cseréje folyamatosan zajlik.

A projekt keretében további víztermelő kutak fejlesztése készül el 2023. évben (39 db). Tervezett
- Mivel a csapásos kutak közel 50%-a egy évtizeden belül (1970-1980) épült, és mára elérték a 40-50 éves életkor, továbbá az enél régebbi kutak is kiteszik a teljes kútszám több, mint 20%-át és prognosztizálható az ennek megfelelő ütemezésű teljes elhasználódásuk, így a következő években kb. évi 24 db kút felújítása (rekonstrukciója) lesz indokolt és szükséges.
- Az üzemeltetés és felújítás-pótítás hosszútávú fenntarthatóságának visszaállítása érdekében az ekövetkező 15 évben indokolt és szükséges lenne legalábbé évi 70 km vezetékélhálózat felújítása. A kockázatos nagyátmérőjű sentab és öntöttvas anyagú vezetékek évi 3 km, a lakótelepi PVC hálózat évi 4 km, a 80 évnél idősebb öntöttvas elosztóhálózat évi 28 km, valamint a 60 évnél idősebb azbeszicment elosztóhálózat évi 35 km cseréje lenne indokolt
- Az Üllői út 2023. évi felújításával párhuzamosan szükséges az Üllői utat érintő vízvezeték rekonstrukciós feladatok elvégzése

<table>
<thead>
<tr>
<th>Feladat</th>
<th>Érintett szervezet</th>
<th>Megvalósulás szöveges értékelése</th>
<th>Projektek</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Folyamatban</td>
<td></td>
</tr>
</tbody>
</table>

A-5-2
Szennyvizek biztonságos gyűjtésének és tisztításának megvalósítása

<table>
<thead>
<tr>
<th>FHP</th>
<th>Városüzemeltetési Főosztály, FCSM, FV, FTSZV</th>
<th>Megvalósult</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Folyamatban</td>
<td></td>
</tr>
</tbody>
</table>

2022-ben megvalósult csatornarekonstrukciók:
11 fővárosi utcaszaszallasz épült új a közcsatorna-hálózat korszerű anyagokból és kedvezőbb hidraulikai kiaklattalás.
- Folyamatosan történő, hidraulikát javító (pontszerű) beavatkozások (XVI., XVII., I., II., IV.; XI; XXII. kerület) melyeknek eredménye, hogy a meglévő rendszer üzembiztonsága növekszik.

2022-ben megvalósult szennyvízátmenteléssel kapcsolatos fejlesztések:
Angyalföldi szivattyútelepen homokelvételi rendszer korszerűsítése (I. ütem), Vas Gereben utcai szivattyútelepre híddaru tervezése telepítése beüzemelése a szivattyúk kiemelésére és mozgatására, János utcai automata telepen üzemelő szivattyú felújítása, Angyalföldi és Zsigmond tér Szivattyútelepen üzemelő 23 tonnás emelőasztalok felújítása, Angyalföldi szivattyútelepen üzemelő gépházi híddaru emelési magasságának kb. 1,6 méterrel való növelése, Angyalföldi Szivattyútelepen oxigénező szivattyú kiváltása, Béke tér II/1. ütem – Angyalföldi telepen higított víz oldali szivattyuk cseréje.

A Budapest Központi Szennyvíztisztító Telepen 2022. évben megtörténtek a fölösszáll szivattyuk cseréi, a gázmotorok felújításának I. és II. üteme (két db 80 ezer üzemhőrszáll szerviz), az irányfénnyek/biztonsági világítások felújítása, a kifejlesztési megakadályozott cseréi, a finomrács felújítása, a technológiai épületek teljes felújítása, az üzemeltető rendszer felújításának I. üteme, a SDADA irányítás-technikai rendszer korszerűsítése, a sűrítő asztalok kapacitás bővítése, a Szippantott szennyvíz fogadó fejlesztésének tervezése, a Technológiai épületek szellőztető rendszereinek felújítása (C épület - II ütem), valamint az "O" épület bővítése, raktár építésének tervezése.

Az Újpesti Szennyvíztisztító Telepre vonatkozó fejlesztések 2022-ben:
- az elfolyó tisztított víz mozgásai energiáját visszanyerő (rekuperációs) vízerőmű üzembeépítésére került.

- A 2-es számú csigaszívattyú hajtóműve kicsérésére került.

A Dél-pesti Szennyvíztisztító Telepre vonatkozó fejlesztések 2022-ben:
- Elkészült a csergőlőkézhez átmeneti tárolására, későbbi kezelésére épített 1000 m³-es tároló.
- Új iszapvizes hajtóműve készült telepítésre a kapcsolódó gépszettel.
- Az Angyalfői Szivattyútelep és a Kőbánya Szivattyútelep szoláris energiát előállító multifonction létesítmény fejlesztése.

- A 2-es és 3-as aszalú rothasztók gépeként felújítva.

A Life Runoff projekt keretében Budapest területén a magáningatlanok tetőfelületein összegyűjtött csapadékvíz részbeni tárolására és öntözés céljára történő felhasználásánál kerültek kijelölésre.

A Magyar Víztelepi Önkormányzat által létrehozott technikai és műszaki előkészítések, közvetlenül alapvetően a belvárosi és villamos rendszerek felújítására.

- A Városliget projekt és a Dózsa György út XIII. kerületi tervezési és építési állományának fedezése.

- A Dózsa György út XII. kerületi iszapvizes hajtóműve készült.

- A Városliget projekt és a Dózsa György út XII. kerületi személyi leesztési és levegő tisztítása.

Az Angyalfői Szivattyútelep felújításánál a vízkormányzat cseréje, az ágalkar és az izom gépek és hajtóművek felújítása.

- Az Angyalfői Szivattyútelep és a Kőbánya Szivattyútelep felújítása.

- Az Angyalfői Szivattyútelep és a Kőbánya Szivattyútelep felújítása.

- Az Angyalfői Szivattyútelep és a Kőbánya Szivattyútelep felújítása.

- Az Angyalfői Szivattyútelep és a Kőbánya Szivattyútelep felújítása.

- Az Angyalfői Szivattyútelep és a Kőbánya Szivattyútelep felújítása.

- Az Angyalfői Szivattyútelep és a Kőbánya Szivattyútelep felújítása.

- Az Angyalfői Szivattyútelep és a Kőbánya Szivattyútelep felújítása.

- Az Angyalfői Szivattyútelep és a Kőbánya Szivattyútelep felújítása.

- Az Angyalfői Szivattyútelep és a Kőbánya Szivattyútelep felújítása.

- Az Angyalfői Szivattyútelep és a Kőbánya Szivattyútelep felújítása.
Budapest Környezeti Állapotértékelése 2023

<table>
<thead>
<tr>
<th>Feladat</th>
<th>Érintett szervezet</th>
<th>Megvalósulás szöveges értékelése</th>
<th>Projektek</th>
</tr>
</thead>
<tbody>
<tr>
<td>D: Műanyag és műbőr felújítása</td>
<td>Általános kastély</td>
<td>- A Frekvenciaváltók cseréje, kompresszorok cseréje, telepi gázérzékelő és központjainak cseréje, és központjainak cseréje, elosztócsatornák betonfelületeinek felújítása.</td>
<td>- SSZK-ben zajló projekt keretében 2 db DN400 vízkormányzó váltó tolózár cseréje, Pók utcai Szivattyútelep épület burkolat helyreállítása, osztókna vízszigetelése.</td>
</tr>
<tr>
<td>E: Kapcsolóberendezések és transzfórátorok hővédelmi monitorozása</td>
<td>Elhelyezési és elosztási képességek biztosítása</td>
<td>- A Frekvenciaváltók cseréje, kompresszorok cseréje, telepi gázérzékelő és központjainak cseréje, és központjainak cseréje, elosztócsatornák betonfelületeinek felújítása.</td>
<td>- SSZK-ben zajló projekt keretében 2 db DN400 vízkormányzó váltó tolózár cseréje, Pók utcai Szivattyútelep épület burkolat helyreállítása, osztókna vízszigetelése.</td>
</tr>
<tr>
<td>F: Olajtárolók átalakítása</td>
<td>Környezeti alkotmány</td>
<td>- A Frekvenciaváltók cseréje, kompresszorok cseréje, telepi gázérzékelő és központjainak cseréje, és központjainak cseréje, elosztócsatornák betonfelületeinek felújítása.</td>
<td>- SSZK-ben zajló projekt keretében 2 db DN400 vízkormányzó váltó tolózár cseréje, Pók utcai Szivattyútelep épület burkolat helyreállítása, osztókna vízszigetelése.</td>
</tr>
<tr>
<td>G: Telepi kommunikációs hálózat korszerűsítése</td>
<td>Általános kastély</td>
<td>- A Frekvenciaváltók cseréje, kompresszorok cseréje, telepi gázérzékelő és központjainak cseréje, és központjainak cseréje, elosztócsatornák betonfelületeinek felújítása.</td>
<td>- SSZK-ben zajló projekt keretében 2 db DN400 vízkormányzó váltó tolózár cseréje, Pók utcai Szivattyútelep épület burkolat helyreállítása, osztókna vízszigetelése.</td>
</tr>
</tbody>
</table>

Tervezett

- Csatarnahálózati terv felülvizsgálata.
<table>
<thead>
<tr>
<th>Feladat</th>
<th>Érintett szervezet</th>
<th>Megvalósulás szöveges értékelése</th>
<th>Projektek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Környezeti program cél: A-6 Árvízügy</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-6-1 Árvízvédelmi rendszer fejlesztése</td>
<td>FPH Városüzemeltetési Főosztály, FPH Várostervezési Főosztály, FCSM</td>
<td>Folyamatban</td>
<td></td>
</tr>
<tr>
<td>Megvalósult</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Pünkösdfürdői árvízvédelmi védvonal MÁSZ+1,3 m biztonsági szintnek megfelelő szintre történő kialakítása.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Az Aranyhegyi-patak árvízvédelmi létesítménye I. ütem.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Az Atlétikai Stadion kapcsán a Rákóczi híd és a Kvassay zsilip között a magas part alakult ki, a védvonal áthelyezésére került, a partvédelem megújult (vízjogi üzemeltetési engedély beszerzése folyamatban.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Az Atlétikai Stadionhoz kapcsolódó bemelegítő pálya építése kapcsán a Kvassay zsilip és a központi szennyvíztisztító telep között a védvonalat kihelyezésére került a Duna partra (vízjogi üzemeltetési engedély beszerzése folyamatban).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A Barát-patak torkolati műtárgyának építése befejeződött.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folyamatban</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Az Aranyhegyi-patak árvízvédelmi létesítménye II. ütem tervezési és kivitelezési munkákra az eredményes közbeszerzési eljárás lefolytatása után a Vállalkozói szerződés aláírására került. A vízjogi létessetési engedélyezési eljárás folyamatban van.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A „Pest-Eszak árvízvédelmi szakasz 35. számú védvonalaszkasza tervezési és kivitelezési munkái” tárgyában vállalkozási szerződés jött létre.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A Pest-Eszak 101., 37. és 38. sz. védvonalaszkasza hez kapcsolódó tervezés keretében a vízjogi létessetési és egyéb szükséges engedélyezési eljárások zajlanak.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A „Budapest, Római-part árvízvédelmi létesítmény megvalósíthatósági tanulmány elkészítése és kapcsolódó tervezési feladatok végrehajtása” tárgyú tervezési szerződés keretében a Megvalósíthatósági tanulmány dokumentáljó készül.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tervezett</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A Kvassay zsilip és a Budapesti Központi Szennyvíztisztító Telep között a védvonalat kihelyezésére kerültek a Duna partra.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Környezeti program cél: A-7 Iparbiztonság</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-7-1 A katasztrófavédelmi szempontból érintett lakosság folyamatos tájékoztatása</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Megvalósult</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folyamatban</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A javaslat alapján megvalósulna a főváros területét érintő, katasztrófavédelmi szempontból fokozottan veszélyes anyagokkal foglalkozó üzemekkel kapcsolatos rendszeresen frissített, naprakész információk, valamint a veszélyes üzemek nyilvános biztonsági jelentésének közzétételére a környezeti állapotértékelés keretében (hatásterületek, releváns információk, vészhabzótervek, továbbá a felső kőhuzatértékű veszélyes üzemek által veszélyeztetett kerületek lakossági tájékoztatóinak egységes közzétételére került megvalósulja a FKI adatszolgáltatása alapján.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tervezett</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A javaslat alapján megvalósulna a főváros területét érintő, katasztrófavédelmi szempontból fokozottan veszélyes anyagokkal foglalkozó üzemekkel kapcsolatos rendszeresen frissített, naprakész információk, valamint a veszélyes üzemek nyilvános biztonsági jelentésének közzétételére a környezeti állapotértékelés keretében (hatásterületek, releváns információk, vészhabzótervek, továbbá a felső kőhuzatértékű veszélyes üzemek által veszélyeztetett kerületek lakossági tájékoztatóinak egységes közzétételére került megvalósulja a FKI adatszolgáltatása alapján.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Környezeti program cél: A-8 Településtisztaság</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-8-1 Településtisztasással kapcsolatos jogszabályok felülvizsgálata</td>
<td>FPH Városüzemeltetési Főosztály, FPH Klíma- és Környezetügyi Főosztály</td>
<td>Folyamatban</td>
<td></td>
</tr>
<tr>
<td>Megvalósult</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A kerületi önkormányzatokkal az együttgondolkodás folyamata megindult, több beruházás úgy került megvalósításra, hogy a jogszabályi bizonytalanságot a felek közös karata egészítette ki, mely a jogi anomáliák és joggazdagok kitöltését célozta, ezzel érve el a teljes feladatkör lefedését.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folyamatban</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A kerületi önkormányzatokkal az együttgondolkodás folyamata megindult, több beruházás úgy került megvalósításra, hogy a jogszabályi bizonytalanságot a felek közös karata egészítette ki, mely a jogi anomáliák és joggazdagok kitöltését célozta, ezzel érve el a teljes feladatkör lefedését.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feladat</td>
<td>Érintett szervezet</td>
<td>Megvalósulás szöveges értékelése</td>
<td>Projektek</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td>----------------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Fővárosi Önkormányzat településtitiszta feladatainak hatékonyítása</td>
<td>FPH Városüzemeltetési Főosztály, BKM Közszolgáltatás alkalmazott gazdasági társaságok</td>
<td>- A javaslat szerint a Fővárosi Önkormányzat kezdeményezne fogja a kerületi önkormányzatokkal történő együttműködést, majd a vonatkozó jogszabályok olyan módosítását, amely egyértelművé teszi a budapesti településtitisztséggel kapcsolatos (szabályozási és végrehajtási) hatáskörök, a feladatellátást egyértelmű megosztását a helyi önkormányzatok között.</td>
<td>- Tervezett: A javaslat szerint a Fővárosi Önkormányzat kezdeményezne fogja a kerületi önkormányzatokkal történő együttműködést, majd a vonatkozó jogszabályok olyan módosítását, amely egyértelművé teszi a budapesti településtitisztséggel kapcsolatos (szabályozási és végrehajtási) hatáskörök, a feladatellátást egyértelmű megosztását a helyi önkormányzatok között.</td>
</tr>
<tr>
<td>A-8-2 Fővárosi Önkormányzat településtitiszta feladatainak hatékonyítása</td>
<td>FÖRI</td>
<td>- Tervezett: A javaslat szerint a Fővárosi Önkormányzat kezdeményezne fogja a kerületi önkormányzatokkal történő együttműködést, majd a vonatkozó jogszabályok olyan módosítását, amely egyértelművé teszi a budapesti településtitisztséggel kapcsolatos (szabályozási és végrehajtási) hatáskörök, a feladatellátást egyértelmű megosztását a helyi önkormányzatok között.</td>
<td></td>
</tr>
<tr>
<td>- Beruházások a hatékonyítás érdekében:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- utánfutós magasnyomású mosóberendezés beszerzése,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- magasnyomású mosóberendezések beszerzése,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- padlótakarító berendezések beszerzése,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- gyalogos kísérletű utcai takarítógép beszerzése.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Közterületi hulladékgyűjtés:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 2021-ben a Margitszigeten kihelyezésre került 198 db Konstruktív típusú, fedélzeti hulladék gyűjtő edény (BKM FŐKERT Divízió).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 2022. január 1-vel a BKM FŐKERT Divíziótól a zöldterületen telepített, hulladékgyűjtő edények üzemeltetése, ürítése feladatellátás átkerült az FKF Közösségi- és Szociális Divízióhoz. A hatékonyítás érdekében az, hogy a saját, FKF Közösségi- és Szociális Divízióhoz tartozó hulladékgyűjtő edények ürítése mellett, azonos járatban megoldható a kertészeti edények ürítése is.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Varjúbiztos hulladékgyűjtő fedelek felszerelése közterületi, nyitott helyeken.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hulladékkal szennyezett területek feltérképezése, szankcionálás (FÖRI): a Főváros illetékességi területein, valamint a természetvédelmi területeken folyamatos ellenőrzés, tetten érős esetén szankcionálás, illetve jelzés adás a problémás területekről.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Terebesi erdő területén térfigyelő kamerarendszer telepítése az illegális hulladéklerakás megelőzése érdekében (FÖRI).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folyamatban</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beruházások a hatékonyítás érdekében:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- kéttengelyes cserefelépítményes eszközökhordozó beszerzése,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- elektromos tehergépjárművek beszerzése,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- dobozos áruszállító beszerzése,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 3,5 és 5,5 tonna alatti tehergépjármű beszerzése,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- rakodógépek beszerzése,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- lombszívó felépítmény, utánfutó beszerzése,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- elektromos járdatakarító gép beszerzése,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- környezetbarát tisztítószer beszerzése,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- utánfutós magasnyomású mosóberendezés beszerzése.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Bemutatkozó kép: Fővárosi Önkormányzat településtitiszta feladatainak hatékonyítása.
<table>
<thead>
<tr>
<th>Feladat</th>
<th>Érintett szervezet</th>
<th>Megvalósulás szöveges értékelése</th>
<th>Projektek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tervezett</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beruházások a hatékonyságnövelés érdekében:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- kétszemélyes áruszállító beszerzése (patkányirtáshoz),</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- kettengelyes, cserefelépítményes eszközök beszerzése,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- járdatakarító célú gépek beszerzése,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- kézi vezetésű utcai takarítógép beszerzése.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Közös képviselők, illetve üzletek üzemeltetőinek bevonásával közgazdászai és közösítésszentélyekben folyamatos részvétel (FÖRI).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A-8-3</td>
<td>A rovar- és rágcsálóirtással kapcsolatos jogszabályok rendezésének javaslatának előkészítése</td>
<td>Folyamatban</td>
<td></td>
</tr>
<tr>
<td>A-8-4</td>
<td>Lomtalanítási rendszer fejlesztése</td>
<td>Folyamatban, előkészítés alatt</td>
<td>Megvalósult</td>
</tr>
<tr>
<td>A-8-5</td>
<td>Nyilvános illemhelyek bővítése</td>
<td>Folyamatban, előkészítés alatt</td>
<td>Megvalósult</td>
</tr>
</tbody>
</table>

Megvalósult

Több körös egyeztetés zajlott a szúnyoggyérítés országos szervezéséért felelős Országos Katasztrófavédelmi Főigazgatósággal a gyérítési munkálatok összehangolása érdekében. Az új közbeszerzési előírás már ezzel a koncepcióval kiegészítve és a biológiai írtat a felüket helyezve került kialakításra.

Folyamatban

- **Tervezett**
 - A javaslat alapján a Fővárosi Önkormányzat kezdeményezni fogja a rágcsálóirtással kapcsolatos törvények és a vonatkozó országos szabályozás átadó felülvizsgálatát, továbbá a rovarirtáson belül a szúnyoggyérítésben résztvevők munkájának gyártói költségeinek összehangolása, a hatékonynabb védekezés érdekében, az ökológiai szempontból legkevésbé technológiai megoldások előnyben részesítését.

Megvalósult

- A koronavírus-járvánnyal összefüggésben az FKF 2020-ban öt kerületben (XII., XV., XVI., XXI., XXII.) a hagyományos lomtalanítás helyett egy új, kísérleti módszert alkalmazott. A lakosság ebben az öt kerületben 2020-2021-ben az önkormányzati illemhelyekre fedőzött gyűjtőpontokra szállítva adhatta le a lomhulladékokat. A módszer eredményei alapvetően kedvező voltak.
 - 2020 év végi rendeletmódosítás nyomán az FKF megszüntette a gyújtópontokat, helyettesítve a lakossági hulladékudvarokban vették át. Ez a tapasztalatok szerint tisztább állapotokat eredményezhetnek a lomtalanításnál.

Folyamatban

- **Tervezett**
 - A hulladékgazdálkodási közszolgáltatási feladatok államosítása (majd koncesszióban adása miatt) 2023.06.30-ig felülről korlátozott a megvalósítás. A lomtalanítási rendszer illetéktelen módosításokat felfedezéseket végzett.
 - 2020 év végi rendeletmódosítás nyomán az FKF megszüntette a gyújtópontokat, helyettesítve a lakossági hulladékudvarokban vették át. Ez a tapasztalatok szerint tisztább állapotokat eredményezhetnek.
 - Újrahasználati konténerek elhelyezése a folyamatos nyitva tartású udvarokban (amennyiben az új irodakonténerek lemezhelyezésére a rendelkezésre álló helyzetılátóvá válhatnak.)
Feladat | Érintett szervezet | Megvalósulás szöveges értékelése | Projektek
--- | --- | --- | ---
- 2022-ben további 4 új nyílvános, akadálymentes illemhely kialakítása kezdődött meg: a megújított Blaha Lujza téren, továbbá a II. János Pál pápa téren, a Zugló vasútállomáson, valamint a TER KöZ pályázatból megvalósuló Szilas menti kerékpárút mellé is kerül új nyílvános mellékhelyiség.

Tervezett
- A 2022-es közösségi költségvetés szavazása alapján kisérleti jelleggel köztéri piszóarak létesítése tervezett.

Környezeti program cél: B-1 Természetvédelem

<table>
<thead>
<tr>
<th>B-1-1</th>
<th>Helyi természetvédelmi területek bővítése</th>
<th>FPH Várostervezi Főosztály</th>
<th>Megvalósult</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Folyamatosan megvalósul (több védelemre érdemes terület védett természetvédelmi eljárás folyamatban van, illetve valósult meg az elmúlt időszakban).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- További védelemre tervezett területek felmérése, dokumentálása, kezelési tervek kidolgozásában történő közreműködés, az új területek ellenőrzési tervbe illesztése.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- További védelemre tervezett területek felmérése, alátámasztó dokumentációk elkészítése, az eljárások vonatkozó jogszabályok szerinti megindítása folyamatban van.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B-1-1-1</th>
<th>Helyi természetvédelmi területek bővítése</th>
<th>FPH Várostervezi Főosztály, Föhi</th>
<th>Megvalósult</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Folyamatosan megvalósul (több védelemre érdemes terület védett természetvédelmi eljárás folyamatban van, illetve valósult meg az elmúlt időszakban).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- További védelemre tervezett területek felmérése, alátámasztó dokumentációk elkészítése, az eljárások vonatkozó jogszabályok szerinti megindítása folyamatban van.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- További védelemre tervezett területek felmérése, alátámasztó dokumentációk elkészítése, az eljárások vonatkozó jogszabályok szerinti megindítása folyamatban van.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B-1-2</th>
<th>Helyi természetvédelmi területek kezelésének hatékony megvalósítása</th>
<th>FPH Várostervezi Főosztály, BKMFÖKERT, Föri</th>
<th>Megvalósult</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- A Természetvédelmi Örszolgálat létszáma bővült így hatékonyabban folyamatosan őrzi, kezeli, és monitorozza a helyi védettség alatt álló területeket.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- További védelemre tervezett területeken az egyik legnagyobb kihívást az invazív fajok visszaszorítása jelenti. A BKMFÖKERT Divízió a védett területeken mintegy 70 ha-on gondoskodik az ozónfajok visszaszorításáról természetvédelmi szempontból kedvező kaszálási technológia alkalmazásával.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- A kaszálással kezelt területeken kiterjesztésével egyre több helyen jelennek meg az élőhelyre jellemző védett növények (Merzse-mocsár, Kőéberki szikes-rét).</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Több helyi jelentőségű természetvédelmi területen (Felsőrákosi rétek, Naplás-tó, Turjános természetvédelmi terület) kimutatható a tájidegen ozónfajok visszaszorítása, az élőhelyekre jellemző védett növények megjelenése.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| Erdőterületek: |
| - 2022. évben elkészült a fővárosi önkormányzati tulajdonú erdőkre vonatkozó erdőkezelési koncepció és 10 évre szóló részletes munkaterv, mely alapján megindult az abban foglalt kezelési és üzemeltetési feladatvégzés. |
| - 2022. évben több, mint 8.000 fás szárú növény ültetése történt meg az erdőterületeken, valamint a részvételi költségvetés keretein belül további 10.000 db facsemete. |
| - A 2021 decemberében megkezdett, Tétényi-fennsík Természetvédelmi Területre irányuló, Vízbázisvédelmi hozzájárulásból finanszírozott kármentesítési munkálatok is folytattak 2022 januájában, mely feladat le is zárult a hónap második felében. Összesen 4.100 tonna építési törmelék került ki az értékes és védett élőhelyről, a sített a Pusztazámori Regionális Hulladékkezelő Központ fogadta be. A kármentesített területter a növények elvégzését követően folyamatosan feldolgozásra kitértek. |

<p>| Folyamatban |</p>
<table>
<thead>
<tr>
<th>Feladat</th>
<th>Érintett szervezet</th>
<th>Megvalósulás szöveges értékelése</th>
<th>Projektek</th>
</tr>
</thead>
</table>
| | | - Védelemre javasolt területek felmérése, dokumentálása, kezelési tervek kidolgozásában történő közreműködés, az új területek ellenőrzési tervbe illesztése (FÖRI).
- A Vízbázisvédelmi Hozzájárulás másik projektrész a XI. kerületi Köérberki szikes-rét Természetvédelmi Terület komplex vízbázisvédelmi élőhelyrekonstrukciója irányult. Ez a munkakör az igen bonyolult és sokrétű engedélyezési folyamatok, valamint a területre vonatkozó jogszabályi előírások következtében 2022 ószén kezdődhetett meg, tekintve, hogy a vegetációs időszakban a területen az élővilág védelme miatt tilos dolgozni. Ennek előkészületei capsán mintegy 2.430 méter hosszon tisztította meg a BKM FŐKERT Divízió a területen található, feltöltésre ítélt vizesárkok medrét és közvetlen környezetét a fásszárú vegetációtól. Ezt követően megkezdődhetett a feltöltés, amely az enyhe és sok csapadéko hozó téli időjárás miatt igen nehézkessé vált tekinettel arra, hogy a vizes élőhelyen a nehézgépjárművek nem tudtak közlekedni. Jelenleg a kivitelezési folyamatok lezárása zajlik.
- A természetvédelmi területeken 2021-től folytatódott az invazív növényfajok visszaszorítása a 2021-ben kezelt 70 ha-os összterületű gyepterületeken.
- A BKM FŐKERT Divízió a természetvédelmi területeken korábban kihelyezett madárodútelepek kezelésének átvételével mintegy 350 darab madárodú kezeléséről fog gondoskodni, 2022-től a Magyar Madártani és Természetvédelmi Egyesülettel együttműködésben.
- A FÖRI projekt területén az új védelemre érdemes területek vizsgálata, monitorozása (FÖRI).
- A Mocsáros-dűlő természetvédelmi célú rehabilitációjáról szóló stratégiai terv kidolgozása. Ezzel párhuzamosan készül a Főváros LIFE Biodiverzitás pályázata, a Biodiverse City LIFE, aminek célterülete a Tétényi-fennsík és a Köérberki szikes-rét mellett a Mocsáros-dűlő.
- A Rákos-patak menti kerékpárút kiviteli terveinek készítése, a szükséges terület kisajátítása folyamatban van (Rákos-patak menti ökoturisztikai folyosó c. projekt -VEKOP-5.3.1-15-2016-00012).
| B-1-3 Kiszívofolyások revitalizációja | FPH Várostervezési Főosztály,
FPH Klima- és Környezetügyi Főosztály,
FPH Városüzemeltetési Főosztály,
FCSM,
BKM-FŐKERT | Budapest Zöldinfrastruktúra Fejlesztési és Fenntartási Akciótervében a Városi kiszívofolyás-völgyek akcióterület projektjeiként jelenik meg több patak revitalizációja. A program időtávlatában megvalósításuk csak részben várható.
| Folyamatban | - A korábbi években készült tanulmánytervekkel (Rákos-patak revitalizációs tanulmányterve, Szilas-patak tanulmányterve) összhangban a Radó Dezső Terv az említett patakokat, valamint a Hosszúréti-patakot érintő revitalizációt projektelmeenként, az Áranyhegyi- és a Gyáli-patak patak komplex fejlesztését megalapozó tanulmányterv és mesterszer tanulmánytervek készítését akciótervi feladatként kezeli.
- A TER KÖZ pályázat keretében megújításra került a Rákos-patak XIV. kerületi Egressy út – Mogyoródi út közötti szakaszba (meder-rekonstrukció, zöldfelületi és rekreációs fejlesztés), továbbá településrendezési szerződés keretében (kapcsolódó ingatlanfejlesztéshez kapcsolódóan) került megújításra Rákos-patak Szugló utca és Egressy út közötti szakasza.
| Megvalósult | - A Korábbi években készült tanulmánytervekkel (Rákos-patak revitalizációs tanulmányterve, Szilas-patak tanulmányterve) összhangban a Radó Dezső Terv az említett patakokat, valamint a Hosszúréti-patakot érintő revitalizációt projektelmeenként, az Áranyhegyi- és a Gyáli-patak patak komplex fejlesztését megalapozó tanulmányterv és mesterszer tanulmánytervek készítését akciótervi feladatként kezeli.
- A TÉR KÖZ pályázat keretében megújításra került a Rákos-patak XIV. kerületi Egressy út – Mogyoródi út közötti szakaszba (meder-rekonstrukció, zöldfelületi és rekreációs fejlesztés), továbbá településrendezési szerződés keretében (kapcsolódó ingatlanfejlesztéshez kapcsolódóan) került megújításra Rákos-patak Szugló utca és Egressy út közötti szakasza.
| Folyamatban | - A Rákos-patak menti kerékpárút kiviteli terveinek készítése, a szükséges terület kisajátítása folyamatban van (Rákos-patak menti ökoturisztikai folyosó c. projekt -VEKOP-5.3.1-15-2016-00012).
- Budapest Főváros Önkormányzata, a Fővárosi Vízművek Zrt. és a BKM FŐKERT Divíziójának részvételével megkezdődött a Szilas-patak Naplás-tó Természetvédelmi Területhez tartozó szakaszainak természetesebbé tételezés szükséges lépések előkészítése, a feladat tervezési folyamatainak 2022. év végén várható elindításával.
<p>| Tervezett |</p>
<table>
<thead>
<tr>
<th>Feladat</th>
<th>Érintett szervezet</th>
<th>Megvalósulás szöveges értékelése</th>
<th>Projektek</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1-4</td>
<td>Jogszabály-módosítási javaslatok a természetvédelmei területén</td>
<td>Megkezdődött a jogszabálymódosításhoz vezető folyamat, első lépéként egyeztetések történtek az érintettekkel.</td>
<td>Megvalósult</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Egyeztetésekre került sor a Jövő Nemzedékek Érdekeinek Védelmét Ellátó Biztonságyhelyettes Hivatalával és a Duna-Ipoly Nemzeti Park Igazgatósággal.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 2022-ben megalkotásra került a védett természeti területen található budapesti erdők tarvágásának tilalmáról szóló 33/2022. (IX. 4.) Fők. rendelet, amely a fővárosi erdőterületek védelme érdekében, az országos jogszabály által szabályozott életviszonyokban kiegészítő jelleggel, a megjártalanságú védett erdőkre vonatkozóan is elrendelte a tarvágás tilalmát.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Folyamatban</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>B-1-5</td>
<td>Ökológiai szempontok érvényesítése a fővárosi zöldfelület-gazdálkodás-ban</td>
<td>A Fővárosi Önkormányzat és a BKM - FŐKERT 2021 tavaszán új, extenzív gycop gazdálkodás i programot (“Vadvirágos Budapest” program) vezetett be.</td>
<td>Megvalósult</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 2021 folyamán a „Vadvirágos Budapest” program keretében, 22 helyszínen, mintegy 28 ha nagyságú területen létesült „mehábarát terület”, vadvirágos rét.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 2022-ben az első év tapasztalatai és a lakossági visszaadásai alapján kis mértékben módosultak a kijelölt területek: a FŐKERT elhagya a vártnál rosszul teljesítős helyszíneket és beolvasták pár új, igényesebb helyszínt a programba.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Gigl zárlatú szereket használatának kivezete,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Madárodú program: a 2021-ben indított program keretében 2022-ig összesen 1200 madárodót helyeztek ki a BKM FŐKERT Divízió által kezelt fővárosi területekre: 950-et városi parkokba, 250-et pedig természetvédelmi területeken.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- A 2022-ben átaludott Pünkösdfürdő park számos ökológiai szempontból előremutató megoldást tartalmaz (esőkert létesítése, honos társulásokat idéző többfajta zöldfelület, biodiverz rétek, kivitelezés alacsonyabb környezetvédelmi megoldásai).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- A közösségi komposztáló program továbbra is komposztlétes gycop gazdagodott. Gondozásuként helyi civil szervezetek felelnek.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 4 foltban telepített a BKM FŐKERT Divíziója Miyawaki minierdőkötik, úgy a kedvezőtlen körülmények között is jól fejlődik, a városi levegőminőséget javító mini-erdők száma 5-re emelkedett Budapesten.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- A parkokban keletkező zöldhulladék komposztálás után visszakerül a fővárosi parkterületekre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Alternatív gycop gazdálkodás a kijelölt méhlegelő területeken. Lombygűjtés ökológiai szempontjából újragondolása</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Két esőkert létesült, melyekben a csapadékvíz helyszínén tartása megszünt</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Folyamatban</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Új fővárosi parkfejlesztések tervezésekor minden esetben ökológikus évelőfelületeket, és parkhasználatot függően alternatív gycopfelületeket tervezünk.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- A parkokban keletkező zöldhulladék komposztálását után visszakerül a fővárosi parkterületekre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Újabb két esőkert létesítése tervezett (Vérmező).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tervezett</td>
</tr>
<tr>
<td>B-1-6</td>
<td>Köz- és díszkivilágítással kapcsolatos tervek és jogszabályok ökológiai szempontú felülvizsgálata</td>
<td>Folyamatban van.</td>
<td>Megvalósult</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Az energia- és a klimaváltozásra reagálva a Főváros elfogadta az első budapesti energiasorsmoratódot Azonnali intézkedésként a Főváros a kivilágítás napi 2 órával való rövidítéséről és a közvilágításban a 2020-2024-2024-es időszakban további 19.000 lámpatest cseréje valósul meg.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 2021-2022-es időszakban további 19.000 lámpatest cseréje valósul meg.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Az egyes beruházások terveinek egyeztetésekor kerül sor a fenyvesnövények létrehozásának lehetőség szerinti csökkentésének vizsgálatára.</td>
</tr>
<tr>
<td>Feladat</td>
<td>Érintett szervezet</td>
<td>Megvalósulás szöveges értékelése</td>
<td>Projektek</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>-----------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Tervezett</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Előkészítés alatt 5.100 db világítóberendezés csere - közvilágítás korszerűsítés.</td>
</tr>
<tr>
<td>B-1-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Felelős állattartás elősegítése</td>
<td>FPH Hivatalüzemelt etési és Intézményfejlesztési Főosztály</td>
<td>Folyamatban van.</td>
<td>Megvalósult</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folyamatban</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Budapesti Művelődési Központ (BMK): a felelős állattartásról interaktív előadások óvodás és iskolás csoportok számára a Budakeszi Vadaparkkal együttműködésben.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Fővárosi Önkormányzat Óvodája: a környezeti nevelés keretén belül diszszálatok gondozása és megfigyelése.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tervezett</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Környezeti program cél: C-1 Klímavédelem és energetika

<table>
<thead>
<tr>
<th>C-1-1 Fővárosi épületek energetikai jellemezőinek javítása</th>
<th>FPH Klima- és Környezetügyi Főosztály, FPH Várostervezési Főosztály</th>
<th>Folyamatban van.</th>
<th>Megvalósult</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>BK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Világításkorszerűsítés</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BK:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Hőszivattyús berendezés felszerelése és hővédő fólia installálása a központi irattárba. A megtakarítás mértéke közvetlenül nem kimutatható, mert a Bérbeadó üzemeltetési díjában szerepel az energiahordozó költsége.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BKM:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Összes 2022-ben befejezésdtött energiahatékonságú beruházás száma: 79 db.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Rippil Rónai utcai irodaház hűtési rendszer felújítása, a folyadék hútő cseréje, a VRV rendszer teljes cseréje.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Kunigunda utca Észak-Budai Fűtőmű fejépület tető hőszigetelése, vízszigetelése teljes felújítás.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Központi telephely Kalotaszeg u. 31. IV. pavilon komplett épületenergetikai felújítása tető hő és vízszigetelés, ablakcserék, homlokzati hőszigetelő panelakkal homlokzati hőszigetelés.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Gyáli úti szociális épület teljes épületgépeszteti korszerűsítés tervezése.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Alföldi utcai központi irodáépület ablakainak hővisszavérő fóliazása.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Margitszigeti szökőkút órhatlósígi épület homlokzati hőszigetelés.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Erőd utcai telephelyen és Csillaghegyi telephelyen elektromos autótöltők kiépítése.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>BKV:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- A BKV Zrt. egy telephelyén, a Forgolomirányító központban történt kazáncseré és napkollektor telepítés melyek megtakarítása 52,3 MWh/év; beépített kapacitása 0,002 MW</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Teljes megtakarítás: 156MWh/év; EKR-ben elszámolt megtakarítás:52,3 MWh/év; kapcsolt aránya 33,5%, Projekt leírása: Diszpécserház kazáncseré és napkollektor telepítés</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- A BKV Zrt. két telephelyén összesen 260 kW beépített teljesítményű napelemes rendszer működik (Székház - 50 kW; Kelenföld buszgarázs - 210 kW)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- A BKV Zrt. nyolc telephelyein összesen 190,6 kW beépített teljesítményű napkollektoros rendszer működik (Zugló kocsisz. - 21 kW; Széplvona kocsisz. - 12,3 kW; Száva kocsisz. - 7,9 kW; Cinkota buszg. - 61,6 kW; Délpest buszg. 45 kW; Gyalatető - 3,9 kW; Troll buszg. - 36,9 kW; Diszpécserház - 2 kW)</td>
</tr>
</tbody>
</table>
- A BKV Zrt. négy telephelyein összesen 75,5 kW beépített fűtési teljesítményű hőszivattyús rendszer működik (M3 Nagyvárad tér megálló: - 17,8 kW; M3 Lehel tér megálló: - 2, kW; Óbuda buszsz. - 31,5 kW; Galyatető: - 24 kW)

ECSM:

FCSM:
- Észak-pesti Szennyvíztisztító Telep technológiai épületek: Rekuperációs vízerőmű blokk telepítése 15 kW-os névleges teljesítményű asszinkron generátorról; 2022-ben termelt villamos energia mennyisége: 18,27 GJ, a két erőmű együtt: 177,31 GJ

FV:
EKR szerint elszámolt megtakarítás: 1 254 GJ/év
(2022-ben még folyamatban volt, illetve idén, 2023-ban kerül elszámolásra.)

IVÓVÍZ ÁGAZAT:
- Budaörsi gépház homlokzat rekonstrukció
- Csepeli klórozó tető felújítás
- Budaörsi gépház homlokzat rekonstrukció
- Kelenhegyi újmedence bejárati rész tetőszigetelés
- Szépvölgyi új gépház rekonstrukciója (68,22 GJ/év, előzetes kalk.)
- Kazán cserére a VTO-n (Tahi diszpécserepület, Kelenhegyi gépház, Testvérhelyi 1. gépház; Földgáz megtakarítás mennyiségéről nincs adat.)
- Kazán cserére: Nefelejcs utca (földgáz megtakarítás még nem ismert)
- Hajtásszabályozók ütemezett cseréje
- 1 MW teljesítményű napelemes rendszer a Békásmegyeri gépházhoz kapcsolódóan 2022.09.01-én üzembe lett helyezve.

BKSZTT:
- Saniter levegőztető rendszer felújítása
- Gázmotorok 20.000 üzemórás gépkönyv szerinti felújítása
- Légelszívás optimalizálása (NY-i oldali biológiai medencék)
<table>
<thead>
<tr>
<th>Feladat</th>
<th>Érintett szervezet</th>
<th>Megvalósulás szöveges értékelése</th>
<th>Projektek</th>
</tr>
</thead>
<tbody>
<tr>
<td>BGYH:</td>
<td>- KEHOP-5.2.8-17-2017 pályázat keretében a Csillaghegyi, Széchenyi és Lukács Fürdők energetikai fejlesztése. A 3 db fürdő energetikai fejlesztése, napelemekkel való ellátása, nyilászárócsere, és termálvíz hőhasznosítása, összesen évente energiamegtakarítás 86,6 MWh napenergia által, és 8.328 GJ fűtési energia megtakarítása</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BK:</td>
<td>- Napelemrendszer 1./ 1104 Budapest, Bihari utca 4. sz. telephelyen napelemrendszer telepítése. Teljesítmény: 50,63 kWp 2./ 1183 Budapest, Tóth Árpád utca 155755 Hrsz. (Gerely utcai) telephelyen napelem rendszer-telepítés. Teljesítmény: 37,35 kWp</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tervezett</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BK:</td>
<td>- 1104 Budapest, Bihari utca 4. sz. telephely fűtéskorszerűsítése</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKK:</td>
<td>- Rumbach Center irodaház HVAC rendszerének korszerűsítése, valamint a teljes irodaház LED fényforrásokkal való felszerelése. Szabó Ervin térén diszépcso kőpunk LED fényforrások telepítése.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKM:</td>
<td>- Előkészítés alatt álló energiahatékonysági beruházások száma: 87 db.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feladat</td>
<td>Érintett szervezet</td>
<td>Megvalósulás szöveges értékelése</td>
<td>Projektek</td>
</tr>
<tr>
<td>--</td>
<td>--------------------</td>
<td>--</td>
<td>--</td>
</tr>
</tbody>
</table>

FV:
- További kazánok cseréje
- Felújítás és korszerűsítési feladatok: VKO kazán csere (itt kb. 600 m³ földgáz megtakarítás, becsült adat)
- Újpalotai gépház felújítás RF
- 2024-ben két belterületi napelemes rendszert szeretnénk üzembe helyezni: Rákosszentmihályi gépház (140 kVA) és Gilice téri gépház (160 kVA).
- Nagyfelszíni lakótelep raktár, 1044 Budapest, Váci út 121. Teljes tetőn víz és hőszigetelés.
- 2023-ban három belterületi napelemes rendszert tervezünk üzembe helyezni: Krisztina gépház (170 kVA), Rákosszentmihályi gépház (150 kVA) és a Gilice téri gépház (160 kVA). Ezek pályázatfolyamatban.

A KEHOP-5.2.2.16-2017-00116 számú, A Fővárosi Önkormányzat és intézményei épületeinek energetikai korszerűsítése tárgyú projekt keretén belül az alábbi munkák megvalósítása:
- nyílászáró felújítási /csere programok: Fővárosi Szabó Ervin Könyvtár (FSZEK) XVIII/3., XIX/1., XII/8., III/5., XIV/4. és XXIII/1. tagkönyvtárak;
- fűtesekorszerűsítés (kazánkserje, fűtőtestek cseréje): FSZEK XVIII/3., XIX/1., III/5., XIV/4. és VII/2 és XXIII/1. tagkönyvtárak, Ölkyen Színház;
- hőszigetelés: FSZEK XVIII/3., XIX/1., XII/8., III/5, XIV/4. és XXIII/1. tagkönyvtárak;
- napelemek telepítése, napenergia hasznosítás: FSZEK XVIII/3., XIX/1., XIII/8., III/5, XIV/4. és XXIII/1. tagkönyvtárak;
- világítás-korszerűsítés (energiatakarékos LED világítótestek alkalmazása): BFL, Városmajori Szabadtér Színpad.

C-1-2 Megvalósult
<table>
<thead>
<tr>
<th>Feladat</th>
<th>Érintett szervezet</th>
<th>Megvalósulás szöveges értékelése</th>
<th>Projektek</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Rózsakerti fűtőmű hőforrásoldali korszerűsítése</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- XXI. Kiss János alt. u. vezeték felújítás</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- XIII. Tűzér u. 62. vezeték felújítás</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- XI. Budafoki út vezetékfelújítás szerelvényei</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- XIV. Ajtós Dürer sor vezeték építés</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- I. Szent György tér oroszlános udvar vezeték</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- I. Logodi u. 38-40. vezetékfelújítás</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 16 db fogyasztói megkereséssel kapcsolatos fejlesztő beruházás elvégzése; jelentősebbek:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- XI. Kopaszi gát 5. Budapest BRF, BOG iroda és BOG szálloda</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- III. Bécsi út 68-84 Bécsi Greens</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- III. Kiscelli út 78-82. Gimnázium, I. ütem</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- IX. Lechner Ödön fasor 10. Millenium Gardens</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- XXI. Széchenyi István utca 92/B.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- XIV. Városligeti tó, Robinson étterem</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- IX. Csendegyű u. 3. bővítés</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- VIII. Hungária krt 30/A. Hungary Greens</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- XIV. Ajtós Dürer sor 19. Dürer Park I.-II. ütem</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- V. Városház u. 9-11. Merlin</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- VII. Köris u. 1-3. társasház bekötése</td>
</tr>
</tbody>
</table>

Távhűtés és létesített helyi hűtési rendszerek (tapasztalatszerzés folyamatban): |
- Liget hűtés, |
- XI. Vahot utca 6. alatti hűtés, |
- XI. Hadak útja 5. |
- Budapest BRE lakóház hűtése. |

Folyamatban
<table>
<thead>
<tr>
<th>Feladat</th>
<th>Érintett szervezet</th>
<th>Megvalósulás szöveges értékelése</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Folyamatban lévő energiahatékonysági távhőberuházás száma: 113 db.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Geotermikus fűtőmű létesítése</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Új kazánok telepítése az Észak-budai fűtőműbe</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- XIII. Pannonia u. vezeték bővítés I. ütem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- V. Apáczai Cs. J. u. vezeték kiépítése</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- XI. Nándorfejérvári út - Barázdá u. távhővezeték felújítás</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- X. Mázsza u. 9. távhővezeték felújítás</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- XIII. Visegrádi u. távhővezeték felújítás</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- IV. Virág u. távhővezeték felújítás</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- XV. Nyírpalota u. távhővezeték felújítás</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- XIII. Frangepán u. távhővezeték felújítás</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- XII. Juta u - Tomori u. leágyázás építés</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- XII. Gyöngyösi stry 5. új nyomvonal építés</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Új kazánok telepítése az Észak-budai fűtőműbe</td>
<td></td>
<td>(3660 GJ/év primer hőenergia várható megtakarítás)</td>
</tr>
<tr>
<td>- 2023. év végéig: 65 db hőközpont teljes felújítása</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Jelentősebb fogyasztói megkereséssel kapcsolatos fejlesztő beruházások:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- XI. Kopaszi gát 5. Budapest BRF, BRG, BRL és BOG épületek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- XII. Váci út 81-85 Center Point irodaházak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- XIV. Ajtói Dürer sor 19. és 21. - Dürer Park I. és II. ütem távhőellátása</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- XV. Proform irodaházak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- III. Bécsi út 68-84. Bécsi Greens</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- XII. Cserhalom u. Duna Terasz Grande 2. és 5.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- V. Széchenyi tér 2. Softel Hotel távhőellátása</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- IX. Könyves K. krt. 34. - Liberty City távhőellátása</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- XVIII. Szigony utca - Corvin VII. II. ütem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- V. Apáczai Csere János utca - Dorottya Palace Hotel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- IX. Soroksári út 58. - City Pearl távhőellátása</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Mélyfűrő út HUHA épületek távhőre kötése</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Távhűtés és létesített helyi hűtési rendszerek:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Budapart BRF, BRG és BRL lakóépületek hűtésének kialakítása - Hőszivattyús és folyadékhűtő hűtési-fűtési rendszer.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tervezett</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKM FÚTÁV Divízió:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Előkészítés alatt álló energiahatékonysági beruházások száma: 74 db.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- K+F Víz alatti geotermikus (szőkevény) hőforrások feltárása és hasznosítása</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Mikro CHP létesítése vásárolt villamos energia kiváltására</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Újpalotai fűtőműben 2. PTVM kazán átalakítása alacsony NOX-es tüzelésűre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Észak-budai ftm területén 100 kW-os napelempark telepítése</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- XII. Pannonia u vezeték bővítés II. ütem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Észak-pesti hőközret feljegyzése I-II. ütem</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Kispesti kapacitás bővítő vezeték építés</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Déli hőkooperáció kiépítése</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Liget D3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- XI. Budafok - Dombóvári út átépítés</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- X. Harmat - Hang utca vezeték felújítás</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- XIII. Röppentő u. távhővezeték felújítás</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Keleti Károly utcai kazánház és hőközpont felújítás</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- XIX. Alsó erdősor térszint feletti vezeték átépítése</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 2024-ben 50 db hőközpont teljes felújítás elvégzése</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Jelentősebb fogyasztói megkereséssel kapcs. fejlesztő beruházások:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Duna Terasz Grande 2. és 5. ütem távhőellátása,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- XII. Váci u 81. Centerpoint</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- V. Apáczai CS. J. Dorottya Palace Hotel</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- XI. Kopaszi gát 5. BRG lakóépület</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- XII. Data City Láng negyed E2 és E3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feladat</td>
<td>Érintett szervezet</td>
<td>Megvalósulás szöveges értékelése</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------</td>
<td>-----------------------------------</td>
</tr>
</tbody>
</table>
| C-1-3 | FPH Klíma- és Környezetügyi Főosztály | Megvalósult. | - XI. Budafoki út, 9 épülethez
- XI. Elite Lakópark II. és III. ütem
- IX. Soroksári út 58. City Pearl,IX. Vágóhid - Pékerdő társasház I.
- XI. Egry József u. 18. BME R, T, RT, H, D épületek |
| Klímastratégia felülvizsgálata és Klíma Akcióterv készítése | | | |

Megvalósult.

Folyamatban

-

Tervezett

-

Környezeti program cél: C-2 Hulladékgazdálkodás

| C-2-1 Hulladékhazszállítás hosszú távú fejlesztése | FPH Városüzemeltetési Főosztály,
FPH Klíma- és Környezetügyi Főosztály,
BKM-FKF FŐKERT | Megvalósult. |
Folyamatban van. |

BKM FŐKERT Divízió: A parkokban keletkező zöldhulladék komposztálás után visszakerül a fővárosi parkterületekre.
BKM FKFD Hulladékgazdálkodási Divízió:
- Kompresszorzállítási rekonstrukció (Atlas Copco)

Folyamatban

-

BKM FKFD Hulladékgazdálkodási Divízió:
- Elkészült a PRHK középtávú fejlesztési koncepcióterve, amely megoldásokat kínál a lerakó melletti területek fejlesztésében a hulladékrakás csökkentése irányában.
- PRHK komposzttelep gépparkjának megújítása tervezett, új gépek beszerzését kezdeményezték. Ezáltal a megönhető befogadó kapacitást illeszthet a feldolgozó rendszert. A zöldhulladék kezelési rendszer fejlesztése természetesen a fővárosi házhozmenő szelektív gyűjtésből származó hulladék csökkentése érdekében.
- Bérválogatás az esetleges hulladékkészlet bővítésével, illetve a saját válogató üzembe helyezésével (2022. II félév) a kevert csomagolási hulladék kulcsfontosságú kapacitásának megvalósulását irányíthatja.
- A hulladékcsomagoló mű gyújtása tehát nagyon fontos.
- A hulladékcsomagoló mű gyújtási kapacitásait maximálisan kihasználva csökkentik a lerakással az alkalmazott hulladékok mennyiségét.
- Bérválogatás képességében és természetesen a fővárosi házhozmenő szelektív gyűjtésnek a kevert hulladék kulcsfontosságú kapacitásának megvalósulását irányíthatja.
- Megvalósult
 - BKM FŐKERT Divízió: A parkokban keletkező zöldhulladék komposztálás után visszakerül a fővárosi parkterületekre.
 - BKM FKFD Hulladékgazdálkodási Divízió:
 - Kompresszorzállítási rekonstrukció (Atlas Copco)

Folyamatban

-

BKM FKFD Hulladékgazdálkodási Divízió:
- Elkészült a PRHK középtávú fejlesztési koncepcióterve, amely megoldásokat kínál a lerakó melletti területek fejlesztésében a hulladékrakás csökkentése irányában.
- PRHK komposzttelep gépparkjának megújítása tervezett, új gépek beszerzését kezdeményezték. Ezáltal a megönhető befogadó kapacitást illeszthet a feldolgozó rendszert. A zöldhulladék kezelési rendszer fejlesztése természetesen a fővárosi házhozmenő szelektív gyűjtésből származó hulladék csökkentése érdekében.
- Bérválogatás az esetleges hulladékkészlet bővítésével, illetve a saját válogató üzembe helyezésével (2022. II félév) a kevert csomagolási hulladék kulcsfontosságú kapacitásának megvalósulását irányíthatja.
- A hulladékcsomagoló mű gyújtása tehát nagyon fontos.
- A hulladékcsomagoló mű gyújtási kapacitásait maximálisan kihasználva csökkentik a lerakással az alkalmazott hulladékok mennyiségét.
- Bérválogatás képességében és természetesen a fővárosi házhozmenő szelektív gyűjtésnek a kevert hulladék kulcsfontosságú kapacitásának megvalósulását irányíthatja.
- Megvalósult
 - BKM FŐKERT Divízió: A parkokban keletkező zöldhulladék komposztálás után visszakerül a fővárosi parkterületekre.
 - BKM FKFD Hulladékgazdálkodási Divízió:
 - Kompresszorzállítási rekonstrukció (Atlas Copco)
<table>
<thead>
<tr>
<th>Feladat</th>
<th>Érintett szervezet</th>
<th>Megvalósulás szöveges értékelése</th>
<th>Projektek</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Tervezett</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>BKM FKF Hulladékgazdálkodási Divízió: A hulladékgazdálkodási közszolgáltatási feladatok államosítása (majd koncesszióban adása miatt) 2023.06.30-ig felülről korlátos a hulladékgazdálkodással kapcsolatos fejlesztések megvalósítása. Előkészítés alatt álló energiatermékeni beruházások száma: 5 db.</td>
<td>- BKM FKF Hulladékgazdálkodási Divízió: A hulladékgazdálkodási közszolgáltatási feladatok államosítása (majd koncesszióban adása miatt) 2023.06.30-ig felülről korlátos a hulladékgazdálkodással kapcsolatos fejlesztések megvalósítása. Előkészítés alatt álló energiatermékeni beruházások száma: 5 db.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- MUHA villamos rendszerének "szükség" áramellátás biztosítása, generátorral történő bővítése</td>
<td>- MUHA K+F alapú hidrogén pilot projekt megvalósítása</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Napelemes rendszer kiépítése a MUHA területén</td>
<td>- Napelemes rendszer kiépítése a MUHA területén</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Turbogépcsoporút csere (turbina + generátor), valamint a kazánok füstgázhő hasznosítása</td>
<td>- Turbogépcsoporút csere (turbina + generátor), valamint a kazánok füstgázhő hasznosítása</td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Vízgazdálkodási területi beépítés</td>
<td>- Vízgazdálkodási területi beépítés</td>
</tr>
</tbody>
</table>

C-2-2

| Szennyvízkezelés energiatermékeni növelése, szennyvíziszapot kezelés hosszú távú megoldásának előkészítése |
| --- | --- | --- | --- |
| | FPH Városüzemeltetési Főosztály, FPH Klíma és Környezetügyi Főosztály, FV, BKM-FKF | Folyamatban van. | Megvalósult |
| | | | - Iszapvíztelepítés rendszer korszerűsítése az Észak-pesti Szennyvíztisztító Telepen. Az elérhető éves energiamegtakarítás mértéke (szekunder energiaforrás: villamos energia): 706,2 GJ. |
| | | | - Technológiai vízhálózati rendszer korszerűsítése az Észak-pesti Szennyvíztisztító Telepen. Az elérhető éves energiamegtakarítás mértéke (szekunder energiaforrás: villamos energia): 113,5 GJ. |

C-2-3

| Szelektív hulladékgyűjtés bővítése |
| --- | --- | --- | --- |
| | FPH Városüzemeltetési Főosztály, FPH Klíma és Környezetügyi Főosztály, BKM-FKF | Folyamatban van. | Megvalósult |
| | | | - BKM FKF Hulladékgazdálkodási és BKM FKF Közszükségszintú Divízió): Mobil hulladékuvar szolgáltatás pilot program lezárult, egyelőre az indítása várható magára (hulladékuvarral nem rendelkező vagy gyéren ellátott kerületekben, területeken) |
| | | | - 2022 szeptemberében átadásra került a XVIII. kerületi Logisztikai Szolgáltató Központ, amely átrakóállomás mellett szelektív hulladékgyűjtő udvart és konténermosót is magában foglal. |
| | | | - Veszélyes hulladékgyűjtő egész évben elérhető a lakosság számára a hulladékuvarokban. 2022. II. felévétől már öt nagy kiemelt hulladékuvar már vasárnap is a lakosok rendelkezésére áll. |
| | | | - Közterületi szelektív gyűjtésre 3,5 tonna alatti elektromos kisteherautók beszerzése, eredményes közbeszerzési eljárás alapján (a gépjárművek várhatóan 2022 végén kerülnek lezárásra). |

C-2-4

<table>
<thead>
<tr>
<th>Szennyvízművek energiahatékonyságának növelése, szennyvíziszapot kezelés hosszú távú megoldásának előkészítése</th>
<th>FPH Városüzemeltetési Főosztály, FPH Klíma és Környezetügyi Főosztály, FV, BKM-FKF</th>
<th>Folyamatban van.</th>
<th>Megvalósult</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Iszapvíztelepítési rendszer korszerűsítése az Észak-pesti Szennyvíztisztító Telepen. Az elérhető éves energiamegtakarítás mértéke (szekunder energiaforrás: villamos energia): 706,2 GJ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Technológiai vízhálózati rendszer korszerűsítése az Észak-pesti Szennyvíztisztító Telepen. Az elérhető éves energiamegtakarítás mértéke (szekunder energiaforrás: villamos energia): 113,5 GJ.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Dél-pesti Szennyvíztisztító Telepi eleveniszapos medencék levegőellátás korszerűsítése. Levegő ellátó vezetékek átalakítása (kétkörös levegőellátás), valamint MOV szabályozás kiépítése (L1, L2 medencék). Az elérhető éves energiamegtakarítás mértéke (szekunder energiaforrás: villamos energia): 1.728 GJ.</td>
</tr>
<tr>
<td>Feladat</td>
<td>Érintett szervezet</td>
<td>Megvalósulás szöveges értékelese</td>
<td>Projektek</td>
</tr>
<tr>
<td>--------</td>
<td>------------------</td>
<td>-----------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>- Üveg gyűjtőhálózat - önkormányzati területeken próbálnak gyűjtőszigetek elhelyezésére alkalmas területet találni, második körben nagyobb kiskereskedelmi üzletek keresnek meg. A kerületi önkormányzatok megkeresése megtörtént, de érdemben eredménytelenül zárult a projekt.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A biológiailag lebomló háztartási hulladék gyűjtése házhoz menő rendszerben történő szerektől gyűjtése több milliárdos beruházást (továbbá a megfelelő hulladékkezelő végpontok létesítését) feltételezi. A Hulladékgazdálkodási Divízió a hulladékgazdálkodási közszolgáltatási feladatok államosítása (majd koncesszióban adása) miatt nem tervezte a közszolgáltatás kiterjesztését a biológiai lebomló háztartási hulladékokra. 2023.06.30. után, amennyiben a leendő koncesszor feladata - illetve a BKM FK Hulladékgazdálkodási Divízió szerepe a hulladékgazdálkodási közszolgáltatást illetően - tisztázódnak, újra tervezhetővé válik a hulladékgazdálkodási rendszer fejlesztése.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-2-4 Hulladék újrahasználatot ösztönző rendszer fejlesztése</td>
<td>FPH Városüzemeltetési Főosztály, FPH Klima- és Környezetügyi Főosztály, BKM-FKF</td>
<td>Megvalósult</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Folyamatban.</td>
<td></td>
</tr>
<tr>
<td>C-2-5 Hulladékgazdálkodási közszolgáltatás törvényi feltételeinek módosítására vonatkozó javaslatok elkészítése</td>
<td>FPH Városüzemeltetési Főosztály, FPH Klima- és Környezetügyi Főosztály, BKM-FKF</td>
<td>Nem történt előrelépés</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>A BKP jóváhagyása óta a hulladékgazdálkodási közszolgáltatás jogszabályi körülményei ismét változtak (a közszolgáltatás állami koncesszióba került 2023-ban)</td>
<td></td>
</tr>
</tbody>
</table>

Környezeti program cél: C-3 Csapadékvíz-gazdálkodás

<table>
<thead>
<tr>
<th>C-3-1 Belterületi csapadékvíz-rendszer felülvizsgálata</th>
<th>FPH Városüzemeltetési Főosztály, FCSM</th>
<th>Megvalósult</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Folyamatban.</td>
</tr>
</tbody>
</table>

- Hadak víznyelőinek rendszeres tisztítása és az útak víznyelőinek, szikkasztó kutajainak, szikkasztó árkainak rendszeres tisztítása megvalósult (FCSM).
- 2022-ben elkészült a Gelért-hegy lefolyási modell;
- Utak víznyelőinek, szikkasztókutajainak, szikkasztóárkainak rendszeres tisztítása (BKP).
<table>
<thead>
<tr>
<th>Feladat</th>
<th>Érintett szervezet</th>
<th>Megvalósulás szöveges értékelése</th>
<th>Projektek</th>
</tr>
</thead>
<tbody>
<tr>
<td>- A budapesti csatornahálózatban az FCSM Zrt. folyamatosan felülvizsgálja azokat az érzékeny területeket, ahol az elválasztott és egyesített szennyvíz csatornarendszerek csapadék eseménykor tültetethetők és az így felderített problémákra konkrét javaslatokat határoznak meg az önkormányzatok számára (tározók helyének meghatározása, szikkasztók véleményezése), Békásmegyesi Szivattyútelepre erőkező záporvízek visszatartásának és kezelésének tanulmányterve.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Utak víznyelőinek, szikkasztókutjainak, szikkasztóárainak rendszeres tisztítása (BK).</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Megvalósult

- 2021-ben a Tabán I. kerületi részére (Kereszt utca-Kőműves lépcső közötti területen) 92 db, a XI. kerületi részére 40 db, valamint Gazdagrétegre 14 db öntözözsák került kihelyezésre.
- 2022-ben az I. kerület, Tabánba (Kereszt utca-Kömőves lépcső közötti területen) 93 db, az V. kerületbe 19 db, valamint a XII. kerületbe 61 db öntözözsák került kihelyezésre.
- Két esőkert létesült, melyekben a csapadékvíz helyszínen tartása megvalósult.
- Gelért-hegy lefolyási modell elkészítése 2022-ben.

Folyamatban

- A Fővárosi Önkormányzat és számos más szakmai partner együttműködésével 2021 és 2025 között részben uniós forrásból megvalósult "LIFE – Városi Eső" projektet hajt végre, amelynek fő célja a városi klímaadaptáció támogatása csapadékkezelés terén a zöld és kék infrastruktúrák közötti szinergiát megtalálásával és ezek erősítésével. A projekt nemzetközi és hazai jó gyakorlatokra támaszkodva cél, hogy a hatékony városi csapadék kezelés érdekében új szabályozások és irányelvek szülessenek meg.
- Újabb két esőkert létesítését tervezzük (Vérmező, Pünkösdfürdő)

Tervezett

- C-3-2 Zöldfelületek fenntartható vizutánpotenciálának megoldása

| Környezeti program cél: C-4 Települési zöldinfrastruktúra

| C-4-1 | Jogszabály-módosítási javaslatok a városi zöldfelületek hatékonyabb védelme érdekében | FPH Várostervezési Főosztály, BKM-FÖKERT | Folyamatban. | Megvalósult
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Jogszabály módosításokhoz kapcsolódóan megalakult egy favédelmi munkacsoport, mely a főjegyző fás szárú növények feletti tulajdonosi jogok gyakorlásával kapcsolatos törvények segítségével jelenik meg, minden egyes közműtervet és utertet favédelmi szempontból is átvizsgálva, ezáltal már a tervezés során megmindent a favételek védelme és az építési jogszabályok javítása érdekében (Vérmező, Pünkösdfürdő).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Az építési jogszabályok módosultak, amelyekben a Fővárosi Önkormányzat számos szempontot bekínál, amelyek között a zöldfelületek védelme és felülvizsgálata a szükséges jogszabálymódosítások bevezetése és megvalósulása.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Utánozás és új építési jogszabályok alkalmazása</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Folyamatban

- A biológiai aktivitásérték számítási módszereinek felülvizsgálata és fejlesztésének javaslatai c. tanulmányterv kidolgozása a szükséges jogszabálymódosítások kezdeményezése érdekében.

Tervezett

- –

| C-4-2 | Zöldfelület-gazdálkodás hosszú távú forrásbiztosítása | FPH Várostervezési Főosztály, BKM-FÖKERT | Folyamatban. | Megvalósult
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- A forrashány mérséklése a BKME FÖKERT Divízió zöldfelület-gazdálkodási feladatainál (rövid leírás szerződött főösszegez, támogatásos források bővülése: 2022-ben a legnagyobb volumenű támogatások a következő kezdetekben: a Westend City Center 3,28 millió forint értékben, a Jane Goodall Intézet 1,46 millió forinttal, a Yettel Magyarország Zrt. pedig 762 ezer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Feladat</th>
<th>Érintett szervezet</th>
<th>Megvalósulás szöveges értékelése</th>
<th>Projektek</th>
</tr>
</thead>
<tbody>
<tr>
<td>forinttal támogatja a Gellérthegy erdősítését, valamint a Jane Goodall Intézet 1,1 millió forinttal a Szépvölgyi-erdő erdősítéséhez is hozzájárult.</td>
<td>- Zöld Budapest Alapítvány létrehozása, amelynek bevételi forrásait Budapest zöldítéséért felelős vállalkozások támogatása, közcelű adományok jelenthetik, melyek transzparenst és átlátható felhasználásához az alapítvány átalakítását követően kidolgozásra kerülő szervezeti és működési szabályzat biztosítja a kereteket.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A Jane Goodall Intézet ismét facsemetétek ültetését támogatja 1,9 millió forinttal a Szépvölgyi-erdőben, amelynek az előkészítése folyamatban van.</td>
<td>Folyamatban</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C-4-3 Erdőterületek fejlesztése és fenntartása</td>
<td>FPH Várostervezési Főosztály, BFVK</td>
<td>Jelentős előrelépés történt.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folyamatban</td>
<td>- Városi erdők - részvételi költségvetés keretében két területen történt erdősítés 2022 novemberéig folyamatosan, Pesterzsébet-Soroksárán erdő és a Rákosliget területén.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- 2022 végéig a Főváros több mint 20 ezer darab új fát ültetett el Budapesten a Radó Dezső Térvben elfogadott célkitűzések szerint. Ebből több mint 7.300 darab a többször iskolázott előnevelt fa, amelyek a fővárosi utakat szegélyező fasorokban, fővárosi parkokban vagy strandfürdökben kaplak helyezték el. Közel 16 ezer erdészeti cseméte és konténeres erdészeti cseméten került kültetésre a megújuló erdőterületeken. Ennek a programnak megvalósítását a Főpolgármenti Hivatalban, és a BKMK FŐKERT Divízióján belül az erdő kezelésével és a természettudományos alkalmazások szempontjából a területek felhasználása szempontjából lehetségesnek volt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Számos parkfejlesztés előkészítése zajlik, néhány megvalósítása már folyamatban van.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Megvalósult</td>
<td>Bakáts tér megújítása (TÉR_KÖZ projekt) – 2022-ben megvalósult.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Pünkösdfürdő park létesítése 7 hektáron – 2022-ben megvalósult.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- XIII. kerület, Kubala László park megvalósítása (TÉR_KÖZ projekt).</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Átadásra került Budapest első land art alkotása, a Nelson Mandela parkban.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Alternatív gyepgazdálkodás a kijelölt méhlegelő területeken. Lombgyűjtés ökológiai szempontból újragondolása.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Folyamatban</td>
<td>- Zöldebb és élhetőbb Mester utca, Közösségi funkciók a Szent István parkba projektjei kivitelezésére kerültek előkészítése folyamatban.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Alternatív gyepgazdálkodás a kijelölt méhlegelő területeken. Ökológiai szempontból újragondolása.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- Alternatív gyepgazdálkodás a kijelölt méhlegelő területeken. Ökológiai szempontból újragondolása.</td>
<td></td>
</tr>
</tbody>
</table>

453
<table>
<thead>
<tr>
<th>Feladat</th>
<th>Érintett szervezet</th>
<th>Megvalósulás szöveges értékelése</th>
<th>Projektek</th>
</tr>
</thead>
</table>
| **Tervezett** | | | **- Fővárosi intézménykertek rendezése, fejesztése:** FSZEK Sashalmi Könyvtár keréjében vírágos kert és fűszerkert létesítése.
**- Margitszigeti Mező projekt (kiviteli tervek elkészült).
**- Flórán tér környezetrendezése– tervezés folyamatban.
**- Klinikák park létrehozása engedélyezési és kiviteli tervek – tervezés folyamatban.
**- Andrássy út zöldsétány kialakítása - kiviteli terv készítése (Oktogon – Kodály körönd).
**- Városháza park megvalósítása érdekében tervpályázat kiírásra került megkérődést.
**- Vérmező zöldfelületeinek megújítása (stratégiai és koncepciőterv készült).
**- Gellért-hegyi közpark megújítása (stratégiai terv készült).
**- Népliget megújítása (stratégiai terv készült, ültetőpályázat kiírásra került – 2023-ban sikeresen lezárult).
**- Óbudai-sziget megújítása (stratégiai terv készül).
**- Fehérültő megújítása (stratégiai terv előkészítése megkezdődött).
**- Bókay kert integrált játszótér tervezése folyamatban. |
| **C-4-5** | FPH Várostervezési Főosztály, BKM-FŐKERT, BKM-BTI | **A fasorok fokozatos megújítása folyamatban van** |
Megvalósult
2021-ben elvégzett jelentősebb faültetések:
- Újpesti raktár fasorának megújítása (161 darab, előnevelt mezei juharfa);
- Bartók Béla út fakultatív Budapesten elsőként Stockholm Faültetési Rendszerrel (SFR) valósult meg;
- az id. Antall József raktarton, 34 darab, kocsányos tölgyet telepítettek gyökércellás módszerrel.
2022-ben 678 parkfa, 853 kiemelt fasori fa és 396 fasori fa lett telepítve, többek között:
- a Fiumei úti szervizút lerombolt állapotú, balesetveszélyes fának cseréje,
- a Zugligeti úti fasor cseréje,
- a Szilági Erzsébet fasor megújítása,
- a faültetés a Slachta Margit raktarton.
III. Rottenbiller utca, XII. Bőszörményi utca, XII. Fodor utca, VI. Andrássy út, VIII. Fiumei út – magas darabszámú fakivágás és visszapótlás mindegyik helyszínén.
Intézményesített favédelem: Az előző önkormányzati vezetéstől örökölt tervek felülvizsgálatával 2021-2022 időszakában mintegy 1800 egészséges fát mentett meg a Fővárosi Önkormányzattal a kivágástól. Az Óbudai-sziget értékes ültetését a többek között:
- a Fiumei úti szervizút lerombolt állapotú, balesetveszélyes fának cseréje,
- a Zugligeti úti fasor cseréje,
- a Szilági Erzsébet fasor megújítása,
- a faültetés a Slachta Margit raktarton.
III. Rottenbiller utca, XII. Bőszörményi utca, XII. Fodor utca, VI. Andrássy út, VIII. Fiumei út – magas darabszámú fakivágás és visszapótlás mindegyik helyszínén.
Folyamatban
- Fasor rekonstrukció, biodiverz fasor tervezése, szakfelügyeleti rendszer fejesztése.
- XIX. Ady Endre út – fakivágás/ültetés alginit/bentonit, mikorrhiza (gomba-gyökér szimbiózis) alkalmazása
Tervezett
- Több évre előre tervezett fasorfelújítások, fakataszteri adatbázis folyamatos frissítése.
| **C-4-6** | FPH Várostervezési Főosztály, BKM-FŐKERT | **A zöldkataszter folyamatosan bővül.** |
Megvalósult
- A Fatafő közösségi alkalmazás funkció és tartalombővítése: kereső funkciók bővítése, fővárosi kezelésű erdőterületek adatbázisba vétele, BKM FŐKERT Divíziójának honlapon lévő tájékoztató tartalom létrehozása és az alkalmazásban a hivatkozás leflejtése. |
Feladat | **Érintett szervezet** | **Megvalósulás szöveges értékelése** | **Projektek**
--- | --- | --- | ---
Folyamatban | | |
- A Városliget Zrt. FATÁR datadatázhoz való csatlakozása egyeztetés alatt van.
- A Fatár közösségi alkalmazás háttéradatbázisának fejlesztése: BKM FŐKERT Divízió kertész szakmai leltáradatbázisának frissítése és bővítése (eddig kb. 28.000 tétel);
- Budapesti temetők csatlakozása egyeztetés alatt.
- Miyawaki-minierdők; vadvirágos, extenzív gyepek jelölése.

Tervezett
A Fatár közösségi alkalmazás adattartalmának bővítése: Tömegközlekedési útvonalak fővárosi tulajdonú szakaszai és a hozzájuk kötődő fővárosi tulajdonú faállományok megjelenítése az alkalmazásban (előreláthatóan 32.000 tétel)

Környezeti program cél: D-1 Környezetbarát tervezési módszerek

D-1-1	Kompakt város kialakítás célzó terület- és településrendezés megvalósítása	**Megvalósult**
Folyamatban van.

- FPH Várostervezési Főosztály
- Megvalósult: A kompakt város kialakításának, fenntartásának eszközrendszerének vizsgálata c. tanulmányterv kidolgozása.
- Budapest és a fővárost körülvevő agglomerációs települések viszonya c. tanulmányterv kidolgozása.

D-1-2	Energiahatékony költségékonny növelése	**Megvalósult**
Folyamatban: a közcsobgáltató gazdasági társaságoknál folyamatosan valósulnak meg energiahatékony ágot növelő beruházások

- FPH Klíma- és Környezetügyi Főosztály,
- FPH Városüzemeltetési és Főosztály
- Hivatalüzemeltetés és Intézményfejlesztési Főosztály
- BKM-FŐTÁV Divízió

- BDK:
 - világítóberendezés csere alapján keletkezett villamosenergia megtakarítás 1.415.863kWh, ami 1.316.753kg/CO₂-megtakarításnak felel meg.

- BKV:
 - A várható energiamegtakarítás Energiahatékonysági kötelezettségi rendszerbe (EKR) kapcsolt aránya 34% (182 GJ).
 - Metró Diszpécserházban a kazánok cseréje, energiamegtakarítás várható mértéke 15,3 ezer m3 (532 GJ) földgáz évente.

- FCSM:
 - Rekuperációs kiserőmű létesítése az Észak-pesti Szennyvíztisztító Telepen. Az elérhető éves energiamegtakarítás mértéke (szekunder energiaforrás: villamos energia): 252 GJ.
 - Rekuperációs kiserőmű létesítése a Dél-pesti Szennyvíztisztító Telepen. Az elérhető éves energiamegtakarítás mértéke (szekunder energiaforrás: villamos energia): 45,36 GJ.

- EV:
 - Energiahatékonyával felújítások: Sibrik gépház, Széchenyi gépház, Irhás gépház Pócsmeyer II. kútcsomort 1,2,3 kutak 2-es gép, Ráckevei kútcsomort 11-es kút 2-es gép, 15-ös kút 1-es gép, 19-es kút 2-es gép.
 - Főtelep szerverterem energetikai optimalizálása,
 - Szivattyúk és egyéb gépek beszerzése, Tahi diszpécser nyílászáró cserék,
 - Megújuló energia projekt: Tahi 1,5 MW napelem II. ütem.
<table>
<thead>
<tr>
<th>Folyamatban</th>
<th>BDK:</th>
</tr>
</thead>
<tbody>
<tr>
<td>világítóberendezés csere alapján várt villamosenergia megtakarítás 199.958kWh, ami 185.961kg/CO2-megtakarításnak felel meg.</td>
<td></td>
</tr>
<tr>
<td>2022-ben 1.049 db világítóberendezés van folyamatban - közvilágítás korszerűsítés eredményeképpen várt villamosenergia megtakarítás mértéke 199.958kWh, ami 720GJ megtakarításnak felel meg.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Folyamatban</th>
<th>FV: Megújuló energia projekt: Szigetmonostor II ütem.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Megvalósult</th>
<th>BDK:</th>
</tr>
</thead>
<tbody>
<tr>
<td>világítóberendezés csere alapján becsült villamosenergia megtakarítás 666.000kWh, ami 620.000kg/CO2-megtakarításnak felel meg.</td>
<td></td>
</tr>
<tr>
<td>-5100db világítóberendezés csere tervezett - közvilágítás korszerűsítés eredményeképpen becsült villamosenergia megtakarítás mértéke 666.000kWh, ami 2.400GJ megtakarításnak felel meg.</td>
<td></td>
</tr>
</tbody>
</table>

| Megvalósult | FCSM: Dél-pesti Szennyvíztisztító Telepi eleveniszapos medencék levegőellátás korszerűsítése. Levegő ellátás átalakítása (kétkörös levegőellátás), valamint MOV szabályozás kiépítése (L1, L2 medencék). Az elérhető éves energiamegtakarítás mértéke (szekunder energiaforrás: villamos energia): 172,8 GJ. |

| Megvalósult | FV: Az ivóvízellátó hálózat rejtett vízelfolyásainak felderítésével és javításával elérhető, EKR-rendszerben értékesíthető megtakarítási lehetőségek előkészítése folyamatban van. |

<table>
<thead>
<tr>
<th>D-1-3</th>
<th>EMAS általános bevezetése, majd fenntartása a közszolgáltatást végző gazdasági társaságoknál</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPH Várostervezési Főosztály, FPH Klíma- és Környezetügyi Főosztály, BVH, közszolgáltatást végző gazdasági társaságok</td>
<td></td>
</tr>
<tr>
<td>Folyamatban: a közszolgáltatásokat végző gazdasági társaságok minőségbiztosítási alrendszerének áttekintése, a környezetvédelmi hatóságokkal szembeni kötelezettségek teljesítésének, az esetleg meghatározott bírságok okainak felmérése megkezdődött.</td>
<td></td>
</tr>
</tbody>
</table>

| Megvalósult | D-1-3 | EMAS általános bevezetése, majd fenntartása a közszolgáltatást végző gazdasági társaságoknál |
|---|---|
| 3, azok összesen 23 telephelye rendelkezik EMAS szabvánnyal (lásd II.4 fejezet) |
| 2021-ben a BKV Zrt. M4 Metró Járműtelepe és Budafok Villamos Járműtelepe szerzett EMAS minősítést. |
| 2023-ban megvalósult) |

| Megvalósult | D-1-3 | EMAS általános bevezetése, majd fenntartása a közszolgáltatást végző gazdasági társaságoknál |
|---|---|
| - Az EMAS-hitelesített közszolgáltató társaságok száma 3, azok összesen 23 telephelye rendelkezik EMAS szabvánnyal (lásd II.4 fejezet) |
| - 2021-ben a BKV Zrt. M4 Metró Járműtelepe és Budafok Villamos Járműtelepe szerzett EMAS minősítést. |
| 2024-ben megvalósul. |

| Megvalósult | D-1-4 | Zöld gazdaság ösztönzése, zöld közbeszerzés |
|---|---|
| FPH Közbeszerzési és Projektmenedzser Főosztály, közszolgáltatást végző gazdasági társaságok |
| Nem történt előrelépés |

| Megvalósult | D-1-4 | Zöld gazdaság ösztönzése, zöld közbeszerzés |
|---|---|
| | Folyamatban: |

<table>
<thead>
<tr>
<th>Környezeti program cél:</th>
<th>D-2 Barnamezős területek</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-2-1 Barnamezős területek</td>
<td></td>
</tr>
<tr>
<td>FPH Várostervezési Főosztály</td>
<td></td>
</tr>
<tr>
<td>Folyamatban:</td>
<td></td>
</tr>
<tr>
<td>Megvalósult</td>
<td></td>
</tr>
<tr>
<td>Feladat</td>
<td>Érintett szervezet</td>
</tr>
<tr>
<td>---------</td>
<td>------------------</td>
</tr>
<tr>
<td>megújításának elősegítése</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Környezeti program cél: D-3 Közlekedésügy

D-3-1 Közösségi közlekedés fejlesztése

<table>
<thead>
<tr>
<th>Projekt</th>
<th>Megvalósult</th>
</tr>
</thead>
<tbody>
<tr>
<td>FPH Városüzemeltetési Főosztály, FPH Klíma- és Környezetügyi Főosztály, BKK, BKV</td>
<td>Gondolatban</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Az elmúlt években forgalomba állított korszerű, Euro 6-os, valamint a 2021-ben érkezett 32 db új autóbusznak köszönhetően a járműpark környezettermelésére jelentős mérsékődött, az autóbuszok életkora 9,8 évre csökkent.
- A jelenleg 141 darabból álló trolibuszflotta átlagéletkora 16,4 év.
- Az akadálymentesen elérhető szolgáltatások aránya 2021-hez képest az autóbuszok esetében 98,1%-ról 98,7%-ra nőtt, a trolibuszoknál 79,6%-ról 80%-ra, a villamosoknál 43,9%-ról 45,7%-ra, míg a metronál 20,4%-ról 20,6%-ra.
- 2022. IV. negyedévében állt forgalomba a BKV-nál 35 db saját tulajdonú (22 szóló, 13 csuklós) és 100 db bérelt (50 szóló, 50 csuklós) autóbusz, melyel párhuzamosan régi, nagyfogyasztású járművek kerültek ki a forgalomból.
- 2022. éven 6 db új, 35 db új SST trolibusz állt forgalomba.
- 2022. évén 6 db új autóbusz állt forgalomba.
- 2022. évén 6 db új autóbusz állt forgalomba.
- Az év első felében 12 db CAF villamos is üzembe állt, ezzel a villamos és trolibusz járműbeszerzési projekt II. ütemében megrendelt 26 villamos és 21 trolibusz forgalomba állítása befejeződött.
- Elkészült a Baross utcai troli felsővezeték-hálózat korszerűsítése, így a Harminckettesek tere és a Szabó Ervín tér között is felsővezetékes üzemmodban jár a troli. A vonalon korszerű, 2019-ben üzembe állított trolibuszok közlekednek.
- Elkészült a Baross utcai troli felsővezeték-hálózat korszerűsítése, így a Harminckettesek tere és a Szabó Ervín tér között is felsővezetékes üzemmodban jár a troli. A vonalon korszerű, 2019-ben üzembe állított trolibuszok közlekednek.
- Elkészült a Baross utcai troli felsővezeték-hálózat korszerűsítése, így a Harminckettesek tere és a Szabó Ervín tér között is felsővezetékes üzemmodban jár a troli. A vonalon korszerű, 2019-ben üzembe állított trolibuszok közlekednek.
- Elkészült a Baross utcai troli felsővezeték-hálózat korszerűsítése, így a Harminckettesek tere és a Szabó Ervín tér között is felsővezetékes üzemmodban jár a troli. A vonalon korszerű, 2019-ben üzembe állított trolibuszok közlekednek.
- Elkészült a Baross utcai troli felsővezeték-hálózat korszerűsítése, így a Harminckettesek tere és a Szabó Ervín tér között is felsővezetékes üzemmodban jár a troli. A vonalon korszerű, 2019-ben üzembe állított trolibuszok közlekednek.
- Elkészült a Baross utcai troli felsővezeték-hálózat korszerűsítése, így a Harminckettesek tere és a Szabó Ervín tér között is felsővezetékes üzemmodban jár a troli. A vonalon korszerű, 2019-ben üzembe állított trolibuszok közlekednek.
- Elkészült a Baross utcai troli felsővezeték-hálózat korszerűsítése, így a Harminckettesek tere és a Szabó Ervín tér között is felsővezetékes üzemmodban jár a troli. A vonalon korszerű, 2019-ben üzembe állított trolibuszok közlekednek.
- Elkészült a Baross utcai troli felsővezeték-hálózat korszerűsítése, így a Harminckettesek tere és a Szabó Ervín tér között is felsővezetékes üzemmodban jár a troli. A vonalon korszerű, 2019-ben üzembe állított trolibuszok közlekednek.
- Elkészült a Baross utcai troli felsővezeték-hálózat korszerűsítése, így a Harminckettesek tere és a Szabó Ervín tér között is felsővezetékes üzemmodban jár a troli. A vonalon korszerű, 2019-ben üzembe állított trolibuszok közlekednek.
- Elkészült a Baross utcai troli felsővezeték-hálózat korszerűsítése, így a Harminckettesek tere és a Szabó Ervín tér között is felsővezetékes üzemmodban jár a troli. A vonalon korszerű, 2019-ben üzembe állított trolibuszok közlekednek.
- Elkészült a Baross utcai troli felsővezeték-hálózat korszerűsítése, így a Harminckettesek tere és a Szabó Ervín tér között is felsővezetékes üzemmodban jár a troli. A vonalon korszerű, 2019-ben üzembe állított trolibuszok közlekednek.
- Elkészült a Baross utcai troli felsővezeték-hálózat korszerűsítése, így a Harminckettesek tere és a Szabó Ervín tér között is felsővezetékes üzemmodban jár a troli. A vonalon korszerű, 2019-ben üzembe állított trolibuszok közlekednek.
Feladat | Érintett szervezet | Megvalósulás szöveges értékelése | Projektek
--- | --- | --- | ---
- Folyamatban vannak a Széchenyi lánchídhoz kapcsolódó közterületek rekonstrukciójának és fejlesztésének tervezési munkái, a Szilágyi Erzsébet fasor, továbbá a IX. ker. Mester utca (Ferenc körút – Haller utca) felújításának tervezési munkái.
- 2022-ben megkezdődött az M3 metróvonalhoz kapcsolódó gyalogos aluljáró rekonstrukciója (Határ út).

Járműbeszerzések:
- A budapesti villamos és trolibusz járműpark további korszerűsítése érdekében a BKK Zrt. 2021-ben további 48 db alacsonypadlós trolibusz járművet rendelt meg (12 db szóló, 36 db csuklós trol), amelyek 2022. év végétől ütemezetten állnak forgalomba.
- Lehívásra került 20 db alacsonypadlós CAF villamos.
- 22 db szóló-, illetve 13 db csuklós új autóbusz, szállítási határidő: 2022. év vége (BKV Zrt.).
- BKV Zrt. aláírta a 10 évre szóló tartós járműbérleti szerződését, mely alapján 2022. év végére - 2023. év elejére 50-50 db szóló és csuklós új jármű állhat forgalomba.
- Előkészítés alatt áll 51 db alacsonypadlós villamos megrendelése (5 db hosszú + 46 db rövid villamos).

Tervezett
<table>
<thead>
<tr>
<th>Feladat</th>
<th>Érintett szervezet</th>
<th>Megvalósulás szöveges értékelése</th>
<th>Projektek</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2023. májusban az A7 és A8 operatiori szerződések több ütemben megszünnek, ezzel párhuzamosan elindul a C7 és C8 szerződés. Ennek köszönhetően 161 db közeli 10 éves jármű helyett áll forgalomba 162 db új autóbusz, melyek jobb, környezetkímélőbb motorral szerelték.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- További 42 új trolibusz forgalomba állásával (2023. májusáig) feltételezhetően csökken a villamos energiafelhasználás (alacsonyabb faljagos fogyasztás, önjáró képesség).</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2024. szeptembertől folyamatosan áll forgalomba 51 db villamos, melyel párhuzamosan régi járművek kivonása is megvalósul. A járműcsere eredményeként csökken a felhasznált energia mennyisége.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Peronfelújítás az 56/56A villamosok vonalán</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Forrás rendelkezésre állása esetén 2022. II. félévben további 31 db alacsonypadlós CAF villamos megrendelésére kerülhet sor.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A MOL Bubi rendszer bővítése Budapest I. és XIV. kerületében</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Másfővárosi bringasztráda-hálózat létesítése (Kerékpáros útvonalak kialakítása a legfontosabb útvonalakon: Újlak út, Váci út, Andréssy út, Kerepesi út, Thököly út, Nagykörút, Kiskörút)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A VEKOP program keretében a közlekedésfejlesztési és kerékpárosbarát intézkedések az alábbi kerületben 2022-ben előkészítés alatt (kivitelezési feladatok közbeszerzés alatt): III., XIII., XI., XIV., XVII.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Fővárosi villamos járműpark megújítása, Villamos járműbeszerzés, A már megrendelt, gyártás alatt álló CAF villamosok fogadásához szükséges fejlesztések,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A Gellért-hegyciklo megvalósítása (A Rác Fürdőtől a Citadelláig új sikló infrastruktúrájának kiépítése, járművek beszerzése),</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Elektromos buszok beszerzése (40 db tisztán elektromos működtetésű busz beszerzése töltő-oszloppal együtt),</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A közösségi közlekedési szolgáltatások fejlesztése,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A budapesti közösségi közlekedési forgalomtervezési, forgalomirányítási és utastájékoztatási integrált rendszerszervezése,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A MOLLFAV (Kisföldalatti) és a Fogaskerekű vasúti járművek cseréjének előkészítése az ITM-mel kötött TSZ keretében történik. A BKV a Fővárossal és kerületéivel pályázatot nyújtott be a LIFE éghajlatpolitikai alprogram (alacsony szén-dioxid kibocsátású, megújuló energiára építő modellértékű beruházások Budapesten) 2020-as év pályázati lehetőségére.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A közösségi közlekedés terén további jelentősebb, előkészítés alatt álló projekt: az M3-as metróvonal északi meghosszabbítása, az 50-as és 56-os villamosvonalak akadálymentesítése,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feladat</td>
<td>Érintett szervezet</td>
<td>Megvalósulás szöveges értékelése</td>
<td>Projektek</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>D-3-2 Környezetbarát járművek használatát elősegítő infrastruktúra-fejlesztés kezdeményezése</td>
<td>FPH Városüzemeltetési Főosztály, FPH Klima- és Környezetügyi Főosztály, BKK</td>
<td>Folyamatban</td>
<td>Megvalósult</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- A MOL Bubit a fővárosi közösségi közlekedési rendszer részeként 2014</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>őszén 76 gyűjtőállomással és 1.100 kerékpárral adták át.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A közbringarendszerben 2019-ig 156 gyűjtőállomás került telepítésre.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A megújult MOL Bubi közbringa-szolgáltatás 2021 májusától üzemel.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A korszerűsített rendszer indulása óta 2021-ben 96.427-en regisztráltak.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>A felhasználók 2021-ben 1.300.761 db bérlelet generáltak a rendszerben.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Az év során a kerékpártóta több lépcsőben, 350 darab kerékpárral bővült,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ezáltal 2021-ben már 1.560 darab kerékpár volt elérhető a rendszerben.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2022-ben a korábbi 1.560 darab kerékpár mellé összesen további 500 új</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>kerékpár érkezett, a szolgáltatási terület bővítésével a gyűjtőállomások</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>száma 178-ra nőtt.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 2022-ben a közösségi költségvetési keretből 80 helyszínen létesültek</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>kerékpártámaszok,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 2020-ben 27 helyszínén létesült B+R kerékpártároló a kombinált utazás</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>támogatása érdekében.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- A közösségi közlekedési járműveken 2021-től 240 darab Tatra villamoson</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>szállítható biztonságosan a kerékpár, valamint 2022-től az 57-es és a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>257-es buszokon is lehet bícikli szállítani. Így már 14 villamosra, 16</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>buszjáratra, a 77-es trolira és valamennyi HEV járatra fel lehet räni a</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>kerékpárokat.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Új kerékpártárolók kerültek elhelyezésre a fővárosi intézményeknél: FSZEK</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31 tagkönyvtára (a könyvtár honlapja információkat nyújt a bíciklitároló</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>elérhetőségéről), BFL, BMK, Örkény Színház, Budapest Bábcsínház.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Felújításra került a Bulcsú utca és a Bajza utca közötti gyalogos-kerékpáros</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>alagút.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- A megosztáson alapuló mikromobilitási eszközök felvételi és leadási</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>helyeinek szabályozására mikromobilitási pontok (ún. Mobi-pontok) kerülnek</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>kijelölésére. Jelenleg a jellemezően belső területeket lefedő hálózatban</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a 510 Mobi-pont található.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 2020-ban ideiglenes kerékpársávok kerültek kijelölésre a Bartók Bélától</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>a Tétényi úton, a Baross utcában, a Nagykörút felé a Villányi úton is.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- A nagykőrösi kerékpáros infrastruktúra budai folytatásaként 2022-ben</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>kétoldali irányhelyes kerékpárszáv létességet az Irinyi József utcában.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 2020-ban megkezdődött az M3 metróvonalhoz kapcsolódó gyalogos rekonstrukciója</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- További 130 helyszínen kerülnek elhelyezésre kerékpártámaszok.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tervezett</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Első fővárosi bringasztráda-hálózat létesítése (Kerékpárös utvonalkat</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>kialakítása a legfontosabb utvonalkakon: Úllói út, Váci út, Andrássy út,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Kerepesi út, Thököly út, Nagykőrút, Kiskőrút.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- EuroVelo 14 fejlesztése - Új híd műtárgy építése a 70-es vasútvonalon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>keresztkezdésében.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Folyamatban</td>
</tr>
</tbody>
</table>

Közösségi kerékpáros közlekedési rendszer:
- A MOL Bubi közbrinaga rendszer területi lefedettségének bővítése folyamatos.

Kerékpártársas fejlesztése:
- 2021-ben megkezdődött a EuroVelo 6 és EuroVelo 14 nemzetközi kerékpár-út tervezése terve és engedélyezési munkái.
- 2022-ben megkezdődtek a VEKOP program keretében a közlekedésfejlesztések és kerékpárosbarát intézkedések az alábbi területeken: III., X., XII., XIV., XV., XVII., XIX. és XX.

Központú közterületfejlesztések (gyalogos-kerékpáros fejlesztések):
- 2021-ben megkezdődtek a pesti belvárosi Duna-part Kossuth tér – Fövám tér közötti szakaszának megújításának és a budai belvárosi Duna-part megújításának tervezési munkái. Folyamatban vannak a Széchenyi lánchídhoz kapcsolódó közterületek rekonstrukciójának és fejlesztésének tervezési munkái.
- 2022-ben megkezdődött az M3 metróvonalhoz kapcsolódó gyalogos aluljáró rekonstrukciója.

akkadálymentes szinten kialakítása az új híd műtárgy építése a 70-es vasútvonalon keresztkezdésében.
<table>
<thead>
<tr>
<th>Feladat</th>
<th>Érintett szervezet</th>
<th>Megvalósulás szöveges értékelése</th>
<th>Projektek</th>
</tr>
</thead>
<tbody>
<tr>
<td>Környezeti program cél: E-1 Környezeti állapotértékelés</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-1-1 Évenkénti környezeti állapotértékelés és annak közzététele</td>
<td>FPH Klima- és Környezetügyi Főosztály, BK</td>
<td>Megvalósult.</td>
<td></td>
</tr>
<tr>
<td>Környezeti program cél: E-2 Szemléletformálás</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E-2-1 Szemléletformálás és tájékoztatás</td>
<td>FPH Klima- és Környezetügyi Főosztály, FPH Várostervezési Főosztály, FPH Koordinációs Főosztály, közzolgáltatás t végző gazdasági társasága</td>
<td>Környezetvédelmi szemléletformáló tevékenységet rendszeresen végeznek a fővárosi közzolgáltató társaságok az elektronikus és nyomtatott sajtón keresztül, továbbá a környezet-védelemmel kapcsolatos rendezvényeken.</td>
<td>Megvalósult.</td>
</tr>
</tbody>
</table>

A Fővárosi Önkormányzat közvetetten – intézményei és közzolgáltató vállalatai révén – széliés körű szemléletformáló tevékenységet végez. A szemléletformálásban aktívan résztvevő fővárosi intézmények többek között a FSZEK, a Budapesti Művelődési Központ, a Budapest Bábshináz, Városmajori Szabadállami Színpad, a Fővárosi Önkormányzat Óvodája és a Cseppkő Óvoda. Több fővárosi közzolgáltató társaság, mint a BKM, a BKK, a BKV, az FCSM és az FV folyamatos szemléletformáló tevékenységet végez és aktív szerepet vállal a szemléletformáló programokban, mint pl. az Európai Mobilitási Hét rendezvényein, különösen az Autómentes napon.

BKM FKF Hulladékgazdálkodási Divízió kiemelt kommunikációs témák voltak:
- Veszélyes hulladékgýtűtés egész évben elérhető a lakosság számára.
- Negy nagy kiemelt hulladékdudvar már vasámpára lehet s kisko lokosok rendelkezésre áll.
- Szemléletformáló és Újrahasználati Központok, mint az elektronikus és nyomtatott sajtón keresztül, továbbá a környezet-védelemmel kapcsolatos rendezvényeken.

BKM FŐTÁV Divízió:
- Környezetvédelmi szemléletformáló tevékenységet rendszeresen végeznek a fővárosi közzolgáltató társaságok az elektronikus és nyomtatott sajtón keresztül, továbbá a környezetvédellemmel kapcsolatos rendezvényeken (pl. Autómentes Nap).
- BKM FŐTÁV Divízió részt vesz a LIFE HungAiry levegőminőség-védelmi projektben, melyen célja a fővárosi levegőminőség és a városi klima javítása, valamint a lakossági szemléletformálás hatékonyságának növelése.
- 2022-ben további három LIFE információs nap került megszervezésre, melyek közül egy már április folyamán meg is valósult, a nagyobb előrel és látogatószám érdekében online webinárium formájában.
- Az eseményen a levegőtisztaság-védelem kérdését taglálva a Városháza és a Budapesti Közművek távhőszolgáltatási és Kertészeti Divíziók vezető képviselői tartották előadást.
- A távhő klímavédelemben betöltött fontos szerepét, a szolgáltatás környezetbarát jellegét több alkalommal szerepetett a nagy olvasottási médiákon, célzott pr-anyagok előadásával.

2022-ben csatlakoztak a MÉKH „Érmondók Éjszakája” rendezvényéhez, a látogatók megismerhetették közlelőből a távfűtést, az Észak-budai Főút, a távfűtés környezetbarát jellegét bemutatott.

2022-ben is csatlakoztak a MER „Érmondók Éjszakája” rendezvényéhez, a látogatók megismerhetették közlelőből a távfűtést, az Észak-budai Főút környezetbarát jellegét bemutatott.
Feladat	Érintett szervezet	Megvalósulás szöveges értékelése	Projektek
<p>| BKM FÓKERT Divízió: | | | |
| - A közösségi komposztáló program további 5 komposztponttal gazdagodott. Gondozásukért helyi civil szervezetek felelnek. | | | |
| - 4 főtiben telepítettek Miyawaki-érööket, így a kedvezőtlen körülmények között is jól fejlődő, a városi levegőminőséget javító mini-éröök száma 5-re emelkedett Budapesten. | | | |
| - Bevezetésre kerültek a jelentősebb zöldfelületi beavatkozásokat (jellemzően favágásokat) megelőző edukatív, informatív lakossági fórumok, bejárások. | | | |
| - Beindult a „Fogadj örökbe egy zöldterület” program. A sikeres próbát követően megtörtént a program nyilvános meghirdetése, a beérkező jelentkezések értékelése. | | | |
| BKK: | | | |
| - Válts közösségi közlekedésre! – az autóval közlekedők átültetése a közösségi közlekedéssel, pl.: busz sávok használata busszal; a havi-bérlet nem emelkedik, de az üzemanyag igen; bármennyit utazhat ugyan azon az áron havi-bérlettel | | | |
| - MOL Bubi: tavaszi imázs kampány- vend lázán a várost, tekerj MOL Bubival | | | |
| - Edukációs kampány - figyejünk egy gumisra az utakon | | | |
| - VÉKOP projekt: Kerékparkosbarát fejlesztések Köbányán, átnézeti törékepek és látványtervek kommunikációja közösségi media felületen. | | | |
| - Föld napja – Ingyenes utazás forgalmi engedélytel, | | | |
| - Megjült a MOL Bubi közbringarendszer, | | | |
| - Bringázz a munkából kampány, | | | |
| - EUROVELO projekt kommunikáció, | | | |
| - Mercedes és BYD elektromos busz tesztelése, | | | |
| - Válts közösségi közlekedésre! – Autós bevonó kampány, havi bérlet ajánlásával. | | | |
| - MOL Bubi őszi kampány, | | | |
| - Bringás reggeli, | | | |
| - Trolí és CAF projektkommunikáció. | | | |
| FCSM: | | | |
| A “Mi változzunk, ne a környezet!” elnevezésű szemléletformáló kampány 2019-ben indult. Az uniós forrásból megvalósuló, 2022-ig tartó kampány a helyes csatornahasználati szokásokra és a csapadékvíz gyűjtésével történő vízterakérekosságra ösztönzi az lakosságot. 2022-ben széles körű reklámkampánnal, nagyszabású iskolai és lakossági rendezvényen, továbbá népszerű online-játékokkal hívta fel a figyelmet a társaság az épített és a természeti környezet védelmére. | | | |
| FV: | | | |
| - A Víz világnapja, illetve a Föld napja alkalmából szervezett nyílt napokon a résztvevők (tőnyomórész felügyeletnek) első között és interaktív módon tájékozódhatnak az ivóvízterakérekosságról, így arról, hogy fogyasztóként mit tehetnek vagy mit kell tenniük a takarékosság érdekében. A kérdés iránt sokkal fogékonyabb fiatal generációk számára külön előadásokat, bemutatókat és üzemlátogatásokat szervezünk. A VízPlusz szolgáltatásaink (lakás- és locsolási mellékvízmerő, vízszerselési és csőtörléskeresés) érintő marketingtevékenység során az egyik fő cél a fogyasztók szemléletformálása és a takarékos vízelhasználat tudatosítása. A vízbázisvédelemre közösségimédia felületünkön hívjuk fel a figyelmet, illetve tudatosítjuk, hogy egyes védelmi intézkedéseink miért és hogyan állnak összefüggésben az ivóvízbiztonság megőrzésével, illetve erősítésével. | | | |
| - Tájékoztató elektronikus anyagok az agglomerációban élőknek; | | | |
| - Tudatos vízhasználatot támogató kereskedelmi termékek népszerűsítése a közösségi platformokon, médiában, eseményeken | | | |
| BKV: | | | |
| - Virtuális Erőmű Programban, Energiaudatos Vállalat cím, | | | |
| - Fenntarthatósági Témahét: általános- és középskolások számára szervezett pályázat és előadások, | | | |
| - A BKV múzeumai (Földalatti Vasúti Múzeum, Városi Tömegközlekedési Múzeum) minden évben részt vesznek az alábbi eseményeken: Múzeumok Majálisa, Múzeumok Éjszakája. | | | |
| - Nyílt napok a BKV telephelyein. | | | |</p>
<table>
<thead>
<tr>
<th>Feladat</th>
<th>Érintett szervezet</th>
<th>Megvalósulás szöveges értékelése</th>
<th>Projektek</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BMK FKF Hulladékgazdálkodási Divízió 2022-ben is kiemelten kommunikált témák:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Ítaloskarton átkerült a sárga (vegyes csomagolási hulladék) tartályba – korábbi kommunikáció erősítése, a tudás szinten tartása;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Szelektív hulladékgyűjtés és a gyűjtési szabályok népszerűsítése, a gyűjtés értelmének kommunikációja;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Hulladékdúvakor népszerűsítése;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Szelektív hulladékgyűjtő-színetek népszerűsítése;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Szemléletformáló és Újrahasználati Központok ismertségének növelése, az újrahasználat népszerűsítése;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- "Könyvespolc projekt" és kommunikációjának előkészítése, kiemelt célja az újrahasználat népszerűsítése.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BKM FŐKERT Divízió:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Az érzékenyítő lakossági bejárásokat továbbra is szervezzük, leginkább a fakivágásokkal kapcsolatban;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- A 2022-ben megkezdett lakossági egyeztetéseket folytjuk, workshopokat szervezünk a Főváros közösségi költségvetéses, Zöld Infra, ill. TOP pályázatokhoz kapcsolódó közösségi tervezés projektjeiben, amelyek közösségépítők, növelik az egyéni felelősségeket az elkészült fejlesztések kapcsán.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BKM FŐTÁV Divízió:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- A BMK FŐTÁV Divízió részt vesz a LIFE HungAiry levegőminőség-védelmi projektben, melynek célja a fővárosi levegőminőség javítása, valamint a lakossági szemléletformálás hatékonyságának növelése;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Folyamatos kommunikáció zajlja a fővárosi távhőhálózatot érintő fejlesztések kapcsán.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BKK:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Vállás közösségi közlekedésre! kampány</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Mobi-pontok népszerűsítése, bevezetése</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FCSM:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- "Mi változzunk, ne a környezet!" elnevezésű szemléletformáló kampány során 2023-ben is széles körű reklámkampánnal, nagyszabású iskolai és lakossági rendezvényekkel, online-játékkal igyekezett a társaság a szemléletet formálni. A környezettudatossági kutatások alapján sikertelen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FY:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- A Víz világnapja, illetve a Föld napja alkalmából szervezett nyílt napokon a résztvevők első későből és interaktív módon tájékozódhatnak az ivóvíztanárképességéről, így arról, hogy fogyasztóként mit tehetnek, vagy mit kell tennük a takarékosság érdekében.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- A kérdés iránt sokkal fogékonyabb fiatal generációk számára külön előadásokat, bemutatókat és üzemlátogatásokat szerveztek.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- A VízPlusz szolgáltatásokat (lakás- és lozsolási mellékkvíz, vízszennyezés csökkentése) érintő marketingtevékenység során az egyik fő cél a fogyasztók szemléletformálása és a takarékos vízelhárítás tudatosítása.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- A vízbázisvédelemre az FV közösségimédia-felületén hívja fel a figyelmet, illetve tudatosítja, hogy egyes védelmi intézkedéseik miért és hogyan állnak összefüggésben az ivóvízbiztonság megőrzésével, illetve erősítésével.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Tájékoztató elektronikus anyagok az agglomerációs települések számára;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Tudatos vízhasználatot támogató kereskedelmi termékek népszerűsítése tartalom a közösségi platformkon, médiában, eseményeken.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tervezett

BKM:

A BMK különböző divízióiban végzett tevékenységekre épülő szemléletformáló program kialakítása. A komplex programban kiemelt téma a hulladékmennyiség csökkentése, a környezetért gyakorolt hatásainak bemutatása. A programhoz kapcsolódóan létesített intézményeit biztosítja a lakosság részére.

L.: Szemléletformáló és Újrahasználati Központ, Fővárosi Hulladékhaznositó Mű, stb.
<table>
<thead>
<tr>
<th>Feladat</th>
<th>Érintett szervezet</th>
<th>Megvalósulás szöveges értékelése</th>
<th>Projektek</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Állandó, széles körben és egész évben elérhető, a BKM szaktevékenységeihez kapcsolódó ismeretterjesztő, szemléletformáló program kidolgozása.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Stratégiai célkitűzés a FŐKERT divízió kezelésébe került erdőterületek megismeretése, hasonlóan a természetvédelmi területekhez.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKM FŐKERT Divízió:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Állandó, széles körben és egész évben elérhető, a BKM szaktevékenységeihez kapcsolódó ismeretterjesztő, szemléletformáló program kidolgozása.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Stratégiai célkitűzés a BKM FŐKERT Divízió kezelésébe került erdőterületek megismeretése, hasonlóan a természetvédelmi területekhez.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKM FŐTÁV Divízió:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A létesítmények látogathatóságát biztosító nyílt napokat szervez, valamint olyan programokhoz csatlakozik, mint az Erőművek Éjszakája.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A LIFE projekt keretében, a FŐTÁV okos fogyasztásérőhöz kapcsolódó mobil applikáció fejlesztésével segíti a környezettudatos fogyasztói megtanulást kialakulását.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- A BKM FŐTÁV Távhídszolgáltatási Divízió tovább bővíti a 2021-ben megkezdett bemutatótermi átalakítást, és átfogó közmű- látogatóközponttá fejészi a főváros egyik legmeghatározóbb energiatermelő helyszínén, a Hulladékhasznosító Mű telephelyén.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BKK:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Összehozzuk a várost imidzskampány</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Én viszek el járművezetői kampány</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Válts közösségi közlekedésre kampány</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Európai Mobilitási Hét programsorozat,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- MOL Bubi ószi kampány,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- BudapestGO app: Az app mint zöld eszköz (nem papíralapú jegy, ivóutak, MOL BUBÍ állomások, defibrillátorok layere az applikációba),</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- B+R: B+R használata, hal található, miért jó, bringaszállítás szabályai</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Téli kerékpározás: kerékpár felkészítése a télre, helyes öltözet, mire figyelj a téli közlekedés során.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FV:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Nyílt napok szervezése: a BKSZTT-ben, ahol az ivóvízhasználat, illetve a csatornahasználat és a szennyvízkezelés összefüggéseit mutatják be demonstratív eszközökkel; valamint a kőbányai medencénél, ahol mobil laborkörülmények között a vízminőség ellenőrzését és az ivóvíz tisztaságával összefüggő vizsgálatokat mutatják be, továbbá a Biztonsági Osztály közreműködésével az ivóvízbázisok és védet deceptione ellenőrzéséről és védelméről tartanak látványos bemutatót</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tájékoztató elektronikus anyagok az agglomerációban élőknek,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Tudatos vízhasználatot támogató kereskedelmi termékek népszerűsítése a közösségi platformokon, médiában, eseményeken.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

E-2-2 Környezetüdatosság javítása a Főpolgármesteri Hivatal és a fővárosi intézmények, gazdasági társaságok esetében

<table>
<thead>
<tr>
<th>Megvalósult</th>
</tr>
</thead>
<tbody>
<tr>
<td>- A Fővárosi Önkormányzat intézményeiben a szemléletformálást segíti a szelektív hulladékgyűjtési gyakorlat megvalósulása, egyes intézményeiben a környezetbarát ivóvíz felhasználásra, papír felhasználásra is figyelmet fordítanak. Emellett elsősorban az oktatási intézmények környezeti neveléssel is foglalkoznak.</td>
</tr>
</tbody>
</table>

Folyamatban

| FCGM DVJ (Digitális Vizsgálati Jelentés): A hagyományos papír alapú munkakörnyezeti és vizsgálati feladatok kiváltása teljeskörű digitális folyamatainál, munkakörnyezettel. |

Tervezett

| |

E-2-3 Szelektív hulladékgyűjtési program hirdetése köznevelési

<table>
<thead>
<tr>
<th>Megvalósult</th>
</tr>
</thead>
<tbody>
<tr>
<td>- A Fővárosi Önkormányzat által fenntartott két köznevelési intézményben, a Fővárosi Önkormányzat Óvodájában és a Cseppkő Óvodában napi gyakorlat a szelektív hulladékgyűjtés, komposztálás, ezáltal folyamatosan váló a szelektív hulladékgyűjtés gyakorlatának rutinára válása a gyerekek körében.</td>
</tr>
</tbody>
</table>

| A BKM FKF Hulladékgyűjtési Divízió folyamatosan |

Megvalósult

| - A Fővárosi Önkormányzat által fenntartott két köznevelési intézményben, a Fővárosi Önkormányzat Óvodájában és a Cseppkő Óvodában napi gyakorlat a szelektív hulladékgyűjtés, komposztálás, ezáltal folyamatosan váló a szelektív hulladékgyűjtés gyakorlatának rutinára válása a gyerekek körében. |

<p>| - A BKM FKF Hulladékgyűjtési Divízió folyamatos szemléletformáló-educációs tevékenységek végez a budapesti és agglomerációs nevelési- |</p>
<table>
<thead>
<tr>
<th>Feladat</th>
<th>Írjainti szervezet</th>
<th>Megvalósulás szöveges értékelése</th>
<th>Projektek</th>
</tr>
</thead>
<tbody>
<tr>
<td>intézmények-ben</td>
<td>Sport és Iljúságpolitikai Főosztály BKM-FKF Hulladékgazdál kodási Divízió</td>
<td>végez szemléletformálási tevékenységet.</td>
<td>oktatási intézményekben és a Szemléletformáló és Újrahasználati Központokban.</td>
</tr>
</tbody>
</table>

Folyamatban
- Tervezett
-

E-2-4 Budapest természeti értékei népszerűsítő programok támogatása

<table>
<thead>
<tr>
<th>Folyamatosan megvalósul, különböző szemléletformálási módon.</th>
<th>FPH Várostervezési Főosztály</th>
</tr>
</thead>
</table>

Megvalósult
- Természettvédelmi kiadvány terjesztése (Helyi védett természeti értékek, Budapesten, 2016.)
- Természettvédelmi Önszolgálat vezetésével tanásvénytűre szervezése, részvételle a Föld Napja rendezvényeiin.
- A BKM FŐKERT Divízió folyamatosan kapcsolatot tart a civil szervezetekkel és együttműködik velük természettvédelmi feladatokban. Folyamatosan kapcsolatot tart és gyakorlati programokat valósít meg a Fövárosi középfokú és felsőfokú intézményekkel. (pl. középiskolai közösségi szolgálat, egyetemi terepgyakorlat). Jelen zöld napok 80%-a alkalmával és ebben a környezetvédelmi, természettvédelmi rendezvényeken rendszeres részt vesz. (pl. Te szedd!, Takarítási világnap, Európai madármegfigyelő napok)
- A BKM FŐKERT Divízió szaktevékenységeihez kapcsolódó ismeretterjesztő, szemléletformáló program kidolgozása. Stratégiai célkitűzés a BKM FŐKERT Divízió kezelésébe került erdőterületek megismertetése, hasonlóan a természettvédelmi területekhez.
- BMK: Kertulajdonosok, balkonkertészek és a BMK Kertészsképző Klubja, több mint 1.000 fős, aktív nyílt csoport tagjai számára arborétum séták, Budapesti és környéki zöldterületek, védett természeti értékek, budapesti séták, agglomerációs zöld és fenntarthatósági, továbbá nemzeti park programok bemutatása.
- A korábbiaknál lényegesen erősebb kommunikációs támogatást kap Budapest természettvédelmi területeinek, a bennük élő флора és fauna bemutatása, ökológia szerepét megismertetése.
- Tervezett
- - A BKM FŐKERT Divízió szaktevékenységeihez kapcsolódó ismeretterjesztő, szemléletformáló program kidolgozása. Stratégiai célkitűzés a BKM FŐKERT Divízió kezelésébe került erdőterületek megismertetése, hasonlóan a természettvédelmi területekhez.

Környezeti program cél: E-3 Partnerség, kezdeményezés támogatása

<table>
<thead>
<tr>
<th>Folyamatosan megvalósul, lényegesen erősebb kommunikációs támogatást kap Budapest természettvédelmi területeinek, a bennük élő флора és fauna bemutatása, ökológia szerepét megismertetése.</th>
<th>FPH Klíma- és Környezetügyi Főosztály</th>
</tr>
</thead>
</table>

Megvalósult
- A Fővárosi Önkormányzat 2021. december 7-én „Zöld Budapest” néven lakossági tanácsadó irodát nyitott, kettős funkcióval. Egyrészt a Life HungAIRy projekt keretében tanácsadást nyújtanak a helyes fűtési technikákban, komposztálásról, és tájékoztatást adnak a levegő minőség javítását célzó hazai és uniós pályázatokról. Másrészt az Iroda otthon ad a RenoPont Energetikai Otthonfelújítási Központnak is, ahol a lakástulajdonosok felújítási kaphatnak lakásuk energiatakarékos felújításával kapcsolatban. A Nappal Hajtva projekt keretében napelemes felújítása is zajlik.
- 2019 januárjában indult el a LIFE-IP HungAIRy nevű projekt, amely a levegőminőség javítását célozó Magyarország 8 régiójában. Budapest Főváros Önkormányzata projekt partnerként vesz részt a megvalósításban. A projekt feladatai között kiemelt jelentőségi a szemléletformálás, a lakosság tájékoztatása, amelyet egy újonnan alapított, főként természettudománynál ismertekből álló tanácsadó-hálózat lát el (az ún. Ökomenedzser-hálózat tagjaik).
- Örkény Színház és Menerko Kft: Energia fogyasztással, hatékonysággal, költségcsökkentéssel kapcsolatos egyeztetések.

Tervezett
- -

<table>
<thead>
<tr>
<th>Folyamatosan megvalósul, lényegesen erősebb kommunikációs támogatást kap Budapest természettvédelmi területeinek, a bennük élő флора és fauna bemutatása, ökológia szerepét megismertetése.</th>
<th>FPH Klíma- és Környezetügyi Főosztály</th>
</tr>
</thead>
</table>

Megvalósult
- A Fővárosi Önkormányzat 2021. december 7-én „Zöld Budapest” néven lakossági tanácsadó irodát nyitott, kettős funkcióval. Egyrészt a Life HungAIRy projekt keretében tanácsadást nyújtanak a helyes fűtési technikákban, komposztálásról, és tájékoztatást adnak a levegő minőség javítását célzó hazai és uniós pályázatokról. Másrészt az iroda otthon ad a RenoPont Energetikai Otthonfelújítási Központnak is, ahol a lakástulajdonosok felújítási kaphatnak lakásuk energiatakarékos felújításával kapcsolatban. A Nappal Hajtva projekt keretében napelemes felújítása is zajlik.
- 2019 januárjában indult el a LIFE-IP HungAIRy nevű projekt, amely a levegőminőség javítását célozó Magyarország 8 régiójában. Budapest Főváros Önkormányzata projekt partnerként vesz részt a megvalósításban. A projekt feladatai között kiemelt jelentőségi a szemléletformálás, a lakosság tájékoztatása, amelyet egy újonnan alapított, főként természettudománynál ismertekből álló tanácsadó-hálózat lát el (az ún. Ökomenedzser-hálózat tagjaik).
- Örkény Színház és Menerko Kft: Energia fogyasztással, hatékonysággal, költségcsökkentéssel kapcsolatos egyeztetések.

Tervezett
- -

<table>
<thead>
<tr>
<th>Folyamatosan megvalósul, lényegesen erősebb kommunikációs támogatást kap Budapest természettvédelmi területeinek, a bennük élő флора és fauna bemutatása, ökológia szerepét megismertetése.</th>
<th>FPH Klíma- és Környezetügyi Főosztály</th>
</tr>
</thead>
</table>

Megvalósult
- -

Tervezett
- -

E-3-2 Alulról jövő, környezeti állapotot javító kezdeményezések

<table>
<thead>
<tr>
<th>Folyamatosan megvalósul, lényegesen erősebb kommunikációs támogatást kap Budapest természettvédelmi területeinek, a bennük élő флора és fauna bemutatása, ökológia szerepét megismertetése.</th>
<th>FPH Klíma- és Környezetügyi Főosztály</th>
</tr>
</thead>
</table>

| Folyamatosan megvalósul, lényegesen erősebb kommunikációs támogatást kap Budapest természettvédelmi területeinek, a bennük élő флора és fauna bemutatása, ökológia szerepét megismertetése. | FPH Klíma- és Környezetügyi Főosztály |

Megvalósult
- -

Tervezett
- -

- „Égig érő fű” udvarzöldítési pályázat társasházak, lakásszövetkezetek számára a belső udvarok zöldítésére. A rendelkezésre álló támogatási
<table>
<thead>
<tr>
<th>Feladat</th>
<th>Érintett szervezet</th>
<th>Megvalósulás szöveges értékelése</th>
<th>Projektek</th>
</tr>
</thead>
<tbody>
<tr>
<td>zések támogatása</td>
<td></td>
<td>keretösszeg évente: bruttó 30 millió Ft, amelyből 800 ezer - akár 2 millió Ft vissza nem térítendő pénzbeli támogatást is elnyerhetnek a pályázók. - Két pályázati ciklus (2021 és 2022-es) alatt már 28 budapesti társasház nyert támogatást ahhoz, hogy belőle útvonaltól új zöldfelületet alakítsan ki, vagy a meglévőt továbbfejlessze, bővítsse. Az Égig érő fő pályázat célja, hogy a legsgű Orbán beépíttet, nyaranta hőszigetkeintonként össz pározásokban növekedjen a zöldfelület. A pénzügyi támogatás elősegíti azt is, hogy a házak saját forrásaikból is költsenek zöldfelületeik fejlesztésére. A nyertes házból már meg is valósult az átalakítás, a többi háznál még folyamatban van a tervezési, engedélyezési vagy a kivitelezési munka.</td>
<td></td>
</tr>
<tr>
<td>E-3-3 Közösségi szempontok érvényesítése a közterületi fejlesztések során</td>
<td>FPH Koordinációs Főosztály, FPH Várostervezési Főosztály</td>
<td>Folyamatban.</td>
<td>Megvalósult</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Folyamatban</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- 2020 óta a Fővárosi Önkormányzat számos részvételiséggel kapcsolatos folyamatot indított el: több budapesti park fejlesztését online közösségi tervezéssel készítette elő, közösségi gyűléseket szervezett, a közösségi költségvetés keretében egymilliárd forint sorsáról a lakosok kezébe adta a döntést, a lakosságot bevonta a forgalomcsillapítási mintaprojektek értékelésébe, társadalmi vitára bocsátotta a civil rendelet megújítását, továbbá létrehozta a Budapest polgári kezdeményezés fórumát. - Az rdt.budapest.hu oldalon keresztül a lakosság kérdőíves formában oszthatja meg véleményét a fővárosi közterületeket, parkokat érintő tervekről.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>- Tervezett</td>
</tr>
</tbody>
</table>

A fejezet hivatkozásai

1 https://legszennyezettség.met.hu/modellezes/terkepes